Solid laser system 2015.02.19 Mitsuhiro Yoshida Properties of laser medium Nd-doped Nd laser system for 3-2 RF-Gun τ~200μs, 40% ○ 4-state laser is easy to operate. ○ High power pump LD is available. ○ Large crystal is available × Pulse width is determined by SESAM. (Gaussian) LD Pump SHG(532nm) 40% FHG(266nm) 20% 5HG(213nm) 3% Nd:YVO4 Nd:YAG (808nm) 808nm 1064nm Yb-doped ○ Wide bandwidth => pulse shaping τ~900μs, ○ Long fluorescent time => High power Yb-glass ○ Fiber laser oscillator => Stable LD Pump ○ Small state difference Yb:YAG (941/976nm) × ASE Yb:BOYS 941/976nm × Absorption Ti-doped Pump τ=200μs, 40% Pump (808nm) 40% SHG(520nm) 40% FHG(260nm) 20% 5HG(208nm) 3% 1040nm τ~3μs, 40% 40% Absorption Fluorescence Nd:YAG SHG Ti:Sapphire 808nm 1064nm 800nm 532nm ○ Very wide bandwidth ○ High breakdown threshold TW laser is based on Ti-Sapphire × Low cross section × Short fluorescent time => Q-switched laser is required for pumping Material Nd:YAG Yb:YAG Ti:Sapphire Wavelength 1064nm 1030nm 660-1100nm Fluorescent time 230ms 960ms 3.2ms Spectral width 0.67nm 9.5nm 440nm 2.48ps 165fs 2.59fs 807.5nm 941nm 488nm 1.5nm 21nm 200nm 76% 91% 55% Fourier minimum Pulse width Wavelength Spectral width Quantum efficiency Best for RF-Gun SHG(400nm) 40% THG(266nm) 20% FHG(200nm) 10% Ti:Sapphire laser system for beam monitor. Flash pumped LD pumped Absorption CPA η~0.5% Nd:YAG Ti-Sapphire Ti-Sapphire Oscillator Superconitnuum broadning Yb-Fiber Frontend Fluorescence Laser schemes 940nm LD OPCPA 1030nm Yb:BOYS, Yb:CaF2 - Broadband Oscillator Pump Amplifier Nd:YAG Yb:YAG Ti:Sapphire Wavelength 1064nm 1030nm 660-1100nm Fluorescent time 230μs 960μs 3.2μs Spectral width 0.67nm 9.5nm 440nm Fourier minimum Pulse width 2.48ps 165fs 2.59fs 807.5nm 941nm 488nm 1.5nm 21nm 200nm 76% 91% 55% Wavelength Spectral width Quantum efficiency Many commertial product. - How to maintain continuously? - How to generate 2-bunch ? Yb:YAG Thin Disk η~40% Material - Very high gain - Critical incident angle - Fiber laser is stable in principle. - High efficiency (long fluorecense lifetime) - Low gain at room temperature => Lower temperature Nd based solid laser (3-2 DAW RF-Gun) Nd based laser system • Nd:YVO4 oscillator + Nd:YAG multi-pass amplifier 30 ps (10 mm) Nd based laser system (renewed) 発振器 増幅部 増幅部 波長変換部 Yb solid laser (A-1 RF-Gun) Characteristics of Yb doped laser • Long fluorescent lifetime~1ms • Wideband • High quantum efficiency X Quasi-three level => Absorption at room temperature X Small cross section Stimulated Fluoresce Fluorescence emission Thermal Yb nce spectral conductivity cross width Base material lifetime [W/mK] section [nm] [ms] [10-20cm2] YAG 2 0.95 11 9 Fourier minium [fs] 120 Experimental records Pulse Average width power [fs] [W] 340 0.11 136 0.003 730 16 810 60 71 0.12 112 0.2 176 1.1 KYW 3 0.7 3.3 24 50 KGW 3 0.7 3.3 25 47 glass 0.63 2 - 35 33 36 0.065 GdCOB 0.35 2.7 2.1 44 27 89 0.04 BOYS 0.2 2.5 1.8 60 19 69 0.08 86 0.3 YVO4 - 1.2 - - - 61 0.054 CaCdAlO4 0.55 - 6.9 - - 47 0.038 Temperature dependence of Yb:YAG • Improvement of thermal and emission property (Thermal lens effect) (Excitation density) GM+He 10 W/m/K , dn/dT = 8ppm/K @ 300K 25 W/m/K , dn/dT = 3ppm/K @ 150K ↑150K 1/6 Thermal lens Same gain @ 1/3 excitation density → ↓ 150K => 1/20 thermal lens 300K 150K Pertier 300K 30kW/cm2 P/P0 = exp(g0z) ~2 → g = 7 [cm-1] Yb disk laser 350 30% efficiency was achieved at room temperature Yb:YAG 300 250 Eout (mJ) Yb:YAG disk 10 % doped 2mm thickness Yb:YAG thin disk Laser at room temperature 200 150 100 50 0 0 200 400 600 800 Epump (mJ) 940nm LD (2.4 kW / module) 1000 1200 1400 Yb:YAG • 10% dope, α=12/cm, 5kW/cm2, 25Hz 0.5t 1t How to generate 2-bunch • Amplification time of standard regenerative amplifier (usually adopted in commertial product) is around 1 ms. • Two regenerative amplifier (not good) • Large regenerative amplifier (built & failed) – Unstable output energy due to low gain. – Difficult to compensate thermal lens. • High gain fast regenerative amplifier (built & failed) – Difficult to reduce the ghost pulse from first bunch due to limted extinction ratio of pockels cell. • Multi-pass amplifier (current configuration) – More gain is required for the balanced 2-bunch. • OPCPA (future candidate) Large regenerative amplifier for 2-bunch operation 100ns (2-bunch)+20ns (Pockels cell speed) = 36m => round trip + polarization => resonator length > 9m : 2.25m×3 + 0.75m×4 Input R=3m (f=1.5m) λ/4 R=1.5m f 4.5 R=3m f9 R=1.5m f 4.5 λ/4 λ/4 f=200mm Output f=75mm 2.25m f=300mm f=100mm f 1.5 A1ハット内概要図 シャッター 発振器オシロ Ch1(黄)に該当する。 出 入 口 制御 ラック 増幅器オシロ Ch2(緑)に該当する。 ファイバー アンプ マルチパスアンプ 1段目 パルスピック 発振器 A 2段目 マルチパス アンプ ファイバー アンプ ストレッチャー 発振器 B GR_A1へ 遮蔽扉 ファイバー プリアンプ 3段目 マルチパス アンプ 波長変換 1033nm ↓ 532nm 4,5段目 マルチパス アンプ エ レ ベ ー タ 増幅器オシロ Ch3(橙)に該当する。 出入口 Original multi-pass amplifier (5-pass) To obtain higher gain, => Higher pumping density Thermal lens Focused type amplifier to avoid thermal lens. Balanced offset lens to avoid damage. 5pass Laser Diode 4pass 3pass 2pass 1pass New high gain multi-pass amplifier (10-15 pass x 2 loop) to simplify the laser Laser Diode OUTPUT INPUT 10-15pass 1pass ← Final amplifier Laser Diode Uniform pumping is required. Low gain G=1.3 => Multi-pass 5pass 4pass 3pass 2pass 1pass Main Yb:YAG Amplifier Focused type multi-pass amplifier < 1mJ - High gain - Focused at crystal leads to avoid thermal lens effect. UV conversion (BBO SHG+FHG) => 1 mJ maximum @ 258 nm Typical charge distribution Current situation: - Instability => - No spatial shaping - No compressor Non-Focused type amplifier > 10 mJ - Low gain - Uniform pumping is required. Laser instability is caused by: - ASE of fiber amplifier. - Pointing fluctuation from fiber amplifier. - Stability of pump laser (Upgrade of charger is required) - Separated optical table between fiber and solid laser. Wavelength conversion :Telescope :Mirror :Wave Plate :Lens Laser diagnostics (Streak camera / Beam profile) Power monitor 532nm 1033nm BBO Piezo mirror From multi-pass amplifier Inside Gun laser case トンネル内 GR_A1 BOX 内部 :Wave Plate :Mirror レーザーハットより 安全系シャッター 532nm Cylindrical Lens テレスコープ リモートでレンズ位置を調整 ミラー リモートで X軸、Y軸を調整 266nm BBO 結晶 リモートで角度を調整 レーザープロファイルモニター 波長板で反射した光をモニターしている。 UV conversion efficiency improvement Reference [1] Nd:YAG Laser [1] Pulse width : 3.5 ns Max Energy : 400 mJ/pulse single longitudinal mode single transverse mode (top-hat) Reference [2] 【 Conversion efficiency of fundamental wave 】 Nd:YAG Nd:YAG Nd:YAG Nd:YAG 1ω 2ω 4ω 5ω BBO CLBO CLBO 250 mJ 90.3 mJ 50.2 mJ 36.0 mJ Crystal 10 Hz 70.71 % conversion 36.12 20.08 14.4 efficiency (%) 100 Hz 250 mJ 90.3 mJ 44.9 mJ 19.8 mJ 44.10 % conversion 36.12 17.96 7.92 efficiency (%) 【 QE of Ir5Ce photocathode 】 QE = 1.54×10-4@266nm QE = 9.10×10-4@213nm ×6 【 The optimal combination 】 Photocathode: Ir5Ce compound Laser : 5th harmonics (CLBO) [1] K.Deki , et al., “CsLiB6O10 (CLBO)を用いた193nm光源の開発”, 光技術情報誌「ライトエッジ」No.18 [2] Yap YK, et al., "High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB(6)O(10).", Opt Lett. 1996 Sep 1;21(17):1348-50. Temperature dependence of Yb:YAG • Improvement of thermal and emission property (Thermal lens effect) (Excitation density) GM+He 10 W/m/K , dn/dT = 8ppm/K @ 300K 25 W/m/K , dn/dT = 3ppm/K @ 150K ↑150K 1/6 Thermal lens Same gain @ 1/3 excitation density → ↓ 150K => 1/20 thermal lens 300K 150K Pertier 300K 30kW/cm2 P/P0 = exp(g0z) ~2 → g = 7 [cm-1] • Yb-fiber oscillator Issues on Yb based laser system – 1030nm oscillator is not stable. – Broadband oscillator is very stable => ASE reduction is required. • Yb-fiber amplifier – Lack of pulse energy – Lifetime and stability of PCF fiber. • Yb-disk amplifier: (Regenerative amplifiers were failed) => Multi-pass amplifier for 2-bunch operation. => More gain is required for balanced 2-bunch energy. – 5 Hz => Soldered cryatal => 25 Hz operation => x 2 system => 50Hz before May 2015 – Reduce thermal lens effect and simplify laser system => Focused type multipass amplifier x2 + Non-focused multipass amplifier => Cryogenic Yb laser at next summer • Temporal shaping – Compressor and Slit • Stability improvement – – – – – Casing of each block. Gas filled or vacuum laser transportation to improve pointing stability. Assemble on one large optical table (new laser room). Feedback (pointing / amplitude). Increase monitor points (pointing / power / beam pattern).
© Copyright 2024 ExpyDoc