Overview EWPT Flavour constraints Left-Right Symmetric Models (LRSM) Luiz Vale Universit´ e Paris-Sud S. Descotes-Genon (LPT) and V. Bernard (IPN) Multi-TeV Probes Summer School, Carg` ese July 23rd, 2014 Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints LRSM = SU(2)L ⊗ SU(2)R ⊗ U(1)B−L Motivation: understand why and how parity or charge-conjugation are not good symmetries of the quantum world. LR symmetric models have been extensively studied over the last 40 years. Usual picture: triplets ∆R = (1, 3, 2) and ∆L = (3, 1, 2) T h∆T R i = (0, 0, vR ) and h∆L i = (0, 0, vL ) Triplets introduce Majorana masses νRT γ 2 γ 0 σ2 ∆R νR Setting vR at TeV and light mνL requires large fine-tuning or new symmetries The VEV vL is set to zero, otherwise 2 /(cos2 (θ )M 2 ) 6= 1 at tree-level ρ ≡ MW W Z Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Doublets instead of triplets Model considered: doublets χR = (1, 2, 1) and χL = (2, 1, 1) T hχT R i = (0, vR ) and hχL i = (0, vL ) Neutrinos are Dirac particles in this minimal picture ρ = 1 at tree-level The VEV vL is a free parameter Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Generalities Quarks: QL,R νL,R uL,R , and leptons LL,R = = `L,R dL,R Electric charge: Q = TL3 + TR3 + B−L 2 ˜ R + h.c., Yukawa interactions: Q L Y φQR + Q L Y˜ φQ ∗ ˜ φ ≡ σ2 φ σ2 . Bi-doublet scalar field, φ → UL φUR† . VEVs: hφi = diag(κ1 , κ2 ) Mass matrices: Mu = κ1 Y + κ2 Y˜ and Md = κ1 Y˜ + κ2 Y . Mixing matrices: VL ≡ V CKM and VR Relate L to R w/ discrete sym. Under P, VL ' Su VR Sd ; under C, VL = Ku VR∗ Kd Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Breaking pattern SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gL , gR , g 0 Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Breaking pattern SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gL , gR , g 0 ↓(vR ) vR & O(1) TeV SU(2)L ⊗ U(1)Y New GBs: WR± , ZR Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Breaking pattern gL , gR , g 0 vR & O(1) TeV SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ↓(vR ) SU(2)L ⊗ U(1)Y ↓(κ1,2 ,vL ) 0 New GBs: W ± , Z 0 q κ ≡ κ21 + κ22 + vL2 set EWSB Known GBs: W ± ∼ WL±/ SM , Z ∼ ZSM U(1)EM vR 6= vL : vacuum is not P or C-symmetric Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Breaking pattern gL , gR , g 0 vR & O(1) TeV SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ↓(vR ) SU(2)L ⊗ U(1)Y ↓(κ1,2 ,vL ) 0 New GBs: W ± , Z 0 q κ ≡ κ21 + κ22 + vL2 set EWSB Known GBs: W ± ∼ WL±/ SM , Z ∼ ZSM U(1)EM vR 6= vL : vacuum is not P or C-symmetric 0 Higgs content: contains hSM−like , 5 heavy (∼ vR ) neutral Higgs, 2 heavy (∼ vR ) charged Higgs Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Preliminary fit: SMEW @2−loop + LRtree and direct MWR O 0 σhad Re Rµ AFB (b) AFB (τ ) ASLD e MW QW (Cs) ... SM pull -1.52 -1.17 -1.20 2.79 -1.41 -1.76 -0.85 0.70 ... LR pull -0.91 -1.36 -1.48 2.73 -1.42 -1.81 -0.65 0.83 ... ≡ κ/vR , r ≡ κ2 /κ1 , w ≡ vL /κ1 , tR = tan(θR ) ≡ g 0 /gR , cR = cos(θR ) pull ≡ (Oexp − Ofit |w /o input )/σexp Suppose MWR & 2 TeV [CMS and ATLAS] r and w are not constrained by the fit Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Flavour dynamics FCNC: Meson oscillations put severe constraints on H 0 when triplets are considered, O(15) TeV In the doublet case, preliminary studies indicate that one can bring it down to O(2) TeV However, a global fit still needs to be done Include fermion spectrum, b → sγ, b → c`ν, ... Higgs potential and VEVs introduce new sources of CPV Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Thank you for the attention Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints Preliminary fit: correlation w/o MWR as input Luiz Vale Left-Right Symmetric Models (LRSM) Overview EWPT Flavour constraints 0 Preliminary fit: correlation σhad − QW (Cs) Luiz Vale Left-Right Symmetric Models (LRSM)
© Copyright 2024 ExpyDoc