Aufgaben zum elektrischen Feld - Lehrer-Uni

Übungsaufgaben zum elektrischen Feld - Lösungen
F
N
kN
= 1, 4 ⋅103 = 1, 4
q
C
C
1
E=
2
F = q ⋅ E = 6,3 ⋅10−2 N = 63mN
Fel = FG
3
4
q⋅ E = m⋅ g
Fel qMü ⋅ E
=
= 3, 2 ⋅1012
FG mMü ⋅ g
qMü =
5
6
m⋅ g
= 6, 4 ⋅10 −19 C
E
⇒q=
mMü ⋅ g
= 1, 6 ⋅10−4 C
E
Fel s
≈
FG l
q⋅E s
≈
m⋅ g l
⇒E≈
siehe 5)
⇒s=
m⋅ g ⋅s
N
= 630
l ⋅q
C
q ⋅ E ⋅l
= 2,1cm
m⋅ g
Gleichmäßig beschleunigte Bewegung:
1
Aus v = a ⋅ t und s = ⋅ a ⋅ t 2 folgt v = 2 ⋅ a ⋅ s .
2
7
Aus der wirkenden Feldkraft mP ⋅ a = qP ⋅ E ergibt sich die Beschleunigung a =
Also ist v =
8
2 ⋅ qP ⋅ E ⋅ s
km
= 6, 2
mP
s
Q
µC
= 22 2
A
m
Q
kV
= 24
E=
A ⋅ε0
cm
U = E ⋅ d = 1, 2kV
E=
U
kV
= 7,5
d
cm
9
Q
µC
= ε 0 ⋅ E = 6, 64 2
A
m
Q = ε 0 ⋅ E ⋅ A = 319nC
10
ε0 =
Q⋅d
C
= 8,86 ⋅10−12
A ⋅U
Vm
F=
1 Q1 ⋅ Q2
Q2
=
4π ⋅ ε 0 r 2
4π ⋅ ε 0 ⋅ r 2
11
a) F = 7, 6 ⋅10 2 N = 760 N
b) F = 9 ⋅109 N = 9GN
qP ⋅ E
.
mP
Übungsaufgaben zum elektrischen Feld - Lösungen
a) Fel =
12
Q2
= 2,3 ⋅10 −8 N
2
4π ⋅ ε 0 ⋅ r
b) FG = γ ⋅
mP ⋅ mE
= 1, 0 ⋅10−47 N
2
r
Fel
Q2
=
= 2, 3 ⋅1039 , das Verhältnis ist vom Abstand der Teilchen
FG 4π ⋅ ε 0 ⋅ γ ⋅ mP ⋅ mE
unabhängig.
c)
1
Q Q
Q Q
( 21 − 22 ) = 0 folgt 21 = 22 ; mit r1 + r2 = 1m ergibt sich
4π ⋅ ε 0 r1 r2
r1
r2
2
r2 = m .
3
Aus E = E1 + E2 =
13
1
r1 = m;
3