1 Wolfgang Gebhardt, Regensburg: Kretschmanns Dissertation 1914 und seine Arbeiten zu Einsteins Spezieller (SRT) und Allgemeiner Relativitätstheorie (ART) von 1915 und 1917. !. Die Dissertation. Berlin 1914 Kretschmanns Dissertation, die im Mai 1914 in Berlin vorgelegt wurde, trägt den Titel „Eine Theorie der Schwerkraft im Rahmen der ursprünglichen Einsteinschen Relativitätstheorie“. Es wird ein komplexes Modell entwickelt, was für heutige Leser umständlich und schwer verdaulich erscheint. Der Grund liegt weniger bei dem vorsichtigen Kretschmann als mehr in der Unsicherheit, die damals noch gegenüber grundsätzlichen Fragen herrschte. In der Einleitung diskutiert der Autor auf 23 Seiten alle damaligen Versuche zur Aufstellung einer entsprechenden Theorie. Zitiert werden H. Poincaré, H.A. Lorentz (1900), A. Sommerfeld, H. Minkowski (1909), M. Abraham (1912), G. Nordström (1912), G. Mie und A. Einstein. Einige der zitierten Physiker, wie H.A. Lorenz und M. Abraham, hatten in ihren Arbeiten den ruhenden Äther noch nicht aufgegeben. Grundsätzliche Fragen konnten aufgrund der experimentellen Befunde nur unsicher oder garnicht beantwortet werden. War wirklich schwere gleich träger Masse, wie Einstein (und M. Grossmann) mutig voraussetzten? Wie sollte aber danni der Massenverlust durch radioaktiven Zerfall berücksichtigt werden? Kommt der Hohlraumstrahlung Masse zu? Offensichtlich ist die Materie aus positiver und negativer Ladung aufgebaut, aber die Gravitation scheint nur mit der positiven Ladung verbunden zu sein. Da das Neutron noch lange unbekannt blieb, war es schwer die Gravitation sicher von der viel größeren elektromagnetischen Wechselwirkung (Faktor 1036) zu trennen. Diese Unsicherheiten führten auf langwierige, aus heutiger Sicht völlig überflüssige Diskussionen. Es war offensichtlich noch nicht klar, daß man den Gravitationsdruck im Innern eines Himmels-Körpers nicht zu kennen braucht, wenn man die Gravitation im Außenraum bestimmen will. Kretschmann setzt sich auch mit der Einstein-Grossmann-Arbeit (1913) auseinander, die den Entwurf einer geometrischen Deutung der Gravitation enthältt und bereits die Gleichheit von träger und schwerer Masse als Grundvoraussetzung ebenso wie das Äquivalenzprinzip enthält. Es taucht darin auch schon der differentielle Abstand ds2 und der (gkl)-Tensor auf, sowie die 2 Forderung, daß für eine Weltlinie das Integral über ds ein Minimum werden soll, was auf die Geodätengleichung führt. Kretschmann kritisiert, dass diese Beziehung inhaltsleer, d.h. ohne physikalischen Gehalt sei. Der (gkl)-Tensor steht zwar für das alte skalaren Gravitationspotentials, aber es fehlt noch der Zusammenhang mit den Quellen des Feldes, also mit dem Energie-Impuls-Tensor (Tkl). Kretschmann geht zwar in seiner Dissertation ausführlich auf Einsteins Arbeiten ein, folgt selbst aber den anderen genannten Autoren, die bei einem skalaren Gravitationspotential geblieben sind. Liest man in Kretschmanns Dissertation die Skizzierung der alternativen Gravitationstheorien, welche bis 1914 publiziert wordeb waren und berücksichtigt, daß die Abweichung von der Newtonschen Gravitation nur in dem winzigen Effekt der Perihel-Bewegung des Merkurs bestand, dann wird klar, dass alle diese Versuche ziemlich beliebig waren. Das gilt mit einer Ausnahme: der Ansatz von Einstein und Grossmann. Offensichtlich setzte sich Einstein einem erheblichen Risiko aus, da weder die Gleichheit von schwerer und träger Masse, noch die Unabhängigkeit des Gravitationsfeldes von elektromagnetischen Kräften experimentell hinreichend gut bestätigt waren. Instinktsicher steuerte er von der Annahme der Gleichheit von träger und schwerer Masse auf die Einsicht zu, daß es der Raum selbst sein muss, der die Bahnen von Testmassen im Schwerefeld bestimmt und daß in einem frei fallendes System keine äußeren Gravitationskräfte mehr auftreten. Der Nachteil von Einsteins kühnem Ansatz war allerdings, daß man sich eine schwierige Mathematik dabei einhandelte, welche einen pseudo-Riemannschen Raum und ein System nichtlinarer Differentialgleichungen erfordert. Diese Probleme, wird Kretschmann nach dem Erscheinen von Einsteins vollständig ausgeführter Theorie (1915) wenig später in den Annalen ausführlich erörtern. 2. Die Arbeit 1915 in den Annalen der Physik zur speziellen Relativitätstheorie: Über die prinzipielle Bestimmbarkeit berechtigter Bezugssysteme beliebiger Relativitätstheorien. Annalen der Physik (1915) 48,Teil I, S. 907 – 942 und Teil II, S. 943 – 993. In dem ersten Teil der zweiteiligen Arbeit beschäftigt sich Kretschmann mit Einsteins Spezieller Relativitätstheorie (SRT) sowie mit damals diskutierten Alternativen. Vor Einsteins Arbeiten, bis zum Anfang des 20. Jahrhunderts war 3 Kants Auffassung von Raum und Zeit als Anschauungsformen noch weitgehend unumstritten. Diese Auffassung konsequent vertreten, verhinderte zunächst, daß Raum und Zeit überhaupt Objekte theoretischer und empirischer Forschung werden konnten, da sie immer schon vorgegeben gedacht werden müssen. Deshalb nimmt sich Kretschmann in der Arbeit von 1915 im 1. Teil viel Platz, um darzulegen, wie wir Raum erfahren und wie räumliche Ausdehnungen und Entfernungen gemessen werden können. Man spürt hier noch den Einfluss der physiologischen Forschungen des 19. Jahrhunderts, in welchen es vor allem darum ging, wie Sinneswahrnehmungen von Sinnestäuschungen zu unterscheiden seien und wie quantitative und nachprüfbare Messwerte aus ihnen gewonnen werden können. Kretschmann führt die Messungen der Lichtintensität aus den experimentell problematischen Anfängen einer objektiven Photometrie als Beispiel an. In diesem 1. Teil der Arbeit wird häufig E. Mach, „Erkenntnis und Irrtum“ Leipzig 1906 zitiert. Ebenso werden Autoren in W. Wundt Hrsg. „Philosophische Studien“ Leipzig 1885 zitiert, außerdem H. Poincaré, „Wissenschaft und Hypothese“, Leipzig 1906. Neben Einsteins Arbeiten seit 1905 finden sich unter anderem auch E. Mach, „Die Mechanik in ihrer Entwicklung“, H. Minkowski, „Raum und Zeit“ Leipzig 1909, sowie M. Abraham, „Neuere Gravitationstheorien“, Leipzig 1915. Im zweiten Teil der Arbeit von 1915 werden vor allem die Bedeutung von Symmetrien, also Bewegungsgruppen, hervorgehoben. In der SRT Ist es die Lorentz-Gruppe, mit welcher gleichförmige Bewegungen ineinander übergeführt werden können. Man fragt sich insbesondere, was er nun präzis unter „berechtigten Bezugssystemen“ versteht. Dazu findet man folgende Formulierung: Durch Idealinstrumente der Raum- und Zeitmessung werden Messungen ausgeführt, welche nach Festsetzung der frei bestimmbaren Koordinaten ein berechtigtes Bezugssystem definieren (Wortlaut von mir gekürzt). Bei den Idealinstrumenten sind offensichtlich Messverfahren unter Ausblendung aller realen Probleme der Instrumente gemeint, wobei ebenso alle jene Bereiche der Physik ausgeblendet werden, die zur Konstruktion der Instrumente unverzichtbar sind. Die Wahl eines Bezugssystems wird sich nach dem Experiment oder (astronomisch) der Beobachtung richten. „Berechtigt“ bedeutet in diesem Zusammenhang eine Einschränkung nach einer theoretischen Vorgabe. Im 4 Rahmen der SRT kann es sich dabei nur um Systeme handeln, die sich gleichförmig (mitkonstanter Geschwindigkeit) gegeneinander bewegen, d.h. aber berechtigte Bezugssysteme sind so definiert, dass sie das Gleichungssystem im Rahmen der SRT erfüllen. Die Erfahrung d.h. Beobachtungen können zur Festlegung eines Bezugssystems im Wesentlichen nur topologische Beziehungen liefern. Deshalb kann die Hervorhebung einzelner Bezugssysteme demnach nur durch über die Erfahrung hinausgehende theoretische Maßbeziehungen und Konventionen geschehen. Der sprachlich leicht missverständliche Begriff der „Relativität“ bedeutet letzten Endes eine Invarianz der physikalischen Größen und ihrer Gesetze gegenüber der Gruppe der Lorentz-Transformationen, die Kretschmann noch durch die Gruppe der räumlichen Translationen und der räumlichen Dilatationen ergänzt. Anstatt Weltllinien und „berechtigte Bezugssystemen“ zu untersuchen, empfiehlt Kretschmann deshalb, sich bei der Überprüfung von Relativitätstheorien vorzugsweise an die Invarianten zu halten. Bei endlichen Gruppen sind so viele (willkürliche) Koordinaten-Festsetzungen notwendig, wie es freie Parameter der Gruppe gibt. Ais Beispiel gibt Kretschmann die Lorentz-Transformation an. Es werden 2 Raum-Zeit-Punkte (t1, x1) und (t2 , x2) gewählt. Damit ist x = 0 und t = 0 willkürlich festgelegt ebenso wie die Relativgeschwindigkeit v = (x2 – x1)/(t2 – t2). Wenn der Begriff „kinematisch“ auftritt, so werden damit alle Raum-und Zeitgrößen sowie die Beziehungen zwischen ihnen bezeichnet. Die Schwierigkeiten beim Lesen von Kretschmanns Arbeiten liegen einerseits in der Tatsache, dass inzwischen in der Mathematik und insbesondere in der Differentialgeometrie Begriffe präzisiert und Formulierungen entwickelt wurden, die unabhängig vom Gebrauch spezieller Bezugssysteme sind. Andererseits vermeidet es Kretschmann, am Anfang eines Kapitels Definitionen und Sprachgebrauch festzulegen. Stattdessen baut er die Voraussetzungen in Nebensätzen ein oder unterbricht einen langen Satz mit Gedankenstrichen, um sich nochmals zu versichern, auch richtig verstanden zu werden. Das führt nicht nur zu Endlossätzen sondern auch zu abweichenden Formulierungen von Begriffen und Voraussetzungen. Das sind Schwierigkeiten, mit denen auch andere Autoren konfrontiert waren (s. dazu auch Robert Rynasiewicz „Kretschmann’s Analysis of Covariance and Relativity Principle“). 5 3. Die Arbeit zur Allgemeinen Relativitätstheorie. Über den physikalischen Sinn der Relativitätspostulate Albert Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik (1917) 53, S. 575 – 614. Diese Arbeit von 1917, in welcher Kretschmann die ART kritisch untersucht, beginnt mit einer Einleitung, in welcher Gegenstand und Ergebnisse der Untersuchung wie folgt beschrieben werden: Die Formen, in denen verschiedene Autoren das Postulat der Lorentz-Einsteinschen Relativitätstheorie und insbesondere neuerdings Einstein sein neues Relativitätspostulat ausgedrückt haben, lassen die Auffassung zu oder fordern sie – bei Einstein – geradezu, dass ein System physikalischer Gesetze einem Relatiyitätspostulat dann genügt, wenn die Gleichungen, durch die es dargestellt ist, der dem Postulat zugeordneten Transformationsgruppe der Raum- und Zeitkoordinaten gegenüber invariant sind. Erkennt man diese Auffassung an und vergegenwärtigt sich, dass alle physikalischen Beobachtungen letzten Endes in der Feststellung rein topolischer Beziehungen [„Koinzidenzen“] zwischen räumlichen Wahrnehmungsgegenständen besteht und daher durch sie unmittelbar kein Koordinatensystem vor irgendeinem anderen bevorzugt ist, so wird man zu dem Schlusse gezwungen, dass jede physikalische Theorie ohne Änderung ihres - beliebigen - durch Beobachtungen prüfbaren Inhalts mittels einer rein mathematischen und mit höchstens mathematischen Schwierigkeiten verbundenen ‚Umformung der sie darstellenden Gleichungen mit jedem beliebigen - auch dem allgemeinsten – Relativitätspostulat in Einklang gebracht werden kann. Indessen muss es doch möglich sein, den Relativitätspostulaten noch einen anderen nicht nur mathematisch formalen Sinn beizulegen……………… Wie schon aus dem Gesagten hervorgeht, beruht der Gegensatz, in dem die Ergebnisse der vorliegenden Arbeit zu den von Einstein in seinen gravitationstheoretischen Untersuchungen ausgesprochenen Ansichten stehen, allein auf der meines Erachtens allerdings bedeutungsvollen 6 Auffassung und begrifflichen Bestimmung der Relativitätspostulate. Dieser Gegensatz betrifft nur die Einordnung Einsteins „allgemeiner“ und seiner ursprünglichen Relativitätstheorie in die Reihe der überhaupt denkbaren Relativitätstheorien. Dagegen bleibt die Frage nach der sachlichen Gültigkeit der von Einstein aufgestellten neuen Naturgesetze vollständig unberührt. Dann folgt der I.Teil : Über den physikalischen ‚Sinn der Relativitätspostulate. Es geht, wie schon oben festgestellt, um die allgemeine Relativitätstheorie und ihre Einordnung in die Reihe der überhaupt denkbaren Relativitätstheorien. Kretschmann merkt dazu an: „Dabei darf nicht verschwiegen werden, dass Hr. Einstein unter einem Relativitätspostulat etwas ganz anderes versteht als ich“. Bei Einstein sind (die ART betreffend) die allgemeinen Naturgesetze durch Gleichungen auszudrücken, die für alle Koordinatensysteme gelten, d.h. beliebigen Substitutionen gegenüber kovariant sind. Nach Kretschmann ist aber das Relativitätspostulat nur dann erfüllt, wenn die von ihm geforderte Relativität des Bezugssystems notwendig und durch keine (mathematische) Ausdrucksform zu vermeiden ist. In Kretschmanns Worten ausgedrückt: „Hiernach ist die Gültigkeit oder Ungültigkeit eines Relativitätspostulats für ein System physikalischer Gesetze von ihrer mathematischen Ausdrucksform vollständig unabhängig und allein durch ihren physikalischen Inhalt bestimmt. Es wird noch einmal darauf hingewiesent, dass physikalische Messungen nur topologische Beziehungen betreffen. Alles andere wird durch Wahl der Bezugssysteme und theoretische Voraussetzungen (s. oben) festgelegt. Topologische Beziehungen betreffen die räumlichen und strukturellen Eigenschaften von Objekten unabhängig von Ausdehnung und geometrischer Form (z.B. Anzahl der Dimensionen und ihre Beziehungen untereinander). Bei Kretschmann wie auch bei Einstein werden topologische Beziehungen oft auch „Koinzidenzen“ genannt. II. Teil. Über die prinzipielle Messbarkeit der gkl . Es wird untersucht, „welche Angaben über die gkl in einem empirischen Bezugsysteme nach der Einsteinschen Theorie durch Beobachtungen nachgeprüft werden können“ Als Beispiele dienen die Ausbreitung des Lichts und die Bewegung eines Massepunktes im Schwerefeld. Die „idealen Messwerte“ der 7 Metrik kl welche den gkl zugeschrieben werden, lassen sich mit denen, welche nach der ART für die gkl zu erwarten wären, vergleichen. (Kretschmann schreibt x4 = ict , weshalb !gkl! > 0 anstatt < 0 wie bei Einstein wird). Als Ergebnis wird festgehalten, dass alle den gkl auferlegten Bedingungen durch Beobachtung geprüft werden können, sodass die gkl bis auf eine (für alle gültige) λ Konstante festgelegt sind. Und weiter „eine von der Identischen verschiedene Koordinatentransformation, welche die Funktionen gkl in der angegebenen Weise ändert……….gibt es im Allgemeinen nicht“. Das bedeutet, es gibt im allgeminen Fall nur die identische Transformation. III. Teil. Beschränkung der Kovarianz der Einsteinschen Gleichungen. Dies soll geschehen (ohne den physikalischen Gehalt zu ändern) allein durch geeignete Wahl des Bezugssystems. Ziel ist es, eine möglichst enge Schar von Bezugssystemen auszuzeichnen. Dabei soll das Koordinatensystem möglichst eng an die vorhandene natürliche Struktur des betrachteten Raum-Zeit-Gebiets anschließen und von Weltpunkt zu Weltpunkt (mit wechselnder Krümmung) fortschreiten. Benutzt werden die von Kretschmann so genannter „Achsenrichtungen“ des Krümmungstensors. Davon sind 20 algebraisch unabhängig. Die 36 nicht verschwindenden Elemente des Krümmungstensors lassen sich in Form einer 6 x 6 – Matrix schreiben. Die Diagonalelemente bilden 6 Hauptkomponenten, dazu kommen (in einer Nebendiagonale) noch 3 weitere Komponenten, die man in jedem beliebigen Weltpunkt durch geeignete Wahl der Achsenrichtungen des Bezugswstems zum Verschwinden bringen kann. Kretschmann legt nun die x4-Richtung so, dass sie in eine Achsenrichtung des Krümmungstensors fällt. Aber da die „Achsenrichtungen“ sich selbst stetig von Punkt zu Punkt ändern, ändert sich auch die x4-Richtung. Deshalb so schließt er, genügt die ART keinem Relativitätspostulat der Geschwindigkeiten. Nach Abzählung der Invarianten. Koordinatenachsen gemacht. werden 4 ausgewählt und zu 8 IV. Geometrische Bestimmung des von der ART erfüllten Relativitätspostulats. Aus der Mannigfaltigkeit ∑(x1…..x4 ) läßt sich für jedes System gegebener Koordinatenfunktionen gkl = fkl (x1…..x4 ) eine unendliche Schar von Weltlinien (Extremalen oder Geodäten) gewinnen, die der Bedingung genügen. Diese Menge zerfällt in unendlich viele Teilmengen. Jede enthält alle Weltlinienscharen, die durch stetige Deformationen auseinander entstehen können oder in Kretschmanns Worten: „Die absolute mathematische ‚Invarianz der Bewegungsgesetze erfordert es und beruht offensiochtlich auf dem Umstande, dass jede der genannten Untermengen alle Weltlinienscharen enthält, die durch stetige Deformationen aus Ihnen entstehen können; denn nach dem Angeführten ist ein Übergang einer Weltlinienschar von einer Untermenge zur anderen bei keiner stetigen Transformation möglich“. Und etwas weiter: „Die Einsteinsche Theorie erfüllt daher physikalisch kein Relativitätspostulat, bezüglich dessen invarianter Transformationsgruppe nicht jede einzelne der genannten Extremalenscharen für sich invariant ist; denn da die Scharen durchweg topologisch verschieden oder …….höchstens durch einen konstanten Parameter vers chieden sind, so ist eine Transformation der einen in eine andere im Allgemeinen unmöglich. In sich selbst kann aber eine vollständige Extremalenschar der Raum-Zeit-Mannigfaltigkeit nur bei einer Transformation übergehen, die das zugehörige Funktionensystem gkl = fkl (x1…..x4 ) bis auf einen konstanten Faktor ungeändert lässt; und außer der Identischen gibt es keine Koordinatentransformation, die das allgemein leistet. Dagegen ist von einer Teilmenge zu einer anderen kein stetiger Übergang möglich. Der physikalische Inhalt ist in jeder Teilmenge derselbe. Damit gibt Kretschmann eine anschaulich geometrische Bedeutung der Kovarianz und ihrer Konsequenz, nämlich dass zu jeder bestimmten Metrik gkl(xi), die als Lösung der Einsteinschen Gleichungen aufgefunden wird, jede ander gkl(x‘ki), äquivlent ist , die durch eine Abbildung aus ihr hervorgeht,. Voraussetzung ist dafür, dass die Abbilding differenzierbar ist (und damit auchein Inverses besitzt). 9 Schluss. Über den Grund der Unerfüllbarkeit des allgemeinen Relativitätspostulats Es ist die in den kinematischen Gesetzen enthaltenen „Beschränkungne und Verneinung von Koinzidenzmöglichkeiten“, welche die Erfüllung des allgemeinen Relativitätspostulats unmöglich machen. Bei den betrachteten Gesetzen der Licht- und Massenbewegung werden die Weltlinien der Licht- und Massenpunkte mit Extremalen der Raum-Zeit-Mannigfaltigkeit identifiziert. Die Beschränkung besteht hier offensichtlich darin, dass durch zwei verschiedene Weltpunkte niemals zwei verschiedene Weltlinien gehen können. In der Tat ist es gerade dieser Satz, der in jeder Koordinatenmannigfaltigkeit die Schar der miteinander verträglichen Weltlinien und damit zugleich die Gruppe der Transformationen, die sie in sich überführen - im Allgemeinen ist es nur die identische Transformation - begrenzt, da er durch jede weitere der Schar zugefügte Weltlinie verletzt würde In dieser Arbeit finden sich unter den zitierten Autoren W. Killing, Math. Ann. 34 S. 423, A. Einstein und M. Grossmann, „Entwurf einer verallgemeinerten Relativitätstheorie“ Leipzig 1913, sowie S. Christoffel und G. Ricci et T. LeviCività. Daraus geht leider nicht klar hervor, wo und wann Kretschmann seine guten Kenntnisse der Gruppentheorie, die für einen Physiker damals durchaus ungewöhnlich sind, erworben hat. Einstein hat 1918 in den Annalen der Physik, Band 55, S. 578 unter dem Titel Prinzipielles zur allgemeinen Relativitätstheorie auch zu Kretschmanns Arbeit Stellung genommen. Zunächst stellt er fest, dass seine Theorie (die ART) auf drei Hauptgesichtspunkten beruht: a) Relativitätsprinzip: Die Naturgesetze sind nur Aussagen über zeiträumliche Koinzidenzen; sie finden deshalb ihren einzig natürlichen Ausdruck in allgemein kovarianten Gleichungen. 10 b) Äquivalenzprinzip: Trägheit und Schwere sind wesensgleich. Hieraus und aus den Ergebnissen der SRT folgt notwendig, dass der metrische Fundamentaltensor (gkl) die metrischen Eigenschaften des Raumes, das Trägheitsverhalten der Körper in ihm, sowie die Gravitationswirkungen bestimmt. Den durch den Fundamentaltensor beschriebenen Raumzustand wollen wir als G-Feld bezeichnen c) Machsches Prinzip: Das G-Feld ist restlos durch die Massen der Körper bestimmt. Da Masse und Energie nach den Ergebnissen der SRT das Gleiche sind und die Energie formal durch den symmetrischen Energietensor (Tkl) beschrieben wird, so besagt dies, dass das G-Feld durch den Energietensor der Materie bedingt und bestimmt sei. Einstein kommt dann auf die Einwände Kretschmanns zu sprechen, der es für notwendig hält, noch einen anderen (physikalischen) Sinn mit der Relativitätsforderung zu verbinden. Einstein schreibt dazu: Ich halte Hrn. Kretschmanns Argument für richtig, jedoch die von ihm vorgeschlagene Neuerung nicht für empfehlenswert. Es sei nicht sinnvoll jedes ‚Naturgesetz in kovariante Form zu bringen (ein Vorschlag, der eher als eine polemische Übertreibung Kretschmanns anzusehen ist). Andererseits habe Prinzip a) sich bereits beim Gravitationsproblem glänzend bewährt. Kritische Anmerkungen Meine Bemerkung dazu wäre, dass wohl weder Einstein noch Kretschmann der tiefe physikalische Sinn der Kovarianz gegenüber bestimmten vorgegebenen Symmetrien schon klar gewesen war. Etwa zu gleicher Zeit (1918) zeigte Emmy Noether in Göttingen, dass zu jeder infinitesimalen Operation einer Bewegungsgruppe ein physikalischer Erhaltungssatz gehört, dass also Kovarianzen einer Theorie gegenüber einer Bewegungsgruppe sofort auch die Erhaltungssätze definieren. Damit ist eine Trennung von mathematisch formaler Formulierung und physikalischem Sinn nicht mehr möglich. Einsteins Argument, dass sich ja seine „Kovariante Theorie“ bereits glänzend bewährt habe, verfehlt Kretschmanns kritische Diskussion der 11 Kovarianz. Vermutlich hat Einstein bei der „Bewährung“ an die Periheldrehung des Merkurs gedacht. Aber dieser Effekt wäre auch schon durch eine weniger radikale Theorie im Außenraum einer Masse bei Tik = 0 abzuleiten gewesen (siehe dazu Gönner „ Einführung in die spezielle und allgemeine Relativitätstheorie § 7.3). Aber genau solche Fälle verwirft Einstein in seiner Entgegnung ebenso wie übrigens Kretschmann. Zur Ironie der Geschichte gehört nun aber auch die Tatsache, dass gerade die hoch symmetrischen Lösungen der Einsteinschen Gleichungen für die Astrophysik heute unverzichtbar sind. Solche Fälle hoher Symmetrie sind die Schwarzschild-, Kerr-, RobertsonWalker und die deSitter-Metrik. Einstein verteidigt in c) sein Festhalten am Machschen Prinzip, das einerseits bei ihm eine wichtige heuristische Rolle gespielt hat, anderseits aber auch Anlass zu Verwirrungen gab, wie Einsteins Behandlung rotierender Körper zeigt (s. dazu M. Janssen „Einstein’s first systematic Exposition of General Relativity“). So richtig es ist nach Mach, dass die gesamte Materie des Kosmos zum „G-Feld“ beiträgt, so wenig trägt nach unseren heutigen Erfahrungen der kosmologische Einfluss auf das lokale Feld bei. Der „Hubble-Fluss“ spielt weder im Sonnensystem noch in unserer Galaxis eine merkliche Rolle. Es sind offensichtlich in erster Linie die lokalen Massen und ihre Verteilung in der unmittelbaren Umgebung, die zum „G-Feld“ beitragen. Einstein weist dabei auch auf seine kosmologische Arbeit von 1917 hin. Hier nimmt er eine andere strenge Lösung seiner Gleichungen vorweg, die später von Alexander Friedmann zur Ableitung der kosmischen Expansion benutzt wurde, die Einstein bis 1932 nicht akzeptieren wollte. Die betreffende Metrik wurde von Robertson und Walker in den 30er Jahren abgeleitet und ihre Gültigkeit für alle 3-dimensionalen Räume mit konstanter Krümmung bewiesen. Bei Kretschmann findet sich ein gewisser Widerspruch zwischen der Feststellung, dass Beobachtungen immer nur zu topologischen Aussagen führen können und der häufigen Auseinandersetzung mit dem, was er „berechtigte Bezugssysteme“ nennt Zur historischen Erinnerung: Am Anfang des 20. Jahrhunderts wurden Vektoren in der Physik eingeführt. Damit konnten physikalische Gleichungen unabhängig von 12 Bezugssystemen geschrieben werden. Eine ähnliche Entwicklung gab es in den 20er Jahren des vorigen Jahrhunderts in der Differentialgeometrie, insbesondere durch die Arbeiten Cartans und anderer, die zu Kretschmanns Zeiten noch nicht verfügbar waren (s. dazu z. B. Sexl / Urbanke und Wald). Bei einer beliebig verlaufenden Weltlinie ist es vorteilhaft, ein mitbewegtes Bezugssystem zu haben, das etwa durch den Tangentialraum in einem Punkt der Weltlinie definiert ist und den räumlichen Teil als orthogonales Dreibein enthält. Kretschmann kennt das Verfahren nicht, entwickelt aber ein analoges, indem er die x4Richtung in die Richtung von ds fallen läßt. Der häufige Hinweis auf die Bedeutung von Invarianten schwächt ebenfalls die Bedeutung „berechtigter Bezugssysteme“ ab. In der Vektoranalysis ist die Invariante das Betragsquadrat eines Vektors. In der Riemannschen Geometrie übernimmt ds2, die lokale Metrik, die Rolle einer Invarianten. Wird ̅ in die Richtung des Tangentenvektors gelegt, so ist ds2 das Betragsquadrat des Tangentenvektors. Übrigens kann die allgemeine Kovarianz auch ein Vorteil sein, weil man mit beliebigen „erlaubten Transformationen“ (sie müssen nur stetig, und differenzierbar sein) auch Koordinaten-Singularitäten wie in der Schwarzschild-Metrik vermeiden kann. Zu denken ist dabei an KruskalKoordinaten, aber auch an die häufig bei Anwendungen der ART benutzten Penrose-Diagramme. Letztgenannte enthalten Nullgeodäten und nutzen eine konforme Abbildung, welche die unendlich fernen Punkte ins Endliche verlegt. Literatur E. Kretschmann: Über den physikalischen Sinn der Relativitätspostulate Albert Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik (1917) 53, S. 575 – 614 13 E. Kretschmann: Über den physikalischen Sinn der Relativitätspostulate Albert Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik (1917) 53, S. 575 – 614. A. Einstein: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Preuß. Akad. D. Wiss. S. 142 – 152 (1917) A. Einstein: Prinzipielles zur allgemeinen Relativitätstheorie Annalen der Physik, (1918) Band 55, S. 578 R. Rynasiewicz (1999) „Kretschmann’s Analysis of Covariance and Relativity Principles“ Pp. 431 – 462 in Goenner et al. 1999. H. Gönner „ Einführung in die spezielle und allgemeine Relativitätstheorie. Heidelberg, Berlin, Oxford 1996. M. Janssen „Einstein’s first systematic Exposition of General Relativity“). R.U. Sexl, H.K. Urbanke: Gravitation und Kosmologie. Eine Einführund in die Allgemeine Relativitätstheorie.3.Aufl. 1992 R.M. Wald, General Relativity. Chicago, London 1984 Noether, E.: Invarianten beliebiger Differentialausdrücke. Gött. Nachr. 1918, 37-44 (1918). Noether, E.: Invariante Variationsprobleme. Gött. Nachr. 1918, 235-257 (1918).
© Copyright 2024 ExpyDoc