! ! 2 {an} α ε > 0, n0 N, n N, (n ≥ n0 → |an− α| < ε ) limn→∞an = α {an} M > 0, n0 N, n limn→∞an = +∞ N, (n ≥ n0 → M < an) A R A R A R A R x A, x ≤ a a A R x A, a ≤ x A A a A A A R A R A A A A A ! ! ! {an} A3 … Am … supA1 ≥ supA2 ≥ supA3 ≥ … ≥ supAm ≥ … ( ) infA1 ≤ infA2 ≤ infA3 ≤ … ≤ infAm ≤ … ) {an} {an} {an} {an} A2 Am = {am, am+1, … } (m=1,2,…) ( {an} limsupn→∞an = imm→∞sup Am {an} liminfn→∞an = imm→∞inf Am inf A supA = +∞ inf A = −∞ A1 sup A ! {an} limsupn→∞an = +∞ liminfn→∞an = −∞ ±∞ {an} Og ! ! , O(g) ') ∃c > 0, ∃n ∈ N, ∀n ∈ N, 0 O(g) = ( f )* n ≥ n0 → f (n) ≤ cg(n) f: N → [0, +∞) n n ≥n0 c +) , )- f(n)≤cg(n) n0 f ∈O(g) f(n) = O(g(n)) f≤g 10 og 3n2 , ') ∀c > 0, ∃n ∈ N, ∀n ∈ N, 0 o(g) = ( f )* n ≥ n0 → f (n) ≤ cg(n) T(n) c n n 5 n ≥5 T(n)≤3n2 o(g) f ∈o(g) f(n) = o(g(n)) n ≥n0 n0 +) , )- f(n)≤cg(n) f<g 12 of,g n f (n ) > 0, g (n ) > 0 f ∈ o(g ) ⇔ lim n →∞ 1 2 n − 3n = O(n 2 ) 2 , f ( n) =0 g ( n) n n0 n n0 1 2 n − 3n ≤ cn 2 2 1 3 − ≤c 2 n n ≥1 1 c = , n0 = 1 2 1 2 n − 3n = O(n 2 ) 2 1 2 n − 3n ≤ cn 2 2 n ≥ n0 c c≥ n 1 2 c 6n3 ≠ O(n 2 ) ( ) 6n 3 = O n 2 1 2 n − 3n ≤ cn 2 2 n ≥ n0 c 1-1 (big-O ! 6n3 = O(n2) O n n0 n≥n0 n 6n3 ≠ O(n2) ! ) 6n3 ≤ cn2 c 6n ≤ c a. 2n=O(n) b. n2=O(n) c. n2=O(n log2n) d. n log n=O(n2) e. 3n=2O(n) f. 22 =O(22 ) n n 2O(f) g 1-2 (small-o h O(f), n ) f, g: R→ R a. n=o(2n) b. 2n=o(n2) c. 2n=o(3n) d. 1=o(n) e. n=o(log n) f. 1=o(1/n) N, g(n)=2h(n) (1) limx→∞f(x) = limx→∞g(x) = 0 (2) x→∞ (3) (1)(2)(3) ±∞. f’(x)/g’(x) x R g’(x) ≠ 0. limx→∞f(x)/g(x) = limx→∞f’(x)/g’(x)
© Copyright 2024 ExpyDoc