PresentationMaterial

Micro Economics Chap.7&8
7章 時間を通じたゲームと戦略の信頼性
1. Resolution of Failed Financial(銀行の破綻処理)
2. Subgame Perfect Equilibrium (部分ゲーム完全均衡)
3. Application to The Oligopoly (寡占への応用)
4. Commitment (コミットメント)
5. Long-term Relations and Cooperation (長期的関係と協調)
8章 保険とモラル・ハザード
1. Risk Sharing and insurance (効率的な危険分担と保険の役割)
2. Moral Hazard and That Counterplan (モラル・ハザードとその対策)
福田研究室ゼミ
6.17
水口 正教
第7章 時間を通じたゲームと
戦略の信頼性
1. Resolution of Failed Financial
銀行の破綻処理
Tree of game
ゲームの木;展開型表現
ミクロ経済学の力
P.363 図7.4
The action of a player who moves first depends
what will happen in the future
It is necessary to solve a game from future
3
(Action plan with the condition:条件付き行動計画)
1. Resolution of Failed Financial
銀行の破綻処理
Supposing that all player choose an action at the same time
ミクロ経済学の力
P.361 表7.1
② is claptrap はったり
① is more realistic
(Subgame perfect equilibrium:部分ゲーム完全均衡)
4
2. Subgame Perfect Equilibrium
部分ゲーム完全均衡
Information set of the player:プレーヤーの情報集合
ミクロ経済学の力
P.364 図7.5
ミクロ経済学の力
P.365 図7.6
player ∶ 𝑖 , action ∶ 𝑥𝑖 𝑡
𝑥𝑖 𝑡 = 𝑠𝑖 𝑖が𝑡時点までに観察したものすべて
𝐹 = 𝑠2 𝐹 ,
𝑆 = 𝑠2 (𝑆)
5
2. Subgame Perfect Equilibrium
部分ゲーム完全均衡
Subgame:If all the players moving form now watches all having happened for a past,
it called “subgame” from there to finished the game
ミクロ経済学の力
P.369 図7.9
ミクロ経済学の力
P.370 図7.10
6
2. Subgame Perfect Equilibrium
部分ゲーム完全均衡
Subgame Perfect Equilibrium : a refinement of a Nash equilibrium used in dynamic games
ミクロ経済学の力
P.372 図7.11
7
2. Subgame Perfect Equilibrium
部分ゲーム完全均衡
e.g. Battle of sex (Football of Shopping)
①Find the nash equilibrium of subgame
ミクロ経済学の力
P.372 図7.12
②Find the whole equilibrium
ミクロ経済学の力
P.373 図7.13
8
3. Application to The Oligopoly
寡占への応用
Supply curve: P = 𝑎 − 𝑏𝑄
Company: 𝑖 = 1,2
Marginal cost: MC1 = 𝑀𝐶2 = 𝑐
Cournot (Q) or Bertrand(P)
two companies move through time
(Stackelberg Model)
• First, company1(leader) chose quantity 𝑞1
• Next, company2(follower) chose quantity 𝑞2
Step 1
Solve the subgame after leader decided the strategy
𝑞2 = 𝑅2 (𝑞1 )
Step 2
Leader decides the strategy based on step1
9
3. Application to The Oligopoly
寡占への応用
Supply curve: P = 𝑎 − 𝑏𝑄
Company: 𝑖 = 1,2
Marginal cost: MC1 = 𝑀𝐶2 = 𝑐
Let’s calculate concretely!
Step 1
Profit of company 2
𝜋2 = 𝑎 − 𝑏 𝑞1 + 𝑞2 − 𝑐 𝑞2
𝜕𝜋2
= 𝑎 − 𝑏𝑞1 − 2𝑏𝑞2 − 𝑐 = 0
𝜕𝑞2
solve this equation
𝑎−𝑐
1
𝑞2 = 𝑅2 𝑞1 = 2𝑏 − 2 𝑞1
Step 2
Profit of company 1
𝜋1 𝑞1 , 𝑅2 𝑞1 = 𝑎 − 𝑏 𝑞1 + 𝑅2 𝑞1
𝑎−𝑐 𝑏
=
− 𝑞1 𝑞1
2
2
𝑑𝜋1 𝑎 − 𝑐
=
− 𝑏𝑞1 = 0
𝑑𝑞1
2
− 𝑐 𝑞1
𝑎−𝑐
2𝑏
𝑎−𝑐
𝑞2∗ = 𝑅2 𝑞1 =
4𝑏
(Stackelberg’s solution)
𝑞1∗ =
10
3. Application to The Oligopoly
寡占への応用
Let’s illustrate!
Supply curve: P = 𝑎 − 𝑏𝑄
Company: 𝑖 = 1,2
Marginal cost: MC1 = 𝑀𝐶2 = 𝑐
Step 1
ミクロ経済学の力
P.377 図7.15
ミクロ経済学の力
P.379 図7.17
Equal profit curve
Stackelberg’s solution
Step 2
11
3. Application to The Oligopoly
寡占への応用
Let’s illustrate!
Supply curve: P = 𝑎 − 𝑏𝑄
Company: 𝑖 = 1,2
Marginal cost: MC1 = 𝑀𝐶2 = 𝑐
Leaders quantity → increase
Leaders profit → increase
ミクロ経済学の力
P.379 図7.18
Stackelberg’s solution
→ leader cannot change the strategy
Cournot ‘s solution
→ leader(company1) can change
Make getting only a specific action
may be advantageous
Cournot ‘s solution and Stackelberg’s solution
(commit to specific production)
12
4. Commitment
コミットメント
When a financial panic is caused, it adversely affects the society
Government will relieve financial organs
Commitment
Small profit
ミクロ経済学の力
P.358 図7.1
large profit
13
4. Commitment
コミットメント
• Counterterrorism(テロ対策)
Commitment
14
4. Commitment
コミットメント
• Lowest price guarantee(最低価格保証)
Commitment
(価格を下げない)
15
5. Long-term Relations and Cooperation
長期的関係と協調
Bertrand’s model? (𝑀𝐶1 = 𝑀𝐶2 = 𝑐)
Consider to be a repeated game
same player plays same “stage game” repeatedly
16
5. Long-term Relations and Cooperation
長期的関係と協調
repeated game
set a price in p(>c) for the beginning
make a price c forever if anyone set a price p’
ミクロ経済学の力
P.395 表7.5
Trigger strategy
17
5. Long-term Relations and Cooperation
長期的関係と協調
repeated game Trigger strategy
ミクロ経済学の力
P.395 表7.5
Does they profit when they betray it?
Discount factor 割引因子 : 𝛿 (0 < 𝛿 < 1)
Gain of player 𝑖
𝜋𝑖 0 + 𝜋 𝑖 1 𝛿 + 𝜋𝑖 2 𝛿 2 + ⋯
Gain of player 𝑖 when 𝑖 denounce
2𝜋 ∗ − 𝜋 ∗ = 𝜋 ∗
Loss of player 𝑖 when 𝑖 denounce
X = 𝜋 ∗𝛿 + 𝜋 ∗𝛿 2 + ⋯
= 𝜋 ∗𝛿 + 𝛿 𝜋 ∗𝛿 + 𝜋 ∗𝛿 2 + ⋯
= 𝜋 ∗ 𝛿 + 𝛿𝑋
𝛿
𝑋=
𝜋∗
1−𝛿
What kind of situation that they denounce?
𝛿
1
𝜋∗ ≥
𝜋∗ ⟺ 𝛿 ≤
1−𝛿
2
Structure
18
of the cartel
第8章 保険とモラル・ハザード
1. Risk Sharing and Insurance
効率的な危険分担と保険の役割
Review of last week:expected utility model(期待効用モデル)
ミクロ経済学の力
P.401 図8.1
20
1. Risk Sharing and Insurance
効率的な危険分担と保険の役割
Probability p which happen of the earthquake
Income x1 (=¥0) at that time
Income x2 (=¥100) at the other time
expected utility
21
1. Risk Sharing and Insurance
効率的な危険分担と保険の役割
Probability p which happen of the earthquake
Income x1 (=¥0) at that time
Income x2 (=¥100) at the other time
¥100 or ¥0
ミクロ経済学の力
P.401 図8.2
¥100(1-p)
Risk sharing
(Pareto efficiency)
22
1. Risk Sharing and Insurance
効率的な危険分担と保険の役割
insurance
initial sum
ミクロ経済学の力
P.401 図8.2
insurance money
risk
23
2. Moral Hazard and That Counterplan
モラルハザードとその対策
①
③ result of action
request
ミクロ経済学の力
P.404 図8.3
②
or
ミクロ経済学の力
P.404 図8.3
↑ Moral hazard
24
2. Moral Hazard and That Counterplan
モラルハザードとその対策
Counterplan of moral hazard → Theory
of the agency
Principal : risk neutral
Agent : risk avert
ミクロ経済学の力
P.407 図8.4
①Principal gives the enough reward for an agent (Participation condition)
②
links the reward and the result (Incentive condition)
25
2. Moral Hazard and That Counterplan
モラルハザードとその対策
Theory of the agency
result
𝑦
𝑝
ミクロ経済学の力
P.404 図8.3
1−𝑝
𝑦
①Principal gives the enough reward for an agent
②
links the reward and the result
reward
𝑤
𝑤
* Expectation of the profit of principal
① Participation condition
result
𝑦
𝑝′
ミクロ経済学の力
P.404 図8.3
1 − 𝑝′
𝑦
Cost when agent do it seriously
Gain when agent works
in other companies
② Incentive condition
Principal maximize * Under the condition ① and ②
26
2. Moral Hazard and That Counterplan
モラルハザードとその対策
*
=
change
indifference curve of principal
ミクロ経済学の力
P.409 図8.5
27
2. Moral Hazard and That Counterplan
モラルハザードとその対策
indifference curve of agent
ミクロ経済学の力
P.410 図8.6
Utility of agent (①)
ミクロ経済学の力
P.401 図8.1
differentiate in 𝑤
← The slope of the rate curve
28
2. Moral Hazard and That Counterplan
モラルハザードとその対策
②
ミクロ経済学の力
P.413 図8.9
ミクロ経済学の力
P.412 図8.8
Agent has no risk, Effective risk sharing
29