#10030A 中学受験 算数 中学受験 線分図を使う問題はここが急所 50 選 【サンプル】 算数 線分図を使う問題はここが急所 【サンプル:問題編】 50 選 【10】線分図の書き方・割合 1 の設定・線分の差・割合と割合の関係 (1) A、B、C、D の 4 つの数があります。この 4 つの数の和は 191 です。A に 1 を加え た数、B から 2 をひいた数、C に 3 をかけた数、D を 4 で割った数がすべて等しいとき、 A と D はそれぞれいくつですか。 詳しい学習ポイントで、解法をみち (芝) びきます。 2 (2) 赤、白、黒のビーズがあります。白のビーズは赤のビーズの 倍より 2 個少なく、 5 1 赤のビーズは黒のビーズの1 倍あります。また、黒のビーズは白のビーズより 50 個多 2 くあります。ビーズは全部で何個ありますか。 (日本女子大附属) 【28】倍数変化算 (1) A 君と B 君の所持金の比は 4:1 だったが、A 君は 100 円を使い、B 君は 50 円をも らったため、A 君と B 君の所持金の比は 5:2 になった。B 君のはじめの所持金はいく らですか。 類題演習で、解法パターンを徹底理解できます。 (慶応湘南藤沢) (2) はじめ、お姉さんと妹の持っているお金の金額の比は 15:2 でした。買い物に行き、 お姉さんは 6375 円、妹は 450 円使ったので持っているお金の金額の比が 3:2 になりま した。お姉さんは、今いくらお金を持っていますか。 (豊島岡) 【42】割合と割合の関係・割合と量の関係 (1) 父、母、太郎の 3 人家族で、現在母の年齢は太郎の年齢の 5 倍で、3 人の年齢の合 計は 79 歳です。3 年後には、父の年齢は太郎の年齢の 4 倍になります。現在の太郎の年 齢を求めなさい。 (東邦大東邦) (2) 現在、優ちゃんは 3 歳、お父さんは 35 歳、お母さんは 31 歳です。両親の年齢の和 が優ちゃんの年齢の 4 倍になるのは何年後ですか。 (東洋英和) 出典校を明示して、 学習のはげみにします。 【48】仕事算を含むニュートン算 ある牧場で、牛を 15 頭放牧すると、14 日間で食べつくす草が生えています。もし、9 頭を放牧すると 35 日間で食べつくします。ただし、草は毎日一定の割合で生えるもの とし、またどの牛も 1 日で食べる草の量は同じであるとします。 (1) 1 日に草が生える量は、牛 1 頭が 1 日に食べる草の量の何倍ですか。 (2) もし、牛 25 頭を放牧すると何日間で草を食べつくしますか。 (3) はじめに牛を 7 頭放牧して、7 日目から何頭か増やしたところ、それから 16 日間で 草を食べつくしました。何頭増やしたのでしょうか。 (渋渋) 1 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 中学受験 線分図を使う問題はここが急所 50 選 【サンプル】 算数 線分図を使う問題はここが急所 【ポイント編】 50 選 【10】線分図の書き方・割合 1 の設定・線分の差・割合と割合の関係 (1) 4 本の線分図を書いて考える A に 1 を加えた数を<1>とおき、問題文から A、B、C、D を<1>を用いて表す どんな線分図を書けばいいのかがわかるポイン 4 つの数の和を考える トを示して、難しい線分図にも対応できます。 (2) 赤の個数を<1>、黒の個数を≪1≫と置いて、3 本の線分図を書いて考える 割合と割合の関係、線分の差に注目して、割合と量の関係から量を求める 【28】倍数変化算 ポイントの表現をできるだけ統一して、理解度を深めます。 (1) 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける 新しい線分図で、差に注目する (2) 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける 新しい線分図で、差に注目する 【42】割合と割合の関係・割合と量の関係 (1) 母と太郎の関係を< >で、父と太郎の関係を≪ ≫で示して、線分図を書く 現在の 3 人の年齢の和に注目する (2) 「両親」と「優ちゃん」に分けて N 年後の線分図を書く 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける 新しい線分図で、差に注目する 【48】仕事算を含むニュートン算 (1) <1>=1 日に生える草の量、≪1≫=1 日に 1 頭の牛が食べる草の量として線分図を 書く 線分図より、< >と≪ ≫の関係を出す (2) 最初に生えていた草の量を≪ ≫で表す 1 日に減る草の量を考える (3) 7 日目の前まで(6 日間)に減った草の量を出す その後の 16 日間で、1 日あたり減った草の量と 1 日あたり牛が食べた草の量を出す 難問では、具体的に話しかけるようにポイントを示しています。 2 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 中学受験 線分図を使う問題はここが急所 50 選 【サンプル】 算数 線分図を使う問題はここが急所 【サンプル:解答解説編】 50 選 【10】線分図の書き方・割合 1 の設定・線分の差・割合と割合の関係 (1) ポイントを示す記号です。 4 本の線分図を書いて考える <1> A 1 B C 2 1 < > 3 191 <4> D A に 1 を加えた数を<1>とおき、問題文から A、B、C、D を<1>を用いて表す 1 □線分図で、A=<1>-1、B=<1>+2、C=< >、D=<4> 3 4 つの数の和を考える 1 □A+B+C+D=< 6 >+1=191 3 チェックボックスを利用し 1 □<1>=(191-1)÷ 6 =30 て、確認作業ができます。 3 □A=30-1=29、D=30×4=120 (2) 赤の個数を<1>、黒の個数を≪1≫と置いて、3 本の線分図を書いて考える 3 <1>=≪ ≫ 2 赤 2 < > 5 白 2個 わかりやすい線分図です。 50個 黒 ≪1≫ 割合と割合の関係、線分の差に注目して、割合と量の関係から量を求める 2 3 2 3 □線分図で、< >=≪ ≫× =≪ ≫ 5 2 5 5 2 3 2 □白と黒の個数の差に注目して、≪1≫-< >=≪1≫-≪ ≫=≪ ≫=50-2=48 個 5 5 5 2 □黒の個数=≪1≫=48 個÷ =120 個 5 □白の個数=120 個-50 個=70 個 3 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 3 □赤の個数=120 個× =180 個 2 □ビーズ全部の個数=120+70+180=370 個 【10】(1) A=29、D=120 (2) 370 個 【コメント】 ・意外に難しい文章題です。割合 1 を何にするかによっていい線分図が書けるかどうかが 決まります。 ・A の□倍より○少ない(多い)の線分図の書き方に注意します。 【28】倍数変化算 (1) 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける <4> A <1> 100円 ≪5≫ 50円 B ≪2≫ 注意点、参考や別解などを 示す記号です。 新しい線分図で、差に注目する B 君のはじめの所持金<1>が聞かれているので、≪ ≫の数をそろえるとよい □線分図で、≪5≫と≪2≫をそろえるため、A を 2 倍、B を 5 倍して、新しい線分図を書 く <8> A×2 ≪10≫ <5> 100円×2=200円 50円×5=250円 B×5 わかりやすい線分図です。 ≪10≫ □新しい線分図で、差に注目して、<8>-<5>=<3>=200+250=450 円より、<1 >=450 円÷3=150 円 □B 君のはじめの所持金=<1>=150 円 (2) 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける <15> 姉 6375円 ≪3≫ <2> 妹 ≪2≫ 450円 新しい線分図で、差に注目する 4 ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 姉の今の所持金≪3≫が聞かれているので、< >の数をそろえるとよい □線分図で、<15>と<2>をそろえるため、姉を 2 倍、妹を 15 倍して、新しい線分図を 書く わかりやすい線分図です。 <30> 姉×2 ≪6≫ 6375円×2=12750円 <30> 妹×15 450円×15=6750円 ≪30≫ □新しい線分図で、差に注目して、≪30≫-≪6≫=≪24≫=12750-6750=6000 円より、 ≪24≫=6000 円 □≪1≫=6000 円÷24=250 円 □姉の今の所持金=≪3≫=750 円 コメントでは、ちょっとしたコツや注意点 を示して、学習をサポートします。 【28】(1) 150 円 (2) 750 円 【コメント】 ・<>と≪≫のどちらをそろえるかは、問題によります。 「求めない方をそろえる」のがコ ツです。 ・<>の方を求めたいのなら、≪≫の方をそろえます。≪≫の方を求めたいのなら、<> の方をそろえます。 ・(1)では、「B 君のはじめの所持金」を求めるので、<1>の値を求めます。B×5 の方の 線分図を利用してはいけません。 ・(2)では、「姉の今の所持金」を求めるので、≪3≫の値を求めます。姉×2 の方の線分図 を利用してはいけません。 【42】割合と割合の関係・割合と量の関係 (1) 母と太郎の関係を< >で、父と太郎の関係を≪ ≫で示して、線分図を書く ≪4≫ 父 母 ≪1≫ <5> 太郎 3年 <1> 解説と線分図が関連している □線分図で、≪1≫=<1>+3 ので深い理解ができます。 現在の 3 人の年齢の和に注目する □現在の 3 人の年齢の和=(≪4≫-3)+<5>+<1>=≪4≫+<6>-3=4×(<1>+3) +<6>-3=<4>+12+<6>-3=<10>+9=79 歳 □<10>=70 歳 □現在の太郎の年齢=<1>=70÷10=7 歳 (2) 5 ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 「両親」と「優ちゃん」に分けて N 年後の線分図を書く N 年後には両親の年齢の和は(2×N)だけ増える <4> 両親 66歳 <1> 2×N 優 3歳 N 線分図を書くと、そろっている部分がないので、何倍かしてそろえる部分を見つける 何年後か(N)を聞かれているので、< >をそろえるとよい □線分図で、<4>と<1>を最小公倍数の<4>にそろえる <4> 両親 66歳 <4> 2×N 優×4 4×N 12歳 新しい線分図で、差に注目する □新しい線分図で、66-12=54=4×N-2×N=2×N □N=54÷2=27 年後である 【42】(1) 7 歳 (2) 27 年後 【コメント】 ・どちらも、割合と割合との関係、割合と量との関係を求める年齢算です。 ・(2)の N、2×N、4×N の使い方に慣れましょう。 【48】仕事算を含むニュートン算 (1) <1>=1 日に生える草の量、≪1≫=1 日に 1 頭の牛が食べる草の量として線分図を 書く 初めの草の量 <14> ≪15×14≫=≪210≫ <35> ≪9×35≫=≪315≫ 解説と線分図が関連している ので深い理解ができます。 線分図より、< >と≪ ≫の関係を出す □線分図で、差に注目して、<35>-<14>=<21>=≪315≫-≪210≫=≪105≫ □<21>=≪105≫より、<1>=≪5≫ □1 日に生える草の量は牛 1 頭が 1 日に食べる草の量の 5 倍 6 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 (2) 最初に生えていた草の量を≪ ≫で表す □最初に生えていた草の量=≪210≫-<14>=≪210≫-≪14≫×5=≪140≫ 1 日に減る草の量を考える □牛 25 頭は 1 日で≪25≫の草を食べるが、<1>=≪5≫だけ草が生えるので、1 日に減 る草の量=≪25≫-≪5≫=≪20≫ より深い理解ができるよ □牛が草を食べつくすまで≪140≫÷≪20≫=7 日間 うに、いろいろな線分図を 参考:線分図 示しています。 初めの草の量 =≪140≫ <1×□日>=≪5×□日≫ ≪25×□日≫ (3) 7 日目の前まで(6 日間)に減った草の量を出す □6 日間では、1 日あたり草は、牛 7 頭が草を 1 日に食べる量-草が 1 日に生える量=≪7 ≫-<1>=≪7≫-≪5≫=≪2≫だけ減る □6 日間で減った草の量=≪2≫×6=≪12≫ □この時点で残っている草の量=≪140≫-≪12≫=≪128≫ 参考:線分図 初めの草の量 =≪140≫ ≪5×6日≫ ≪7×6日≫ 残り=≪128≫ その後の 16 日間で、1 日あたり減った草の量と 1 日あたり牛が食べた草の量を出す □その後 16 日間で≪128≫だけ草は減ったので、1 日あたり減った草の草=≪128≫÷16 =≪8≫ 1 日あたり減った草の量=1 日あたり牛が食べた草の量-1 日あたり生えた草の量 □1 日に草は<1>=≪5≫だけ生えるので、1 日あたり牛が食べた草の量=≪8≫+≪5≫ =≪13≫ 求めたいのは、「増やした牛の頭数」 □牛は 13 頭放牧されているので、13-7=6 頭増やした 参考:線分図 残りの草の量 =≪128≫ <16日>=≪5×16日≫=≪80≫ ≪□頭×16日≫ 別解 □草を食べつくすまでの日数=22 日なので、初めに生えていた草の量+22 日間で生えた 草の量=≪140≫+<22>=≪140≫+≪5×22≫=≪250≫ □牛は 22 日で≪250≫の草を食べた □牛 7 頭が 6 日間で食べた草の量=≪7×6≫=≪42≫ 7 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 □牛何頭かが、16 日間で食べた草の量=≪250≫-≪42≫=≪208≫ □牛の頭数=≪208≫÷16=13 頭 □増やした牛の頭数=13-7=6 頭 参考:線分図 初めの草の量 =≪140≫ ≪7頭×6日≫ <22>=≪5×22≫=≪110≫ ≪□頭×16日≫ コメントでは、ちょっとしたコツや注意点 【48】(1) 5 倍 を示して、学習をサポートします。 (2) 7 日間 (3) 6 頭 【コメント】 ・このニュートン算は、< >と≪ ≫の関係=<1>=≪5≫を出すのがポイントです。 ・さらに、式を作る場合、< >ではなく≪ ≫で作る必要があります。2 つが混ざった 式や< >だけの式を作らないようにしましょう。 ・ 「初めに生えている草の量」、 「1 日あたり減った草の量」、 「1 日あたり食べた草の量」、 「1 日あたり生えた(増えた)草の量」の 4 つを常に意識して式を作ります。このうち、牛の頭 数が関係するのは、 「1 日あたり減った草の量」と「1 日あたり食べた草の量」の 2 つです。 ・(3)は、仕事算を含んだ問題です。 8 ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 中学受験 算数 線分図を使う問題はここが急所 【資料:線分図など図表一覧】 番号 01*1*0 50 選 番号 01*1*1 (あ) <2> (い) <3> (え) (う) 番号 01*1*2 ≪1≫ ≪8≫ 番号 01*2*1 [18] <1> [27] <0.3> 定価 [5] [40] ≪1≫ 売価 ≪0.05≫ 番号 02*1*1 番号 02*2*1 <1> <1> <0.35> <0.65> 5 < > 9 ≪1≫ ≪1≫ 93.6cm 24ページ ≪0.6≫ ≪0.2≫ 番号 03*1*1 番号 03*2*1 <1> <1> 昼 <0.2> 24時間 +36分 <0.75> ≪1≫ 530円 夜 ≪0.8≫ 2015円 番号 04*1*1 番号 05*1*1 <1> 6問 ≪1≫ <1> A室 1 < > 3 1 < > 3 2本 ≪1≫ B室 3本 10問 3 ≪ ≫ [1] 4 [1] C室 1 [3] 7本 5本 ⇒D室 2 [ ] 3 8問 番号 06*1*1 番号 06*2*1 <1> 1 < > 3 1 ≪ ≫ 4 6人8人 <1> 4 < > 7 <3 > 7 9 52人13人 < 1 > 3 ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 番号 07*1*1 番号 07*2*1 <1> 14 < > 25 <1> 13人 3 < > 5 番号 08*1*1 5 < > 8 15 < > 56 番号 08*2*1 <1> 7 < > 5 56 A 3 < > 5 B 6 < > 5 42 1 < > 3 C 番号 09*1*1 7500円 250円 番号 09*2*1 <1> 25個 7個 5個 5個 < 25個 A 1 > 6 1 < > 3 <2> B 101個 <1> C 番号 10*1*1 番号 09*2*2 <1> <1> 元のA A 1 <0.8> B 今のA 44個 Bに移した球根数 C 2 1 < > 3 191 <4> D 番号 10*2*1 番号 11*1*1 3 <1>=≪ ≫ 2 赤 6cm ア イ 2 < > 5 2cm ×7 白 2個 50個 黒 ≪1≫ 番号 11*2*1 番号 11*2*2 ア 6問 たけし 5 ア 問 すすむ イ イ 10 7 19 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 12*1*1 番号 12*2*1 1 1 2 2 3 3 4 5 番号 13*1*1 番号 13*2*1 D D A C E E B 番号 14*0*1 159 31 番号 14*2*1 図2 A 図1 番号 15*1*1 9 4 B 番号 15*2*1 A+B 1 600円 2 3 C ・ ・ ・ ・ 9 番号 16*1*1 父-兄 9000円 <1> 番号 16*2*1 10cm A <1> 40枚 B 兄-妹 <2> 3cm 10枚 C <10> 26枚 D 4枚 E 11 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 17*1*1 A ○ ○ B ○ C ○ ○ ○ ○ ○ D E ○ ○ ○ F ○ ○ ○ 合計 20 分 45 秒 21 分 9 秒 13 分 42 秒 42 分 6 秒 番号 17*2*1 記号 ア イ ウ カ 番号 18*1*1 34秒 A個× 13分30秒 1日目 1 3 2日目 3日目 ・ ・ ・ 8日目 番号 18*3*1 54個 9日目 ア P イ Q <9> <1> <8> <2> <7> <7> <2> <8> <1> <9> 10日目 36個 A個 720個 番号 19*1*1 番号 19*2*1 <4> A A <1> <2> B B <3> O AB C 2人 <1> 117kg 5kg <2> 40人 30kg 2人 番号 20*1*1 番号 20*2*1 <7> 1学期 得意 ○ × <4> 3人 好 き 2学期 ≪8≫ ≪5≫ 番号 21*1*1 61 31 P 143 番号 21*2*1 兄<9> 前 ○ × 計 計 姉<5> 妹<5> 前 350円 後 妹<3> 1800円 後 ≪4≫ ≪3≫ ≪5≫ 12 ≪9≫ ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 22*1*1 番号 22*2*1 <7> <9> 分子 分子 加えた数 49 分母 29 分母 <9> <11> 番号 23*1*1 番号 23*0*1 <9> (い) (あ) (あ) ≪1≫ 7 加えた数 27 ≪5≫ (い) 重なった ≪1≫ 部分 ≪5≫ <25> 番号 23*2*1 番号 24*1*1 3800円 <2> 縦 横 洋子 のりしろ 98cm ≪31≫ 338cm 英子 <5> 本代 <3> <1> 1720円 番号 24*2*1 番号 25*1*1 6600円 4月 5月 基本 料金 <5> A <32> プールの深さ <28> B 5940円 <3> <2> ≪5≫ ≪1≫ ≪6≫ 番号 25*2*1 番号 26*1*1 <3> <5> A 2等分 18cm 残りの長さ 1 <6>× 4 B 水面から橋までの高さ 85cm 3等分 <6> <2> 13 15cm ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 27*1*1 番号 27*2*1 <4>=≪5≫ <8> 長 分子 <3> ≪4≫ 2cm 短 分母 2 ≪8≫ 10cm 番号 27*2*2 番号 28*1*1 <64> 分子 ×8 分母 ×7 28 ≪7≫ <7> <4> A 28×8=224 ≪56≫ <49> ≪56≫ 50円 B 2×7=14 100円 ≪5≫ <1> ≪2≫ 番号 28*1*2 番号 28*2*1 <8> <15> A×2 ≪10≫ <5> 姉 100円×2=200円 6375円 ≪3≫ <2> 50円×5=250円 B×5 妹 ≪10≫ 450円 ≪2≫ 番号 28*2*2 番号 29*1*1 <30> <4> 姉×2 ≪6≫ 太郎 6375円×2=12750円 <30> 妹×15 450円×15=6750円 ≪30≫ 次郎 1000円 ≪2≫ 番号 29*1*2 番号 29*2*1 <8> 太郎 ×2 次郎 ×3 1100円 ≪3≫ <3> <6> 1100円×2=2200円 ≪6≫ 姉 <5> <9> 1000円×3=3000円 ≪6≫ 番号 29*2*2 ≪12≫ 妹 600円 700円 ≪7≫ 番号 30*2*1 ≪3≫ <42> 姉×7 600円×7=4200円 ≪84≫ <60> 妹×12 ≪84≫ 700円×12 =8400円 太郎 ≪1≫ [2] ≪2≫ 次郎 [1] <5> [1] 三郎 <3> 14 <2> ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 30*3*1 番号 31*1*1 <4> 750円 A 次郎= [2] =<6> 100人 ≪5≫ <5> 昼食 入園料 B 三郎= <5> 150人 ≪6≫ 残金 500円 番号 31*1*2 番号 31*2*1 <24> <4> A×6 姉 600人 ≪30≫ <3> <25> B×5 妹 750人 ≪30≫ 4200円 ≪9≫ 番号 31*2*2 3600円 ≪17≫ 番号 32*1*1 <36> <20> 姉×9 ≪153≫ A×4 3600円×9 妹×17 <18> B×3 4200円×17 ≪153≫ 1000円 1200円 <51> 1200円 番号 32*2*1 番号 32*2*2 <7> <35> A A×5 84ページ ≪7≫ <5> ≪35≫ <35> B 420ページ B×7 100ページ ≪3≫ 700ページ ≪21≫ 番号 33*2*1 番号 33*2*2 <20> <4> 男×5 男 84人 ≪6≫ <3> ≪30≫ 420人 <18> 女×6 女 ≪5≫ 60人 360人 ≪30≫ 番号 34*1*1 番号 35*1*1 113個 <5> A <2> <3> ≪3≫ 取り出した赤いあめの個数 B ≪2≫ <4> <3> 89個 ≪1≫ 15 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 35*2*1 番号 36*2*1 500円 A ケーキ 8個 ≪1≫ <10> 88個 B プリン ≪2≫ 20円 <7> 番号 36*2*2 番号 37*1*1 <4> <1> 兄 B 取り出した 「同じ個数」 <3> <0.4> 48個 ≪1≫ 弟 C 30個 番号 37*2*1 ≪0.5≫ <0.6> 300円 ≪0.5≫ 番号 37*2*2 ≪2≫ ≪2≫ A A 5900円 ≪1≫ 5900円 ≪2≫ (320×N)円 (320×N)円 B×2 B (260×N)円 1250円 (520×N)円 2500円 番号 38*1*1 番号 38*2*1 <1> <3> A A 1000円 <5> <2> ≪3≫ <1> B B ≪2≫ 1000円 200円 [5] C 200円 [2] 番号 39*2*1 番号 39*1*1 <6> 5年 <1.4> 4人 <5> A <1> 4320票 6年 B 番号 39*2*2 番号 40*1*1 <3> 男 2人 母 60人 <1> 女 ≪8≫ 子 10年 16 ≪1≫ ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 番号 40*2*1 番号 41*1*1 ≪3≫ <2> 母 父 ≪1≫ 36歳 <1> <4> 一郎 子 <1> 4年 6歳 ※ 番号 41*2*1 番号 42*1*1 ≪4≫ <3> 父 父 48歳 <1> 母 頌子 12歳 ※ <5> ≪1≫ 太郎 <1> 3年 番号 42*2*1 番号 42*2*2 <4> <4> 両親 両親 66歳 <1> 66歳 2×N <4> 2×N 優×4 優 N 3歳 4×N 12歳 番号 43*1*1 番号 43*2*1 母 父 <6> 10歳 72歳 N 54歳 兄弟 兄弟 <1> 20歳 3×N 26歳 番号 44*1*1 番号 44*2*1 父 姉 2歳 4歳 90歳 31歳 妹 母 妹 番号 45*3*1 番号 45*3*2 <1.5> <1> 長男 8歳 次男 三男 6歳 長男 ×1.5 N <1.5> 次男 三男 2×N 17 12歳 6歳 <1.5> 1.5×N 2×N ©角南治彦 SMP 無断複写厳禁 線分図を使う問題はここが急所 50 選 【サンプル】 #10030A 中学受験 算数 番号 46*1*1 番号 46*2*1 180人 水そうの容積 3人/分×80分 <20> 30ℓ/分×20分 <80> <10> 40ℓ/分×10分 番号 47*1*1 番号 48*1*1 初めに入っている水の量 <14> 初めの草の量 24ℓ/分×49.5分 ≪15×14≫=≪210≫ <2×49.5> <35> 24ℓ/分×11分 ≪9×35≫=≪315≫ <3×11> 番号 48*2*1 番号 48*3*1 初めの草の量 =≪140≫ <1×□日>=≪5×□日≫ ≪5×6日≫ ≪7×6日≫ 残り=≪128≫ ≪25×□日≫ 番号 48*3*2 残りの草の量 =≪128≫ 初めの草の量 =≪140≫ 番号 48*3*3 <16日>=≪5×16日≫=≪80≫ ≪□頭×16日≫ 初めの草の量 =≪140≫ <22>=≪5×22≫=≪110≫ ≪□頭×16日≫ ≪7頭×6日≫ 番号 49*1*1 番号 49*2*1 初めに並んでいた人数 初めに並んでいた人数=<15> <15> ≪3×15≫=≪45≫ ≪6つ×3分≫= <4×3分> <5> ≪6×5≫=≪30≫ 3分後に並んでいる人数 =<6> 番号 50*1*1 初めに並んでいた人数 番号 49*2*2 3分後に並んでいる人数=<6> <1×3分> <1×□分> <90> ≪3×90≫=≪270≫ <18> ≪2つ×□分≫=<4/3×□分> ≪5×18≫=≪90≫ 18 ©角南治彦 SMP 無断複写厳禁 #10030A 中学受験 算数 線分図を使う問題はここが急所 50 選 【サンプル】 番号 50*1*2 最初に並んでいた人数=≪45≫ <1×□分>=≪2.5×□分≫ ≪4×□分≫ 番号 50*2*1 最初に並んでいた人数=≪90≫ <3×□分>=≪7.5×□分≫ ≪10×□分≫ 19 ©角南治彦 SMP 無断複写厳禁
© Copyright 2025 ExpyDoc