In silico による高感度・高選択的な機能性試薬の設計開発 Design and

Takatoshi MATSUMOTO
Assistant Professor
松本 高利
助教
東北大学多元物質科学研究所
Institute of Multidisciplinary Research for Advanced Materials Tohoku University






計算化学
反応解析
In silico スクリーニング
Computational Chemistry
Reaction analysis
In silico screening
In silico による高感度・高選択的な機能性試薬の設計開発
Design and development of high sensitive and selective functional reagent in silico
生体もしくは環境中の極微量成分を検出において反応もしくは試薬に強く依存するため,より一層の高感度・高選択的な反
応もしくは機能性試薬が強く求められています.極微量成分の検出では,用いる反応の詳細な理解と反応環境の再構築が重
要となっています.
More high sensitive and selective reactions and/or functional reagents are required strongly because detection of
infinitesimal elements in biological objects or environment depends on reactions and/or reagents themselves.
Realizing the used reactions in detail and restructuring the reactive environment has the key to detect infinitesimal
element.
様々なシミュレーションと in silico スクリーニングを用いて多面的に解析評価を行うことにより,高感度・高選択的な機能
性試薬や反応環境の再構築の設計を目指しています.得られた知見に基づき,新たな反応又は試薬の実用化に向けてを行っ
ています.
The main objective of the research is to design the high sensitive and selective functional reagents and to reconstruct
the reactive environment from analytical evaluation using various simulations and/or in silico screening. The obtained
new knowledge is applied to put into practical use of new reactions and/or functional reagents.
∆ Energy (kcal/mol).
300.00
Relative Absorbance
1.6000
4:H2O
250.00
λmax
4
428nm
5:H3O(+)
λmax
200.00
H
Precursor for
Excited state
O
Ti
O
H+
+ H+
Ti
H+
2
H+
1
H+
hν
+
O
H
H+
Ti
H+
2
O2
9
100.00
0.8000
114.54 kcal/mol
50.00
0.00
57.77 kcal/mol
-50.00
-100.00
-150.00
0
1
O2
Ti
H+
H+
H+
H+
7
6
O OH
H
H
O
H
O
H
O
H+
H+
Ti
H+
H+
H
O
H+
+ H 2O
H+
8
O OH
H
0.4000
2.07 angstrom
5
+
H+
3
Protected
H+ Photoactive
Specises
λ max=428nm
O H
H
H 2O
448nm
150.00
Ti
H+
Active Species
H+
[Protecting]
4
H
O
H
H
O
H+
+ H 2O
+ H+
H+
Ti
H+
+ H+
+
H
3
H
- H 3O +
O
H+
[Deproduction]
+
H+
Ti
H
H+
+ H 2O 2
H
Species for
Excited state
1.2000
H
O
Reaction Process between Ti-TPyP and H2O2
Ti
H+
H+
O OH
H
- H 3 O+
H+
9
H+
Ti
H+
H+
O O H
2
4
6
10 12 14
8
Distance (angstrom)
16
18
20
Fig.2. The potential energy when
H2O (4) and H3O+ (5) approach the
protonated TiO(TPyP) complex 3.
Photoactive Species
λ max=4448nm
0.0000
350
400
450
Wavelength (nm)
500
Fig.3.
UV-Vis spectra calculated
for photoactive species 4
and 5.
Fig.1. Overall sequence of the reaction of the
TiO(TPyP) complex 1 with hydrogen peroxide
involving photo-excitation processes under aqueous
acidic conditions.
Analytical Methods, 4, 4298-4294 (2012)., Analytical Methods, 3, 328-333 (2011), Applied Spectroscopy, 63, 579-584 (2009), Analytical Sciences, 24,
401-404 (2008).
[email protected]
http://db.tohoku.ac.jp/whois/detail/fa102981f46220da3ef7b667a33c82b8.html