数学 A2 偏微分 問題 1 (復習). 指数で表せ. 1 (1) = x−1 x (2) 1 = x−2 x2 (7) √ 3 x3 = x 2 ( (7) 2 1 (9) √ = x− 3 x3 (2) (x2 )x = 2x (3) (x3 )x = 3x y 2 = − 3 y 1 √ 2 y (9) (sin y)y = cos y (5) (−5x3 )x = −15x ( ) 1 1 (6) = − 2 x x x 問題 4. 偏導関数を求めよ (1) z = 2x + y { 2 = − 3 x (2) z = 3x − 5y { 1 √ 2 x (9) (sin x)x = cos x (10) (cos x)x = − sin x zx = 2 zy = 1 zx = 3 zy = −5 (3) z = −3x + 4y { zx = −3 zy = 4 zx = 4x − 1 zy = 6y (7) z = 3x2 + xy − y 2 { zx = 6x + y zy = x − 2y (8) z = −x2 + 2xy − 5y 2 { zx = −2x + 2y zy = 2x − 10y (9) z = x2 + 2xy − y 2 − x + 3y { (10) (cos y)y = − sin y 1 (12) (log y)y = y (4) (3x2 )x = 6x √ (8) ( x)x = ) (11) (ey )y = ey 2 x 1 y2 √ (8) ( y)y = 問題 2. x について偏微分せよ. (1) (x)x = 1 (7) { ( ) 1 1 (6) = − 2 y y y 1 1 (8) √ = x− 2 x zx = 6x zy = −2y (6) z = 2x2 + 3y 2 − x (5) (−5y 3 )y = −15y (6) ) { (4) (3y )y = 6y 1 3 zx = 2x zy = 4y (5) z = 3x2 − y 2 + 5 2 √ 3 1 x2 1 (12) (log x)x = x (3) (y 3 )y = 3y 2 1 √ (5) x = x 2 ( { (2) (y 2 )y = 2y 1 = x−4 x4 x= x (4) z = x2 + 2y 2 問題 3. y について偏微分せよ. (1) (y)y = 1 1 (3) 3 = x−3 x (4) (11) (ex )x = ex zx = 2x + 2y − 1 zy = 2x − 2y + 3 (10) z = 5x2 −xy+7y 2 +9x−4y { zx = 10x − y + 9 zy = −x + 14y − 4 y2 x2 (11) z = 2y 2 zx = − 3 x 2y zy = 2 x √ (12) z = x3 y √ z = 3x y x x3 zy = √ 2 y 数学 A2 偏微分 問題 1 (復習). 指数で表せ. 1 (1) = x−1 x (2) 1 = x−2 x2 (7) √ 3 x3 = x 2 ( (7) 3 1 (9) √ = x− 2 x3 (3) (x )x = 3x 1 √ 2 y (9) (sin y)y = cos y 1 (12) (log y)y = y (4) (3x2 )x = 6x (5) (−5x3 )x = −15x2 ( ) 1 1 = − 2 (6) x x x 問題 4. 偏導関数を求めよ (1) z = 2x + y { 2 = − 3 x √ (8) ( x)x = y 2 = − 3 y (11) (ey )y = ey 2 x ) (2) z = 3x − 5y { 1 √ 2 x (9) (sin x)x = cos x (10) (cos x)x = − sin x zx = 2 zy = 1 zx = 3 zy = −5 (3) z = −3x + 4y { zx = −3 zy = 4 zx = 4x − 1 zy = 6y (7) z = 3x2 + xy − y 2 { zx = 6x + y zy = x − 2y (8) z = −x2 + 2xy − 5y 2 { zx = −2x + 2y zy = 2x − 10y (9) z = x2 + 2xy − y 2 − x + 3y { (10) (cos y)y = − sin y (2) (x2 )x = 2x (7) 1 y2 √ (8) ( y)y = 問題 2. x について偏微分せよ. (1) (x)x = 1 ) { ( ) 1 1 = − 2 (6) y y y 1 1 (8) √ = x− 2 x zx = 6x zy = −2y (6) z = 2x2 + 3y 2 − x (5) (−5y 3 )y = −15y 2 (6) 1 x2 { (4) (3y )y = 6y 1 3 zx = 2x zy = 4y (5) z = 3x2 − y 2 + 5 2 √ 3 ( 1 (12) (log x)x = x (3) (y 3 )y = 3y 2 1 √ (5) x = x 2 3 { (2) (y 2 )y = 2y 1 = x−4 x4 x= x (4) z = x2 + 2y 2 問題 3. y について偏微分せよ. (1) (y)y = 1 1 (3) 3 = x−3 x (4) (11) (ex )x = ex zx = 2x + 2y − 1 zy = 2x − 2y + 3 (10) z = 5x2 −xy+7y 2 +9x−4y { zx = 10x − y + 9 zy = −x + 14y − 4 y2 x2 (11) z = 2y 2 zx = − 3 x 2y zy = 2 x √ (12) z = x3 y 2√ zx = 3x y x3 zy = √ 2 y
© Copyright 2024 ExpyDoc