素粒子物理学の進展2015, 9/14-18 真空崩壊確率の完全な1-LOOP ORDER での計算とその応用について ∼スケール不定性を減らせるか∼ 庄司 裕太郎 東京大学 Now ongoing… Collaborators: Motoi Endo, Takeo Moroi, Mihoko Nojiri (KEK) 目次 • 導入 - 核生成確率とスケール不定性 - • 1-loop orderでの計算 - Toy model - • SM + STAU SYSTEM - Top loop - • まとめ 導入 核生成確率とスケール不定性 準安定真空の崩壊 Standard Model V 180 6 8 10 200 107 108 109 Instability Instability lity 10 abi 9 t s 8 tae 7 M 6 5 LI =104 GeV 100 Stability 50 12 14 16 Φ Top pole mass Mt in GeV 150 1010 19 Non-perturbativity Top pole mass Mt in GeV 178 1011 1012 1013 176 1016 174 1,2,3 s Meta-stability 1019 172 170 1018 14 False Vacuum Stability 10 0 0 50 True Vacuum 100 150 200 Higgs pole mass Mh in GeV 168 120 17 10 122 124 126 128 130 132 Higgs pole mass Mh in GeV D. Buttazzo, et. al. 1307.3536/hep-ph Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and nonperturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming Higgs mass, hgg, hγγ, …Mh and Mt ↵3 (MZ ) = 0.1184. Right: Zoom in the region of the preferred experimental range of (the grey areas denote the allowed region at 1, 2, and 3 ). The three boundary lines correspond to 1- variations of ↵3 (MZ ) = 0.1184 ± 0.0007, and the grading of the colours indicates the size muon g-2, hγγ, … of the theoretical error. Minimal Supersymmetric Standard Model Top quark Leptons SUSY Stop ht̃L t̃R Sleptons h`˜L `˜R The quantity e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly given in appendix C. Charge and/or Color Breaking Minima 4.3 The SM phase diagram in terms of Higgs and top masses The two most important parameters that determine the various EW phases of the SM are the 真空の崩壊確率 Bubble Nucleation Rate Tunneling FV FV TV E At the Leading order, Bounce action = Ae B = SE ( B E B : Bounce solution B) V @2 = V 0( ) dim: [1/(time*volume)] Pre-exponential factor A'm 4 r = ±1 r=0 m : “typical” mass scale SO(4) symmetric classical solution TOY MODEL Potential Bounce Action Nucleation Rate 2 m V = 2 @ 2 A 2 2 3 ↵ + 8 4 0 =V ( ) B = SE ( B) = 4 'm e B Z 1 d x (@ 2 4 2 ) +V( B B) TOY MODEL In fact, the potential is scale-dependent. m̄2 (Q) t̄(Q) + 2 Potential V = Bounce Action Nucleation Rate @ 2 Ā(Q) 2 2 3 ↵(Q) ¯ + 8 4 0 =V ( ) B = SE ( B) = 4 'm e Z 1 d x (@ 2 4 2 ) +V( B B) B Maybe, the best Q is a “typical” scale… 繰り込み点 V Momentum of the bounce r = ±1 V r=0 But, we do not know what is the best scale Height of the barrier Depth of TV Distance btw. FV and TV Particle mass @ FV Particle mass @ TV Φ スケール依存性の大きさ V = m̄2 (Q) t̄(Q) + 2 2 Ā(Q) 2 3 ↵ ¯ (Q) + 8 4 Beta functions t 3Am2 = 16⇡ 2 A 9↵A = 16⇡ 2 m2 ↵ 3 2 2 = (↵m + 3A ) 2 16⇡ 9↵2 = 16⇡ 2 Renormalization conditions @Q = m m̄2 (m) = m2 , Ā(m) = m, t̄(m) = 0, ↵ ¯ (m) = ↵ スケール依存性の大きさ 405 ● ● ● 400 h iT V VT V ● ● 395 kB ↵ = 0.6 ● ● Vtop B 390 ● m 385 ,F V m ● ,T V ● Preliminary ● ● 380 ● ● 375 ● ● 0 1 2 3 Q/m 4 5 ~10% uncertainty Much larger uncertainty in a realistic model (w/ top loop) 1-LOOP ORDERでの計算 さて、どうしましょうか。 ちゃんと読み返してみると = Ae B 2 B A= 4⇡ 2 Expectation ✓ 0 00 det S |Bounce det S 00 |False ◆ B Cancellation of the scale dependence @1-loop cf.) RGEs are related to 1/2 B B B B B divergent part もっと読み返してみると = Ae B 2 B A= 4⇡ 2 ✓ 0 00 det S |Bounce det S 00 |False ◆ 1/2 SOLVE corresponding Ordinary Differential Equations Since 1928 Many mathematical proofs, but not so many pheno. results I. M. Gelfand, A. M. Yaglom; S. Coleman; J. H. van Vleck; R. H. Cameron, W. T. Martin; R. Dashen, B. Hasslacher, A. Neveu; R. Forman; K. Kirsten, A. J. McKane; … method, proof, renormalization, zero modes, fermions, implementation, … Please invite me to your LAB!! 結果 = Ae 405 ● ● ●●● ●● ● ● ● ● ● ● ● ● ● ● ● 400 395 B, B+δB B 390 4 ⌘m e ● ● 1-loop ● ● B ● ● ● ↵ = 0.6 ● 385 B ● Classical ● 380 ● ● 375 ● ● 0 1 2 3 Q/m 4 5 Preliminary 結果 ↵ = 0.3 7300 7200 ● ● ● 1-loop ● ● ● ● ● 152 B, B+δB ●●● ● ●● ● ● ● ● ● ● ● 154 ●●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● 7400 ● ● ● ● ● 156 B, B+δB ↵ = 0.9 7100 7000 ● ● ● ● ● ● 1-loop ● ● ● ● Classical ● ● 6900 ● 150 ● Classical 6800 ● ● ● ● 0 2 ● 4 6 Q/m 8 10 ● 0.0 0.5 Preliminary V Φ 1.0 1.5 2.0 2.5 Q/m Preliminary 3.0 V Φ SM+STAU SYSTEM TOP LOOP 軽いSTAU Staus can be light m⌧˜ > 103.5GeV (LEP) hγγ coupling, co-annihilation with Bino, … But, the potential may become unstable toward the stau direction V 2 2 1 m m = + p2 y⌧ X⌧ ⌧˜L ⌧˜R h + L ⌧˜L2 + R ⌧˜R2 + · · · 2 2 Stable EW vacuum is the global minimum Meta-Stable tdec & 13.8Gyr Unstable tdec . 13.8Gyr X ⌧ = A⌧ tan µ tan = hHu0 i/hHd0 i No EW vac. Tachyonic stau |X⌧ | 考えるスペクトラム For simplicity, we consider the case where only the staus are light O(10TeV) O(100GeV)-O(1TeV) Other superparticles, heavy Higgs bosons Staus 173GeV Top quark 125GeV SM Higgs boson Effective theory 有効理論 h SM+Staus 3yt2 = 4⇡ 2 h t 3yt4 8⇡ 2 h dominant contrib. h yt p ht̄R tL 2 4 L= + h 4 1 + p y⌧ X⌧ ⌧˜L ⌧˜R h 2 X ⌧ = A⌧ 1 + 4 ✓ y⌧2 g 02 + (2˜ ⌧R2 32 g 02 g2 4 ⌧˜L2 )2 cos 2 ◆ 1 2 2 ⌧˜L h + 4 = hHu0 i/hHd0 i tan Mh2 2 m2L 2 m2R 2 ⌧˜L + ⌧˜R + h + 2 2 2 ✓ y⌧2 g 02 cos 2 2 µ tan Inputs ◆ ⌧˜R2 h2 g2 4 + ⌧˜L 32 RGE, Det: Calculated up to leading in y_t => Overall factor of Det is NOT determined! 結果 其の壱 mL = mR = 600GeV, X⌧ = 95TeV, tan Preliminary ● 500 = 15 Classical ● 450 ● B ● ● 400 ● ● ● 350 ● ● ● ● ● ● 300 mt 2 200 400 600 Q [GeV] 800 1000 ● ● 1200 2m⌧˜ 結果 其の壱 mL = mR = 600GeV, X⌧ = 95TeV, tan Preliminary ● Classical 500 = 15 B, B+δB ● 450 Partial 1-loop (y_t only) ● ● ● ● 400 ● ● ● ● ● ● ● ● ● ● ● ● ● 350 ● ● ● ● ● ● ● ● ● 300 mt 2 200 400 600 Q [GeV] 800 1000 ● ● ● ● 1200 2m⌧˜ Caveat: Overall factor is NOT determined! 結果 其の弐 = 15 mL = mR = m⌧˜ tdec & 13.8Gyr , B(+ B) & 400 Tachyonic stau mt < Q < 2m⌧˜ 2 Partial 1-loop (B+δB=400) Classical (B=400) 200 Xτ [TeV] tan Unstable 150 e l b ta s a et M 100 600 Preliminary 800 1000 m ∼τ [GeV] 1200 1400 Stable Caveat: The position of the green lines can be changed! まとめ • The bubble nucleation rate has often been estimated without calculating the pre-exponential factor. • This estimate involves uncertainty in the renormalizaiton scale, which, we showed, results in O(10%) uncertainty in the exponent of the bubble nucleation rate. • To reduce the uncertainty, we explicitly calculated the preexponential factor and showed that it is greatly reduced. • Scalars and fermions have already been implemented, but the gauge bosons are now ongoing. 405 ● ● ●● ● ● ● ● ● ●●● ● ● ● ● ● ● 400 B, B+δB 395 390 ● ● ● ● ● ● ● Boson ● 385 ● ● 380 ● ● 375 ● ● 0 1 2 3 Q/m ● 500 B, B+δB ● 450 ● ● ● ● 400 ● ● ● ● Fermion ● ● ● ● ● ● ● ● ● 350 ● ● ● ● ● ● ● ● ● 300 200 400 600 Q [GeV] 800 1000 ● ● ● ● 1200 4 5 “Backup called Trash” One thing I’m concerned about is the file size…
© Copyright 2025 ExpyDoc