Slides Time Series Analysis Winter Term 2015/2016 Wednesdays 14.00 – 15.30 Room: CAWM 1 Prof. Dr. Bernd Wilfling Westfälische Wilhelms-Universität Münster Contents 1 1.1 1.2 Introduction Syllabus What is Time Series Analysis? 2 2.1 2.2 Basic Concepts Examples Definitions 2.3 Stationarity 3 3.1 ARMA Modeling Lag Operator 3.2 3.2.1 3.2.2 Special and Limiting Cases MA(q) Processes MA(∞) Processes 3.2.3 3.3 3.4 3.5 AR(q) and AR(1) Processes Causality and Invertibility Linear Processes and Filtering Autocovariance Function of ARMA(p, q) Processes 4 4.1 Estimation of the Expectation and the Autocovariance Function Ergodicity 4.2 4.3 Estimation of the Expectation Estimation of the Autocovariance and the Autocorrelation Function 5 Partial Autocorrelation Function 5.1 5.2 Definition, Computation, Estimation Interpretation of ACF and PACF 6 Estimation of Stationary ARMA Processes 6.1 6.2 6.3 6.4 Box-Jenkins Methodology Estimation of ARMA(p, q) Processes Estimation of the Lag Orders p and q Modeling of a Stochastic Process i 7 7.1 Integrated Processes Stochastic Versus Deterministic Trends 7.2 7.3 7.4 7.4.1 Hypothesis Testing in AR(p) Models With Deterministic Trend Statistical Tests for Unit Roots Regressions With Integrated Variables Spurious regressions 7.4.2 7.4.3 7.4.4 Cointegration A Test for Cointegration Vector Error Correction Models 7.4.5 Multiple Cointegration 8 8.1 Volatility Processes Stylized Facts on the Volatility of Returns 8.2 8.3 8.4 ARCH Processes GARCH Processes Extensions of the GARCH Model ii References and Related Reading Probability Calculus, Statistical Inference Hesse, C. (2003). Angewandte Wahrscheinlichkeitstheorie. Vieweg Verlag, Braunschweig / Wiesbaden. Mood, A.M., Graybill, F.A. and D.C. Boes (1974). Introduction to the Theory of Statistics (3rd Edition). McGraw-Hill, Tokyo. Mosler, K. und F. Schmid (2011). Wahrscheinlichkeitsrechnung und schließende Statistik (4. Auflage). Springer Verlag, Heidelberg. Wilfling, B. (2014). Advanced Statistics. Slides to the Lecture Advanced Statistics. Winter Term 2014/2015, Westfälische Wilhelms-Universität Münster. Time Series Analysis Anderson, T.W. (1971). The Statistical Analysis of Time Series. Wiley and Sons, New York. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31, 307-327. Box, G.E.P. and G.M. Jenkins (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. Brockwell, P. and R. Davis (1991). Times Series: Theory and Methods (2nd Edition). Springer-Verlag, New York. Chib, S., Nardari, F. and N. Shephard (2002). Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics 108, 281-316. Dickey, D.A. and W.A. Fuller (1979). Distribtuion of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74, 427-431. Dickey, D.A. and W.A. Fuller (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057-1072. Ding, Z., Granger, C.W.J. and R.F. Engle (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83-106. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987-1007. iii Engle, R.F. and V.K. N.G. (1993). Measuring and testing the impact of news on volatility. Journal of Finance 48, 1749-1778. Fuller, W.A. (1976). Introduction to Statistical Time Series. Wiley and Sons, New York. Glosten, L.R., Jagannathan, R. and D.E. Runkle (1993). On the relation between expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-1801. Greene, W.H. (2008). Econometric Analysis (6th Edition). Prentice Hall, Pearson Education, New Jersey. Hamilton, J.D. (1994). Time Series Analysis. Princeton University Press, Princeton, New Jersey. Hentschel, L. (1995). All in the family: nesting symmetric and asymmetric GARCH models. Journal of Financial Economics 39, 71-104. Higgins, M.L. and A.K. Bera (1992). A class of nonlinear ARCH models. International Economic Review 33, 137-158. Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic Dynamics and Control 12, 231-254. Kreiß, J.-P. und G. Neuhaus (2006). Einführung in die Zeitreihenanalyse. Springer-Verlag, Berlin / Heidelberg. MacKinnon, J.G. (1991). Critical values for cointegration tests. In: Engle, R.F., Granger, C.W.J. (Eds.), Long-run economic relationships. Oxford University Press, Oxford, 267-276. Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59, 347-370. Neusser, K. (2006). Zeitreihenanalyse in den Wirtschaftswissenschaften. B.G. Teubner Verlag, Wiesbaden. Reher, G. and B. Wilfling (2016). A nesting framework for Markov-switching GARCH modelling with an application to the German stock market. Quantitative Finance, forthcoming. Schlittgen, R. und B.H.J. Streitberg (2001). Zeitreihenanalyse (9. Auflage). Oldenbourg Verlag, München. Schmid, F. und M. Trede (2006). Finanzmarktstatistik. Springer Verlag, Berlin Heidelberg. Stock, J.H. and M.W. Watson (2011). Introduction to Econometrics (3rd Edition). Pearson Education, Essex, England. iv Stralkowski, C.M., Wu, S.M. and R.E. DeVor (1974). Charts for the Interpretation and Estimation of the Second Order Moving Average and Mixed First Order AutoregressiveMoving Average Models, Technometrics 16, 275-285. Vogelvang , B. (2005). Econometrics – Theory and Applications With EViews. Prentice Hall, Dorchester. Zakoı̈an, J.-M. (1994). Threshold heteroscedastic models. Journal of Economic Dynamics and Control 18, 931-955. v
© Copyright 2025 ExpyDoc