Mass Reconstruction Techniques for Resonances in W±W± Scattering Stefanie Todt ([email protected]) Institut fuer Kern- und Teilchenphysik, TU Dresden DPG Wuppertal March 11, 2015 bluu Vector boson scattering at the LHC • longitudinal scattering of weak bosons directly connected to mechanism of electroweak symmetry breaking (EWSB) • sensitive to BSM physics: aQGCs, heavy resonances weak-boson self-couplings Higgs contributions include non-VBS and non-resonant diagrams + ⇒ SM-EW VVjj process channel of like-charge W± W± scattering favourable in the context of the LHC experiments first evidence for Vector Boson Scattering (VBS) in the processes W± W± −→ W± W± (arXiv:1405.6241) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 1 / 11 Vector boson scattering at the LHC • longitudinal scattering of weak bosons directly connected to mechanism of electroweak symmetry breaking (EWSB) • sensitive to BSM physics: aQGCs, heavy resonances weak-boson self-couplings Higgs contributions include non-VBS and non-resonant diagrams + ⇒ SM-EW VVjj process • first evidence for Vector Boson Scattering (VBS) in the processes W± W± −→ W± W± (arXiv:1405.6241) −→ see talk from Ulrike Schnoor T 67.4 Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 1 / 11 Heavy resonances in VBS • new physics in EWSB is introduced via an effective field theory approach • isospin conservation in high energy limit −→ five possible resonances: type weak isospin I spin J electric charge Q width Γres /Γ0 σ 0 0 0 6 f 0 2 0 1 5 ρ 1 1 −, 0, + 4 v2 3 M2 φ 2 0 −−, −, 0, +, ++ 1 t 2 2 −−, −, 0, +, ++ 1 30 • partial widths Γ0 for resonances decaying into longitudinally polarized vector bosons: g2 m3 Γ0 = · 64π v2 • mass m and coupling g of resonances free parameters −→ variation of resonance mass m ∈ [500 GeV, 1200 GeV] −→ fixed coupling g = 2.5 (g ∈ [0, 2.5]) blub blub Institut fuer Kern- und Teilchenphysik, TU Dresden Stefanie Todt Mass Reconstruction Techniques for Resonances in W± W± Scattering 2 / 11 Heavy resonances in VBS W± W± jj • new physics in EWSB is introduced via an effective field theory approach • isospin conservation in high energy limit −→ five possible resonances: type weak isospin I spin J electric charge Q width Γres /Γ0 σ 0 0 0 6 f 0 2 0 1 5 ρ 1 1 −, 0, + 4 v2 3 M2 φ 2 0 −−, −, 0, +, ++ 1 t 2 2 −−, −, 0, +, ++ 1 30 • resonant scattering of two like-charge W± bosons → resonant scattering in s-channel for doubly charged isotensor resonances: broad scalar φ resonance ⇒ Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden narrow tensor t resonance or Mass Reconstruction Techniques for Resonances in W± W± Scattering 2 / 11 Mass reconstruction: X±± → W± W± → l± l± νν Invariant mass from relativity: µ 2 Pµ WW = PWW mX2 = mWW µ PWW : composite four-momentum of W± W± system µ µ µ + Pν = Plµ1 + Plµ2 + Pν PWW 2 1 Problem: • separate momenta of neutrinos unknown ~qν1 , ~qν2 → 6 degrees of freedom • ~pTmiss measurement: 2 constraints ~pTmiss = P ~qTνi Solution: • perform minimization over free parameters (arXiv:1105.2977) → find smallest resonance mass consistent with measured ~pTmiss → allows for concrete information from every event event ⇒ lower mass bound on resonance mass: mX > mWW ⇒ (if true event topology is chosen) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 3 / 11 Mass reconstruction: Transverse projections Calculation of transverse masses → define projected (2+1)-momenta analogous to four-momenta: • four momentum: Pµ = (E, px , py , pz ) • (2+1)-momentum: pα > = (e> , px , py ) Projection of energy component: • “mass-preserving” projection e> = q m2 + p2T = p E2 − p2z −→ 2 pα > p>α = m • “massless” projection eo = |pT | −→ pα o poα = 0wwlwwwwwwwwwww Transverse mass: 2 m>1 = (p> + q> )α (p> + q> )α 2 mo1 = (po + qo )α (po + qo )α Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 4 / 11 Mass variables Order of operations (summation of particles, projection) does matter for energy component of Pµ : 2 2 = (Pµ + Qµ )> (Pµ + Qµ )> = (p> + q> )α (p> + q> )α , m1> m>1 • projection discards information → early projection weakens bound • additionally discard mass information (mo1 ) weakens bound even more =⇒ m1> > m>1 = mo1 > m1o Additional constraint for heavy resonances: • one or both W± bosons are produced on mW mass shell −→ m1>Star (for WW∗ ) and m1>bound (for both W on-shell) (arXiv:1108.3468, arXiv:1110.2452) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 5 / 11 Mass variables Traditional transverse mass variables: • mvis − invariant mass of lepton pair (i.e. mll ) • meff − invariant mass of lepton pair + ETmiss (only transverse plane (hep-ph/9610544)) 2 meff (pTl1 , pTl2 , pTmiss ) = (|~pTl1 | + |~pTl2 | + |~pTmiss |)2 2 = mo1 + (~p1T + ~pTmiss )2 • mvec − invariant mass of lepton pair + ETmiss (with z-component of leptons) 2 mvec (pl1 , pl2 , pTmiss ) = (|~pl1 | + |~pl2 | + |~pTmiss |)2 − (~pTl1 + ~pTl2 + ~pTmiss )2 − (~pzl1 + ~pzl2 )2 • mcol − collinear approach (R.K. Ellis et al., Nucl. Phys. B 297, 221 (1988)) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 6 / 11 Comparison of resonance types: true mWW cross section / 10 GeV cross section / 10 GeV • MC study with event generator WHIZARD and K-matrix unitarisation at √ s = 8 TeV (CERN-THESIS-2015-018) 10-2 10-3 W± W± jj-EW 10-2 10-3 W±W±jj-EW t, m=1200, g=2.5 Φ, m=750, g=2.5 10-4 t, m=1000, g=2.5 10-4 Φ, m=500, g=2.5 t, m=750, g=2.5 Φ, m=1000, g=2.5 t, m=500, g=2.5 -5 10 0 -5 200 400 600 800 1000 1200 1400 10 0 mWW Φ resonance (broader) m ∈ {500, 750, 1000} GeV g = 2.5 200 400 600 800 1000 1200 1400 mWW t resonance (narrow) m ∈ {500, 750, 1000, 1200} GeV g = 2.5 • truth mWW : invariant mass of the W± W± system at parton level (w/o parton shower) reconstructed with true (associated) neutrinos (i.e. ml± νl l± νl ) • reference: SM-EW mWW distribution (in red) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 7 / 11 Comparison of mass variables: reconstructed mWW Φ resonance, m = 500 GeV, Γ = 64 GeV, g = 2.5 mass bound variables mass variables without mass bound ×10−3 mass bound variables Φ , m=500 GeV, g=2.5 mo1 m1o 50 m1T m1Tstar 40 m1Tbound dσsignal fb 30 GeV dmreco WW dσsignal fb 30 GeV dmreco WW ×10−3 60 mvis meff mvec 40 mcol 30 30 20 20 10 10 0 mass var. w/o bound Φ , m=500 GeV, g=2.5 50 100 200 300 400 500 600 700 0 800 100 200 300 400 mreco WW [GeV] 500 600 700 800 mreco WW [GeV] • m1> , m1>bound and mo1 drop around resonance mass → saturated lower mass bound (respect generic width of resonance) • m1>bound shifted to higher invariant masses with respect to m1> • meff , mvec , mcol fail to give lower mass bound • mvis : unsaturated lower mass bound due to minimal information input (no ~pTmiss ) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 8 / 11 Discovery potential dN 1 60 GeV dm1T WW • events at particle level with simulation of detector resolution for ~ETmiss • Signal: pp −→ l± νl± νjj final state with resonance • Background: only SM-EW pp −→ l± νl± νjj final state (no contribution from W± W± -QCD, WZ) • optimize for best statistical significance √SB in reconstructed mass window mWW −→ discovery potential 1 t, m=500 GeV, g=2.5 W± W± jj-EW 10−1 best significance interval L = 20 fb-1, s = 8 TeV 10−2 10−3 10−4 10−5 0 200 400 600 800 1000 1200 1400 m1T WW [GeV] Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 9 / 11 Comparison of Discovery potential: Mass variables t resonance, g = 2.5 Φ resonance, g=2.5 mass bound variables mo1 m1T m1Tbound mass var. w/o bound mvec 2 10 discovery potential S B discovery potential S B Φ resonance, g = 2.5 mass bound variables t resonance, g=2.5 m1T m1Tbound mass var. w/o bound meff mvec 10 500 600 700 800 900 500 1000 1100 1200 600 700 800 900 1000 1100 1200 resonance mass [GeV] resonance mass [GeV] Best mass variable in terms of discovery potential: • for broader resonance (Φ): mo1 (best background rejection) • for narrow resonance (t): m1>bound or m1> (most kinematic information) • only small differences between the different mass variables for different coupling parameters of the resonances Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 10 / 11 Summary • modelling of heavy resonances in W± W± scattering with WHIZARD (EFT approach with K-matrix unitarisation) • study of different resonances and mass reconstruction variables • study discovery potential against SM-EW pp −→ l± l± νν background • best mass variables: • for broader resonance (Φ): mo1 • for narrow resonance (t): m1>bound and m1> Thanks for your attention! Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 11 / 11 Summary • modelling of heavy resonances in W± W± scattering with WHIZARD (EFT approach with K-matrix unitarisation) • study of different resonances and mass reconstruction variables • study discovery potential against SM-EW pp −→ l± l± νν background • best mass variables: • for broader resonance (Φ): mo1 • for narrow resonance (t): m1>bound and m1> Thanks for your attention! Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 11 / 11 Backup Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Heavy resonances in VBS • new physics in EWSB is introduced via an effective field theory approach → effective chiral Lagrangian as perturbative expansion in some new physics energy scale Λ → SM evolves as low-energy limit (= leading term) of the new theory • model-independent parametrization of high-energy VBS → add new degrees of freedom for any possible heavy resonance X L = LSM + Lr resonances • effective theory → new resonant scattering amplitudes rise with energy → break unitarity at some energy E > Λ → add unitarisation formalism manually: K-matrix unitarisation =⇒ Monte Carlo studies with Whizard event generator (features generic effective theory with resonances and K-matrix unitarisation) (arXiv:0806.4145) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Resonances in W± W± → W± W± • need to be of electrical charge ++ or −− • Φ: scalar (Spin 0), isotensor (Isospin 2) • t: tensor (Spin 2), isotensor (Isospin 2) arXiv:1307.8170 (Simplified Models - Snowmass 2013) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 W± W± jj → l± l± ννjj final state Signal process: scalar φ resonance with tensor t resonance or • same kinematic topology as VBS • two energetic forward jets (initial quarks radiating off Ws) • both W bosons decay leptonically → two same-sign central leptons → missing ~pT from 2 neutrinos in the final state ν l± (1) ∆y tagging jet (4) tagging jet (3) l± (2) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden ν Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Minimization Example: M1T 2 M1> = min M21> pz miss M21> = q Mll2 + ~p21T !2 r 2 p p 2 2 2 2 2 + ~q1T + q1z + ~q2T + q2z − (q1z + q2z ) − (~pT + ~pTmiss )2 4 Contraints: ~pTmiss = X ~qTi p mw2 = 2 |~pi | · ~qiT 2 + qiz 2 − ~piT~qiT − ~piz~qiz Free choices: • total z-component of invisible particles pmiss z → minimization: equal rapidities of visible and invisible system: y = ymiss • frame-independence of y → y = 0 → pz = 0 / ansatz M / =χ • invariant mass of invisible particle collection (ν1 , ν2 ) M: otherwise minimization sets it to 0 Problems: • W mass constraint leads to quadratic equation in any constraining parameter (same issue as for pz reconstruction in W mass measurement) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Mass formulas 2 m1> (pTl1 , pTl2 , pTmiss ) = q 2 Mll2 + ~p21T + |~pTmiss | − (~p1T + ~pTmiss )2 2 mo1 (pTl1 , pTl2 , pTmiss ) = (|~pTl1 | + |~pTl2 | + |~pTmiss |)2 − (~p1T + ~pTmiss )2 2 = meff − (~p1T + ~pTmiss )2 2 = m>1 (massless leptons) 2 m1o (pTl1 , pTl2 , pTmiss ) = (|~pTl1 + ~pTl2 | + |~pTmiss |)2 − (~p1T + ~pTmiss )2 2 mvec (pl1 , pl2 , pTmiss ) = (|~pl1 | + |~pl2 | + |~pTmiss |)2 − (~pTl1 + ~pTl2 + ~pTmiss )2 − (~pzl1 + ~pzl2 )2 2 meff (pTl1 , pTl2 , pTmiss ) = (|~pTl1 | + |~pTl2 | + |~pTmiss |)2 2 mvis (pl1 , pl2 ) = Mll2 Mll − invariant mass of dilepton system ~p1 − vector sum of lepton momenta ~pl1 , ~pl2 ~p1T − vector sum of lepton transverse momenta ~pTl1 , ~pTl2 Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Collinear mass mcol • assumption: decay products of W are emitted collinear • possibility to reconstruct the momentum of both neutrinos • compute fraction xi of W momentum carried away from its visible decay product (lepton) (use momentum conservation in transverse plane) • only 0 < xi < 1 are physical • → mWWcol cannot always be calculated ~pW T,i = ~plT,i xi 2 mWWcol =(pW1 + pW1 )2 2 2 mWWcol =2 · (mW + pW1 · pW2 ) s 2 mWWcol =2 · 2 mW + ~pl1 2 mW + ( T )2 · x1 s l1 l1 l2 · ~ p ~ p ~ p T T T 2 mW + ( )2 − x2 x1 · x2 • mWWcol fomular holds only for onshell W’s which is not true in all the cases Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Comparison of mass variables: reconstructed mWW t resonance, m = 500 GeV, Γ = 2 GeV, g = 2.5 mass bound variables mass variables without mass bound ×10−3 t, m=500 GeV, g=2.5 25 mass bound variables mo1 m1o m1T 20 m1Tstar m1Tbound 15 dσsignal fb 40 GeV dmreco WW dσsignal fb 40 GeV dmreco WW ×10−3 20 t, m=500 GeV, g=2.5 18 mass var. w/o bound mvis meff mvec 16 14 mcol 12 10 10 8 5 4 6 2 0 0 100 200 300 400 500 600 700 800 mreco WW [GeV] 0 0 100 200 300 400 500 600 700 800 mreco WW [GeV] • φ and t resonance: maxima shifted to higher mWW for φ, difference in shape (spin dependence of mass variables) • same observations for higher resonance masses and lower coupling parameters Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Comparison of mass variables: mWW,reco − mWW,true mo1 m1o m1T m1Tstar 10−2 m1Tbound 10−1 mass var. w/o bound Φ , m=500 GeV, g=2.5 mvis meff mvec mcol 10−2 WW mass bound variables Φ , m=500 GeV, g=2.5 dσsignal fb 18 GeV d(mreco - mtrue WW) 10−1 WW dσsignal fb 18 GeV d(mreco - mtrue WW) Φ resonance, m = 500 GeV, Γ = 64 GeV, g = 2.5 mass bound variables mass variables without mass bound 10−3 10−3 −200 −100 0 100 200 true mreco WW - mWW [GeV] −200 −100 0 100 200 true mreco WW - mWW [GeV] • difference between reconstructed and true mWW : clear distinction between mass bound variables and other mass variables note: not resonance mass - t resonance mtconstr are all those events in the peak here, were mass was overestimated because there never were two onshell W Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Comparison of mass variables: mWW,reco − mWW,true m1T 10−2 m1Tstar m1Tbound mass var. w/o bound t, m=500 GeV, g=2.5 mvis meff mvec −2 10 mcol WW mo1 m1o dσsignal fb 30 GeV d(mreco - mtrue WW) mass bound variables t, m=500 GeV, g=2.5 WW dσsignal fb 30 GeV d(mreco - mtrue WW) t resonance, m = 500 GeV, Γ = 2 GeV, g = 2.5 mass bound variables mass variables without mass bound 10−3 10−3 −200 −100 0 100 200 true mreco WW - mWW [GeV] −200 −100 0 100 200 true mreco WW - mWW [GeV] • difference between reconstructed and true mWW : clear distinction between mass bound variables and other mass variables note: not resonance mass - t resonance mtconstr are all those events in the peak here, were mass was overestimated because there never were two onshell W Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 reco reco /<m Comparison of mass variables: relative width σmWW WW > t resonance, g = 2.5 1.0 σmreco/<mreco WW > mass bound variables 0.9 mo1 m1o 0.8 WW WW σmreco/<mreco WW > Φ resonance, g = 2.5 m1T m1Tbound 0.7 1.0 mass bound variables 0.9 m1o m1T m1Tbound 0.7 0.6 0.6 0.5 0.5 0.4 0.4 Φ resonance, g=2.5 0.3 0.2 mo1 0.8 500 600 700 800 900 1000 1100 1200 0.3 0.2 t resonance, g=2.5 500 600 700 800 900 1000 1100 1200 resonance mass [GeV] resonance mass [GeV] • for both resonance types: m1> and m1>bound best resolution especially for high resonance masses • statistical errors are too small to be visible • mass resolution 25 − 35% for both resonance types Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Comparison of Discovery potential: Resonances discovery potential S B g = 2.5, mo1 Φ resonance, m=500 GeV t resonance, m=500 GeV mo1 102 10 1 0.5 1.0 1.5 2.0 2.5 resonance coupling • φ resonance has higher discovery potential than t resonance due to higher total cross section Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11 Object and event selection criteria Jets Leptons • pT > 30 GeV • pT > 30 GeV • |η| < 4.5 • |η| < 2.5 Event selection criteria • exactly two charged dressed leptons, • a minimum of two jets, • both leptons have the same electric charge, • both leptons have to have a minimum distance of ∆R > 0.3 to any reconstructed jet in the event and to each other. Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W± W± Scattering 12 / 11
© Copyright 2024 ExpyDoc