スカラー暗黒物質の 対消滅から生じるガンマ線 藤間崇

スカ ラ ー暗黒物質の
対消滅から 生じ る ガン マ線
藤間 崇
ダラ ム大学 (Durham University)
Institute for Particle Physics Phenomenology (IPPP)
益川塾セミ ナ ー
T. T., Phys.Rev.Lett. 111 (2013) 091301,
A. Ibarra, T. T., M. Totzauer, S. Wild, Phys.Rev.D. 90 (2014) 043526
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
1 / 39
Outline
Outline
Introduction
DM Production
Detectability of DM
Internal Bremsstrahlung of Majorana DM
Scalar DM with vector like fermion
Gamma-ray Signatures
Summary
藤間 崇 (IPPP)
Internal bremsstrahlung χχ → f f γ
Monochromatic gamma-rays χχ → γγ, γZ
益川塾セミ ナ ー
22th Sep. 2014
2 / 39
DM production
Dark Matter
There are many evidences for DM.
Rotation curves of spiral galaxies
CMB observations
Collision of bullet cluster
Large scale structure of
the universe
WIMP: the most promising DM candidate.
Many experiments focus on WIMP detection.
Direct detection
Indirect detection
Collider search
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
3 / 39
DM production
Thermal Production of DM
Thermal Production of DM
⇔
Evolution of number density is determined by Boltzmann equation.
dn
2
+ 3Hn = −hσv i n2 − neq
dt
ΓYeq
dY
=−
dx
Hx
"
Y
Yeq
2
#
same equation
−1 ,
x≡
m
,
T
Γ ≡ hσv i neq ,
Y ≡
n
s
Relic density is determined by
cross section hσv i.
σv is expanded by v .
→ σv = a + bv 2 + O (v 4)
a: s-wave, b: p-wave
1.04 × 109 [GeV−1 ]
Ωh2 ≈
√
g∗ mpl hσv i
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
4 / 39
DM production
Ωh2 ≈ 0.12
↔
Thermal Production of DM
hσv i ≈ 3 × 10−26 [cm3 /s]
= 3 × 10−9 [GeV−2 ]
If DM is degenerated, co-annihilation effect should be
considered.
Other mechanisms
Asymmetric Dark Matter
DM mass is almost determined to be a few GeV.
arXiv:0901.4117, 1308.0338
Production by decay of metastable particle
Possible to have DM with rather large ineteractions
arXiv:0810.4147
DM mass region
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
5 / 39
Detectability of DM
Direct detection
Detectability of Dark Matter
(i) Direct detection
Looking for scattering event with nuclei
Nuclei are made from quarks.
→ interactions with quarks are
important.
Many experiments are lauching.
LUX, XENON100, CDMSII,
DAMA, CoGeNT, CRESST, KIMS.
detection rate:
X ρ⊙ 1 Z
dσ
dR
=
vf⊙ (v + ve )d 3 v
dER
m
m
dE
DM
det v >vmin
R
nuclei
d σ/dER : cross section (Particle physics dependence)
ρ⊙ , v : DM local density, DM velocity (Astrophysics dependence)
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
6 / 39
Detectability of DM
Direct detection
DA
l it e
CDMS
M
IC
10
1
10
2
CoGeNT
(2012)
10
3
CDMS Si
(2013)
10
4
10
5
10
6
10
7
10
8
10
9
10
10
10
11
10
12
10
13
10
104
14
( 2 0 1 2)
(2 0
13
)
012)
LE (2
SIMP
DAMA
2)
P (201
COUP (2012)
N-III
ZEPLI
009)
Ge (2
II
S
CDM
(2012)
n100
Xeno
(2013)
LUX
CR
ES
ST
EISS
EDELW
COHER
EN
7
T
Be
N
Neutrinos EU TRI
(2011)
NG
E
N O SCATT RI
8B
Neutrinos
COHER
U
ENT NE
G
TERIN
TR
I NO
1
10
SCAT
RI NO
NEUT
os
E NT
eutrin
NB N
C O HE R
ING
pheric
SC ATTER
Atmos
100
S
and D
1000
WIMP nucleon cross section pb
Current limits arXiv:1307.5458
WIMP Mass GeV c2
N
σSI
. 10−9 [pb] ∼ 10−45 [cm2 ] at mDM ∼ 30 GeV.
Results are inconsistent between LUX and DAMA, CoGeNT,
CDMS-Si.
Neutrino induced background set lower bound.
(solar, atmospheric, diffuse supernova neutrinos)
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
7 / 39
Detectability of DM
Collider search
(ii) Collider search
Ex. neutralino in SUSY
LHC limit ATLAS-CONF-2013–049
p
ℓ
ℓ˜
ℓ˜†
p
χ
χ
ℓ
pp → ℓ˜† ℓ˜ → ℓℓ + missing energy
DM mass region mχ . 180 GeV is excluded for mℓ˜ ≈ 300 GeV.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
8 / 39
Detectability of DM
Indirect detection
(iii) Indirect detection
Propagation of charged particle
Propagation equation:
∇ (K (E , x)∇f ) +
∂
[b(E , x)f ] + Q(E , x) = 0
∂E
K (E , x): diffusion coefficient → effect due to magnetic field
b(E , x): energy loss coefficient → synchrotron radiation, ICS
Q(E , x): source term of DM
For DM annihilation
nχ2
dN
→ Q(E , x) = hσv i
2
dE
A. Ibarra, ICTP Summer School 2013
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
9 / 39
Detectability of DM
Indirect detection
Propagation of gamma-ray
r⊙ ρ2⊙
d Φγ
dN
prompt γ:
=
Jhσvγ i
2
dEγ
8πmχ
dEγ
r ⊙, ρ⊙ , J: astrophysics dependence
mχ , hσvγ i, dN/dEγ : particle physics dependence
A. Ibarra, ICTP Summer School 2013
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
10 / 39
Detectability of DM
Indirect detection
10-25
10-26
<σv>χχ→γ γ (95% CL) (cm3/s)
<σv>γ γ 95% CL Limit (cm3s-1)
Upperbounds for cross section into γγ
3.7 year R16 Einasto Profile
Observed Upper Limit
Expected Limit
Expected 68% Containment
Expected 95% Containment
Weniger [20] Limit
10-27
10-28
10-25
HESS Einasto
Fermi-LAT Einasto
10-26
10-27
10-28
10-29
10-30
10
Fermi Coll., arXiv:1305.5597
102
10-29
mχ (GeV)
10-2
10-1
1
10
mχ (TeV)
H.E.S.S. Coll., arXiv:1301.1173
σv . 10−29 ∼ 10−26 cm3 /s in DM mass region
10 GeV . mDM . 10 TeV
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
11 / 39
Detectability of DM
Gamma-ray spectra
Gamma-ray spectra from DM annihilation
Line spectrum
ex. χχ → γγ, χχ → Z γ
2
suppression factor ∼ αem
Internal bremsstrahlung
χχ → f f γ
When chiral suppression is effective,
it becomes important.
suppression factor ∼ αem
Box type spectrum
ex. χχ → SS → 4γ
(S: light mediator)
if mχ ≫ mS , box type
if mχ ≈ mS , Eγ ∼ mχ /2
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
12 / 39
Detectability of DM
Gamma-ray spectra
Gamma-ray spectra from DM annihilation
Bringmann & Weniger H2012L
DEE = 0.15
10
DEE = 0.02
1
box
B
qq,ZZ,W W
VI
x2dNdx
ΓΓ
0.1
0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
x = E  mΧ
T. Bringbann, C. Weniger arXiv:1208.5481
Sharp gamma-ray spectrum is important for DM signal.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
13 / 39
Detectability of DM
Gamma-ray spectra
Gamma-ray excesses
Significance is 3.3σ at 133 GeV.
A few GeV γ-ray excess
Fermi Collaboration, arXiv: 1305.5597
Lower significance by
Fermi Collaboration.
This peak could be a fake.
Better instruments are
needed.
藤間 崇 (IPPP)
D. Hooper et al, arXiv:1402.6703
益川塾セミ ナ ー
γ-ray excess around a few
GeV
hσv ibb ∼ 10−26 cm3 /s which
is same order with that
needed for thermal relic.
22th Sep. 2014
14 / 39
Detectability of DM
Gamma-ray spectra
Gamma-ray Background from Galactic Center
Acceleration of proton and electron by supermassive black hole
Scattering with interstellar medium → producing pion
Pion decay π 0 → 2γ
Inverse Compton Scattering (e ± γ → e ± γ)
gamma-ray source: CMB, starlight
Millisecond pulsars
→ Background modeling
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
15 / 39
Internal Bremsstrahlung
Internal Bremsstrahlung
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
16 / 39
Internal Bremsstrahlung
Internal Bremsstrahlung of Majorana Dark Matter
Consider Majorana DM χ
L = y η + χPL f + h.c.
Cross section for χχ → f f is expanded by v : σvf f ≈ a + bv 2
σvf f ≈
y 4 mf2
1
1 + µ2 2
y4
+
v ,
32πmχ2 mχ2 (1 + µ)2 48πmχ2 (1 + µ)2
µ≡
mη2
>1
mχ2
When mf ≪ mχ , s-wave can be negligible. → chiral suppression
Relative velocity v in the present universe is v ∼ 10−3
Relic density of DM is determined by p-wave → y is fixed.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
17 / 39
Internal Bremsstrahlung
Internal Bremsstrahlung
The total amplitude is separated by two parts.
i M = i MFSR + i MVIB
Differential cross section (interference term is neglected)
d σvfFSR
d σvfVIB
d σvf f γ
fγ
fγ
=
+
,
dx
dx
dx
FSR : broad spectrum
VIB : Eγ ∼ mχ sharp peak spectrum
藤間 崇 (IPPP)
益川塾セミ ナ ー
x≡
Eγ
,
mχ
22th Sep. 2014
18 / 39
Internal Bremsstrahlung
Concrete formula for the differential cross section
FSR :
VIB :
dσvfFSR
fγ
dx
dσvfVIB
fγ
dx
!
2
4mχ2 (1 − x)
αem 1 + (1 − x)
= σvf f
log
+ (Hadronization)
π
x
mf2
αem y 4
x
2x
(1 − x)
=
−
2
2
32π mχ
(µ + 1)(µ + 1 − 2x) (µ + 1 − x)2
µ+1
(µ + 1)(µ + 1 − 2x)
log
−
2(µ + 1 − x)3
µ + 1 − 2x
FSR : model independent
101
100
x2 dN/dx
Energy spectra
If FSR ≪ VIB, characteristic
signal.
Majorana DM
→ chiral suppression
µ + µ− (γ)
τ + τ− ( γ )
¯bb(γ,g)
10-1
10-2
10-3
10-2
10-1
100
x = E/mχ
arXiv:1203.1312
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
19 / 39
Internal Bremsstrahlung
Why hard gamma is emitted?
Momentum notation:
Initial state: χ(p1 ), χ(p2 ), Final state: f (k1 ), f (k2 ), γ(k3 )
When mf /mχ ≪ 1 and mη /mχ ≈ 1,
i
i
i
≈ 2
≈
iM ∼
2
2
2
(p1 − k1 ) − mη
mχ − mη − 2mχ Ef
−2mχ Ef
Emitted f has soft energy.
χχ → f f γ is understood as almost 2-body process χχ → (f )f γ.
Energy is taken by f γ (Eγ ≈ Ef ≈ mχ ).
→ Hard gamma emission.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
20 / 39
Internal Bremsstrahlung
How about Dirac DM?
1
y4
+ O(v 2)
πmχ2 (1 + µ)2
when s-wave exists, FSR is always dominant.
For complex scalar DM, p-wave dominant (same as Majorana DM).
σvf f =
How about real scalar DM?
σvf f =
y 4 mf2 1 + 2µ 2
1
y 4 mf2
−
v
4πmχ2 mχ2 (1 + µ)2 6πmχ2 mχ2 (1 + µ)4
y4
1
+
v 4 + O(v 6)
2
4
60πmχ (1 + µ)
Summary
dominant term
藤間 崇 (IPPP)
Majorana Dirac
p-wave s-wave
real scalar
d-wave
益川塾セミ ナ ー
compelx scalar
p-wave
22th Sep. 2014
21 / 39
Scalar Dark Matter Model
Scalar Dark Matter Model
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
22 / 39
Scalar Dark Matter Model
The model with scalar Dark Matter
New particles
Real singlet scalar χ (DM), Z2 = −1
Vector like charged fermion ψ (mediator), Z2 = −1, Y = −1
Interactions
LY = y χψPR f + h.c.
mχ2 2 λφ † 2 λχ 4 λ 2 † φφ + χ + χ φφ
χ +
V = mφ2 φ† φ +
2
2
4!
2
where φ is the SM Higgs doublet.
DM χ interacts with SM particles through y and λ.
(The other parameters: mχ and mψ )
h(x)
After φ gets VEV → φ(x) = hφi + √
2
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
23 / 39
Scalar Dark Matter Model
Constraint on coupling λ
✶✵
χ
χ
✶
λ
▲❯❳
10−1
❳❊◆❖◆✶❚
h
10−2
q
q
10−3 1
10
102
mχ [●❡❱]
103
104
The coupling λ should be suppressed from the constraint of
direct detection.
cλ2 mp4
1
. 7.6 × 10−46 [cm2 ] at mχ ∼30 GeV
σp =
4
2
4πmh (mχ + mp )
LUX Collaboration, arXiv: 1310.8214
where c = 0.345 and mp is proton mass.
The coupling is limited as λ . 10−2 in all DM mass region.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
24 / 39
Scalar Dark Matter Model
Thermal relic density of DM
χχ → hh, χχ → h → f f are
subdominant.
The most important channel
is χχ → f f mediated by ψ.
The cross section is expanded as σv = a + bv 2 + cv 4 + O(v 6 )
σvf f =
y 4 mf2
y 4 mf2 1 + 2µ 2
1
−
v
4πmχ2 mχ2 (1 + µ)2 6πmχ2 mχ2 (1 + µ)4
+
1
y4
v 4 + O(v 6 ),
2
60πmχ (1 + µ)4
µ≡
· when mf ≪ mχ , s-wave and p-wave are negligible.
→ chiral suppression
· This can be interpreted from J and CP conservation.
藤間 崇 (IPPP)
益川塾セミ ナ ー
mψ2
mχ2
22th Sep. 2014
25 / 39
Scalar Dark Matter Model
Interpretation of d-wave
CP and total angular momentum J should be conserved between
initial and final states.
s-wave
initial state: CP=even, J = 0 (J PC = 0++ )
→ possible effective operator: OS ∼ χχf f
But suppressed by mf since f f corresponds to mass term.
p-wave
initial state: CP=odd, J = 1 (J PC = 1−+ )
Any J PC = 1−+ bi-linear operator cannnot be constructed for
final state.
↔ OP ∼ χ∂i χ f γ i f = 0
Note: p-wave exists for complex scalar DM.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
26 / 39
Scalar Dark Matter Model
Thermal relic density of DM
❚❤❡r♠❛❧ ❨✉❦❛✇❛ ❝♦✉♣❧✐♥❣
y✱
❢♦r
Contours for several
mass splittings
mψ /mχ = 1.01, 1.1, 2,
3, 5 (λ = 0).
micrOmegas is used
(co-annihilations are
included).
λ=0
101
5.0
3.0
2.0
100
mψ /mχ = 1.01
y
1.1
10−1
10−2 1
10
102
103
104
mχ [●❡❱]
When masses are degenerated, co-annihilation effect is
important.
DM mass
√ is bounded (mχ . 2 TeV) by perturbativity
(y . 4π).
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
27 / 39
Gamma-ray Spectra
Gamma-ray Signatures
Possible processes
χχ → f f γ
Internal bremsstrahlung
T. T, arXiv:1307.6181
F. Giacchino, L. Lopez-Honorez, M.H.G. Tytgat,
arXiv:1307.6480
χχ → γγ, χχ → γZ
Monochromatic gamma-ray line
A. Ibarra, T. T, M. Totzauer, S. Wild, arXiv:1405.6917
F. Giacchino, L. Lopez-Honorez, M. Tytgat, arXiv:1405.6921
Both gamma-ray emissions are expected to be stronger than Majorana
case since y is large enough.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
28 / 39
Gamma-ray Spectra
Internal Bremsstrahlung
Internal bremsstrahlung
· differential cross section
dσvf f γ
dx
=
2x
αem y 4
x
(1
−
x)
−
2
2
4π mχ
(µ + 1)(µ + 1 − 2x) (µ + 1 − x)2
Eγ
(µ + 1)(µ + 1 − 2x)
µ+1
, x≡
−
log
2(µ + 1 − x)3
µ + 1 − 2x
mχ
101
100
x2 dN/dx
· When µ . 4, a sharp peak appears
around Eγ ∼ mχ
T. Bringmann et al., arXiv:1203.1312
µ + µ− (γ)
τ + τ− (γ)
¯bb(γ,g)
10-1
10-2
10-3
10-2
10-1
100
x = E/mχ
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
29 / 39
Gamma-ray Spectra
Gamma-ray Lines
Line spectra: χχ → γγ, γZ
In the limit of v → 0, these analytically can be calculated.
Initial state: p1 = p2 = (mχ , 0) ≡ p, Final state: k1 , k2
Flow of calculation
1
G. Bertone et al. arXiv:0904.1442
In general, i M is decomposed as
Mµν = p µ p ν A + k1µ k1ν B + k2µ k2ν C + · · · + g µν Aγγ(γZ )
2
3
where i M = i ǫ∗µ (k1 )ǫ∗ν (k2 )Mµν .
only Aγγ(γZ ) remains.
Simplify Aγγ(γZ ) by Passarino-Veltman reduction
cross sections:
σvγγ =
α2em y 4
|Aγγ |2 ,
32π 3 mχ2
藤間 崇 (IPPP)
σvγZ =
α2em y 4 tan2 θW
16π 3 mχ2
益川塾セミ ナ ー
m2
1 − Z2 |AγZ |2
4mχ
22th Sep. 2014
30 / 39
Gamma-ray Spectra
Aγγ = 2 + Li2
Gamma-ray Lines
1
1
1
− Li2 −
− 2µArcsin2 √
,
µ
µ
µ
2
µ = mψ
/mχ2 > 1
ξ
ξ
2
2
B0 mZ2 ; 0, 0 −
B0 mZ2 ; mψ
, mψ
4−ξ
4−ξ
2ξ
2µξ
2
2
2
2
+
−
B0 mχ ; 0, mψ
B0 4mχ2 ; mψ
, mψ
(4 − ξ)(1 − µ)
(4 − ξ)(1 − µ)
2
2
2
2 4 − 4µ − ξ
, mψ
, mψ
+mψ
C0 mZ2 , 4mχ2 , 0; mψ
1−µ
2
mψ
m2
(4 + ξ)(−2 + 2µ + ξ)
2
2
+
C0 −mχ2 + Z , mχ2 , 0; mψ
, 0, mψ
2
(1 − µ)(4µ + ξ)
2
2
mZ2
4ξ(1 + µ)
2
2
2
2
2 ξ(1 + µ)
C0 −mχ +
−
, mχ , mZ ; 0, mψ , 0
+mχ
2(1 + µ) (4 − ξ)(4µ + ξ)
2
mZ2
4(1 + µ)
2
2 2µ(1 − µ) + ξ
2
2
2
2
C0 −mχ +
+mχ
−
, mχ , mZ ; mψ , 0, mψ
2(1 − µ)
4−ξ
2
AγZ = 2 −
where B0 and C0 are Passarino-Veltman integrals.
when ξ ≡ mZ2 /mχ2 → 0, AγZ → Aγγ
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
31 / 39
Gamma-ray Spectra
Cross Sections
Cross sections
DM mass dependence
µ = 1.1, y = 1
µ = 25, y = 1
10−28
10−24
10−29
10−30
10−26
10−27
2 · γγ
hσvi [cm3 /s]
hσvi [cm3 /s]
10−25
f f¯γ
10−28
10−29
10−32
10−33
γZ
10−30
10−34
10−31 1
10
10−35 1
10
102
103
104
2 · γγ
10−31
mχ [GeV]
γZ
f f¯γ
102
103
104
mχ [GeV]
Mass splitting is fixed to µ = 1.1 (left), µ = 25 (right).
σvγγ and σvγZ are same order.
Detectability of χχ → γγ, γZ depends on experimental energy
resolution.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
32 / 39
Gamma-ray Spectra
Cross Sections
Cross sections
µ = mψ2 /mχ2 dependence
mχ = 150 GeV, y = 1
mχ = 500 GeV, y = 1
10−26
10−27
f f¯γ
10−27
10−29
2 · γγ
hσvi [cm3 /s]
hσvi [cm3 /s]
f f¯γ
10−28
10−28
10−29
γZ
10−30
10−31
2 · γγ
10−30
γZ
10−31
10−32
10−32
10−33
10−33
10−34
1
10
100
1
µ
10
100
µ
DM mass is fixed to 150 GeV (left) and 500 GeV (right).
when µ & 10, σvf f γ < σvγγ,(γZ ) due to µ dependence of the
cross sections.
σvf f γ ∝
藤間 崇 (IPPP)
y4 1
,
µ4 mχ2
σvγγ , σvγZ ∝
益川塾セミ ナ ー
y4 1
µ2 mχ2
22th Sep. 2014
33 / 39
Gamma-ray Spectra
Cross Sections
Total Energy spectrum (10% energy resolution)
d hσv if f γ
1
d hσv iγγ d hσv iγZ
dNγ
=
+2
+
dx
hσv i
dx
dx
dx
µ = 1.1
µ=4
101
101
10−1
100
Total
f f¯γ
γγ
10−2
x2 dNγ /dx
x2 dNγ /dx
100
10−3
Total
γγ
10−1
f f¯γ
10−2
10−3
γZ
10−4
0.1
γZ
10−4
0.1
1
x = Eγ /mχ
µ=9
x = Eγ /mχ
µ = 25
101
101
Total
f f¯γ
10−2
γγ
10−3
10−1
f f¯γ
10−2
γγ
10−3
γZ
10−4
0.1
1
γZ
10−4
0.1
x = Eγ /mχ
藤間 崇 (IPPP)
Total
100
x2 dNγ /dx
x2 dNγ /dx
100
10−1
1
1
x = Eγ /mχ
益川塾セミ ナ ー
22th Sep. 2014
34 / 39
Gamma-ray Spectra
Cross Sections
Comparison with Gamma-ray Experiments
mψ /mχ = 1.1, λ = 0, y = yt❤❡r♠❛❧
❋❡r♠✐✲▲❆❚ ✴ ❍✳❊✳❙✳❙
❋❡r♠✐✲▲❆❚ ✴ ❍✳❊✳❙✳❙
s❝❛❧❛r ❉▼✿
10−26
f f¯γ
s❝❛❧❛r ❉▼✿
❈❚❆
10−27
▼❛❥♦✳ ❉▼✿
10−28
f f¯γ
s❝❛❧❛r ❉▼✿
10−29
hσvi [❝♠3 /s]
hσvi [❝♠3 /s]
10−26
mψ /mχ = 3, λ = 0, y = yt❤❡r♠❛❧
2 · γγ
▼❛❥♦✳ ❉▼✿
10−27
s❝❛❧❛r ❉▼✿
f f¯γ
10−28
10−29
2 · γγ
▼❛❥♦✳ ❉▼✿
10−30
10−30
102
103
mχ
❬●❡❱❪
❈❚❆
2 · γγ
104
2 · γγ
▼❛❥♦✳ ❉▼✿
102
f f¯γ
103
mχ
104
❬●❡❱❪
Scalar DM χ is testable by future gamma-ray experiments such
as CTA.
Future experiments
Energy range [GeV]
Angular res [deg]
Energy res [%]
藤間 崇 (IPPP)
GAMMA400
0.1-3000
∼0.01
∼1
益川塾セミ ナ ー
DAMPE
5-10000
0.1 at 100 GeV
∼1 at 800 GeV
CTA
>10
0.1
15
22th Sep. 2014
35 / 39
Constraints and Prospects
Constraints
DM relic density (Ωh2 ≈ 0.12)
√
Perturbativity (y . 4π, 4π)
Direct detection
Collider search (ψψ production)
Indirect detection (e + e − , anti-proton, gamma-ray)
χχ → f f γ, f f Z
For mψ /mχ = 1.01
For mψ /mχ = 1.1
mψ /mχ = 1.01, λ = 0
✶✵
✭♠❛①✮
mψ /mχ = 1.1, λ = 0
✶✵
P❆▼❊▲❆ p¯/p
λ = λ▲❯❳ (mχ )
10−24
P❆▼❊▲❆ p¯/p
❋❡r♠✐✲▲❆❚ ❞✇❛r❢s
102
103
mχ [●❡❱]
→ weak constraint
藤間 崇 (IPPP)
104
hσvi✭♠❛①✮ [cm3 /s]
y
y
✶
10−1
yt❤❡r♠❛❧
❆▼❙ e+ /e−
yt❤❡r♠❛❧
❆▼❙ e+ /e−
✶
10−1
102
103
mχ [●❡❱]
益川塾セミ ナ ー
104
(b¯b)
10−25
10−26
10−27
20
W +W −
P❆▼❊▲❆
p¯/p (b¯b)
hh
102
mχ
ZZ
❬●❡❱❪
22th Sep. 2014
103
36 / 39
Constraints and Prospects
Allowed parameter space and future prospects
λ = 0.0
λ = 0.03
Only narrow parameter region is remaining and will be tested by
CTA and XENON1T.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
37 / 39
Summary
Summary
Gamma-ray signatures from DM annihilations are characteristic.
In the toy model we considered here, the annihilation cross
section is dominated by d-wave.
→ Large cross sections for sharp gamma-rays are obtained.
Only small parameter space is remaining.
Most of the parameter space is testable by future gamma-ray
and direct detection experiments.
Future work
Enhancement of internal bremsstrahlung of Majorana DM by
cosidering co-annihilation.
Strong ν flux via electroweak bremsstrahlung?
χχ → ℓℓZ , χχ → ℓνW +
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
38 / 39
Backup
Backup slide
Fitting to 130 GeV gamma-ray excess
10-5
Fermi data 90.0%CL
Fermi data 68.3%CL
yL = 1.0
yL = 1.5
yL = 2.0
yL = 3.0
yL = 4.0
8
Fermi data
Background
VIB+FSR+Background
VIB+FSR
7
6
µ
Eγ2dΦγ/dEγ [GeVcm-2s-1sr-1]
10-4
5
4
10-6
3
2
-7
10
100
101
102
103
Eγ [GeV]
1
100
120
140
160
mχ [GeV]
180
200
χ2min = 65.57 (51 d.o.f) at mχ = 155 GeV, µ = 2.05.
hσv if f γ = 4.72 × 10−27 cm3 /s.
藤間 崇 (IPPP)
益川塾セミ ナ ー
22th Sep. 2014
39 / 39