第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 Chain level operations in string topology via de Rham chains )∗ ( 1. 1 Chas-Sullivan [2] Batalin-Vilkovisky 1.1. Chas-Sullivan (Chas-Sullivan) LM := C (S 1 , M ) R/Z LM L H∗ ( · ) := H∗+d ( · ) e : L → M; γ → " γ(0) M d S 1 := ∞ L e ×e L := {(γ, γ # ) ∈ L × L | γ(0) = γ # (0)} j : L e×e L → L×L ◦ : H∗ (L)⊗2 × ◦ c : L e×e L → L ! H∗+2d (L × L) p ∈ M p H∗ (M ) → H∗ (LM ) j (concatenation) Gysin j! ! H∗+d (L e ×e L) H∗ (c) ! H∗ (L). i : M → LM ∩ H∗ (M ) H∗ (i)(x) ◦ H∗ (i)(y) = H∗ (i)(x ∩ y) H∗ (i) : (x, y ∈ H∗ (M )) H∗ (i) M 1.2. Batalin-Vilkovisky L S1 r : S 1 × L → L r(t, γ)(θ) := γ(θ − t) ∆x := H∗ (r)([S 1 ] × x) { , } : H∗ (L)⊗2 → H∗+1 (L) ∆ : H∗ (L) → H∗+1 (L) ∆ =0 2 {a, b} := (−1)|a| ∆(a ◦ b) − (−1)|a| ∆a ◦ b − a ◦ ∆b {,} ◦ Lie {a, b ◦ c} = {a, b} ◦ c + (−1)|b|(|a|+1) b ◦ {a, c} ∗ 25800041 e-mail: [email protected] 1 [12] C∞ 51 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 2 V Batalin-Vilkovisky(BV) Gerstenhaber BV f D(0) (V, ◦, ∆) BV Gerstenhaber n≥1 D(n) H∗ (f D) H∗ (D) ◦, ∆, { , } (V, ◦, { , }) Gerstenhaber {z ∈ C | |z| ≤ 1} disjoint n 1 ×n f D(n) := D(n) × (S ) D(0) D = (D(n))n≥0 f D = (f D(n))n≥0 D fD Gerstenhaber H∗ (D) V (Hom(V ⊗n , V ))n Cohen [3] V BV H∗ (f D) V Getzler [6]) H0 (D(2)), H1 (D(2)), H1 (f D(1)) 1 ◦, { , }, ∆ V V V H∗ (D) 1.3. 3 “Chain level string topology” [14] Massey X A∞ C ∗ (X) dga algebra) Leibniz V A∞ ! k+l=m+1 1≤i≤k m≥1 k≥1 cup dga(differential graded 2−k µk : V ⊗k → V ±µk (v1 ⊗ · · · ⊗ µl (vi ⊗ · · · ⊗ vi+l−1 ) ⊗ · · · ⊗ vm ) = 0 µk = 0 (∀k ≥ 3) A∞ dga A∞ ∗ C (X) A∞ H (X) A∞ (µk )k≥1 µ1 = 0 µ2 cup µ3 Massey µ3 [11] Section 9 Poincaré H ∗ (M ) cup H∗ (M ) H∗ (LM ) H∗ (M ) H∗ (LM ) A∞ (µk )k≥1 ∗ M Z 2 3 1 [12] 52 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 • µ1 = 0 • µ2 k ∗ C (M ) A∞ µk (H∗ (M )⊗k ) ⊂ H∗ (M ) (µk )k≥1 H∗ (M ) 4 Floer Hochschild 2. Floer " T ∗ M := q∈M Tq∗ M HF∗ (T ∗ M ) C∞ M Floer πM : T ∗ M → M T ∗M 1 λM (q ∈ M, p ∈ Tq∗ M, X ∈ T(q,p) T ∗ M ) λM (X) := p((πM )∗ (X)) dλM C H : T ∗M → R T ∗M Hamilton AH : C ∞ (S 1 , T ∗ M ) → R # AH (γ) := γ ∗ λM − H(γ(t)) dt (γ ∈ C ∞ (S 1 , T ∗ M )) ∞ 4 S1 AH AH H H Hamilton AH AH C× → T ∗ M 5 Cauchy-Riemann Morse Floer T ∗M Floer CP 1 \ {0, 1, ∞} → T ∗ M ◦ : HF∗ (T ∗ M )⊗2 → HF∗ (T ∗ M ) C× → T ∗ M Floer ∗ ∆ : HF∗ (T M ) → HF∗+1 (T ∗ M ) BV Floer H ∗ C × HF∗ (T M ) CP \ {0, ∞} 1 pair-of-pants S1 (HF∗ (T ∗ M ), ◦, ∆) 2.1 Liouville 6 4 5 6 M ∗ Riemann T M Liouville symplectic (co)homology [13] H(q, p) := |p|2 dλM Floer 53 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 Floer BV BV 7 2.2 M HF∗ (T ∗ M ) ∼ = H∗ (LM ) BV HF∗ (T ∗ M ) ∼ Viterbo = H∗ (LM ) Salamon-Weber, Abbondandolo-Schwarz pairof-pants Abbondandolo-Schwarz Kragh Abouzaid [1] [1] Liouville Floer BV Lie Jacobi 1 CP 4 Riemann Floer 1 CP k Riemann Floer k≥2 Floer A∞ L∞ 4 H∗ (LM ) A∞ L∞ HF∗ (T ∗ M ) A∞ L∞ 3. Hochschild Gerstenhaber [5] 3.1 Gerstenhaber A A ∞ C AjM dga HH −∗ (A, A) Hochschild dga A∞ j 0≤j≤d 8 dga M AjM j =0 M R d A∗M I : H∗ (LM ) → HH −∗ (AM , AM ) M Gerstenhaber Gerstenhaber I 3.1 4.2 3.1 3.2 C C P dg P → End(C) 7 8 M H∗ (P) LM P C dgP H∗ (C) θM 54 dg End(C) := (Hom(C ⊗n , C))n≥0 C dg P C HF∗ (T ∗ M ) ∼ = H∗ (LM : θM ) 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 O 3.2 dg H∗ (O) ∼ = H∗ (D) (i): (ii): HH −∗ (A, A) A −∗ CH (A, A) 3.3 Hochschild O O (i) Gerstenhaber D C∗ (D) D dg Deligne Deligne (McClure-Smith, Kontsevich-Soibelman, Voronov, Tamarkin, Berger-Fresse, Kaufmann) Kontsevich-Soibelman A∞ [11] Section 13.3.15 3.2 4. D 1.2 fD fP 4.1 ([7], [8]) dg P H∗ (P) ∼ = H∗ (D) (i): H∗ (f P) ∼ = H∗ (f D) ∼ = H∗ (P) " H∗ (f P) (ii): dga A CH −∗ (A, A) (iii): C∞ HH −∗ (A, A) dg P ∼ = ! H∗ (D) " ! H∗ (f D). Gerstenhaber dg f P M Hochschild C∗LM Φ : H∗ (LM ) ∼ = H∗ (C LM ) • BV J : C∗LM → CH −∗ (AM , AM ) • dg P H∗ (J) ◦ Φ : H∗ (LM ) → HH −∗ (AM , AM ) I 3 (ii) A∞ 3.2 dga 4.1 (iii) 55 3.2 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 4.2 I : H∗ (LM ) → HH −∗ (AM , AM ) 4.1 M Gerstenhaber Merkulov, Tradler H∗ (LM ) −∗ H∗ (M ) H∗ (i) 1.3 l1 = 0 dga ! H −∗ (M ) dR " H∗ (ι) ! H (C LM ). ∗ ∼ = H∗ (LM ) H∗ (M ) µ2 (lk )k≥1 lk |H∗ (M )⊗k = 0 ∼ = " H∗ (LM ) µ1 = 0 C∗LM ι : A (M ) → dga C∗LM A∞ (µk )k≥1 A (M ) −∗ H∗ (LM ) L∞ k ≥1 l2 5. C∗LM 4.1 5.1 C∗LM M d 5.2 C∞ 5.3 L = LM = C ∞ (S 1 , M ) 5.1. H∗ (L)⊗2 → H∗+d (L e ×e L) M x ∩ y ∈ Ck+l−d (M ) y C d−∗ (M ) C∗ (M ) 5.2. x x ∈ Ck (M ), y ∈ Cl (M ) C∗LM [7] Fukaya [4] [7] de Rham “approximate de Rham chain” C∗LM 1: Moore Lk 56 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 C∞ M L0 M Moore L0 M := {(γ, T ) | T ∈ R≥0 , γ ∈ C ∞ ([0, T ], M ), γ(0) = γ(T ), γ (m) (0) = γ (m) (T ) = 0 (∀m ≥ 1)} C∞ γ (m) γ m concatenation Moore k k≥1 Lk M := {(γ, t1 , . . . , tk , T ) | (γ, T ) ∈ L0 M, γ (m) (tj ) = 0 (∀m ≥ 1, j ∈ {0, . . . , k} ej (γ, t1 , . . . , tk , T ) := Lk ik : M → L k M 2: Lk n U ∈U (a): ϕ (b): C∞ p∈M $ 1 ≤ ∀j ≤ k)} e j : Lk M → M γ(0) (j = 0) γ(tj ) (1 ≤ j ≤ k) p Lk M 9 0 ≤ t1 ≤ · · · ≤ tk ≤ T, 0 Lk Rn ϕ : U → Lk (U, ϕ) P(Lk ) Un (a), (b) U := % Un ϕ := (γ ϕ , tϕ1 , . . . , tϕk , T ϕ ) tϕ1 , . . . , tϕk , T ϕ ∈ C ∞ (U ) {(u, t) | u ∈ U, 0 ≤ t ≤ T ϕ (u)} → M ; (u, t) "→ γ ϕ (u)(t) C ∞ ϕj := ej ◦ ϕ : U → M j = 0, . . . , k (U, ϕ) ∈ P(Lk ), (V, ψ) ∈ P(Ll ) i ∈ {1, . . . , k} U ϕi ×ψ0 V := {(u, v) ∈ U × V | ϕi (u) = ψ0 (v)} ϕ ∗i ψ : U ϕi ×ψ0 V → Lk+l−1 (ϕ ∗i ψ)(u, v) := 0 (b) U i−1 i 1 ϕ(u) ψ(v) i+l k+l−1 i+l−1 ϕi (u) = ψ0 (v) ◦i : P(Lk ) × P(Ll ) → P(Lk+l−1 ) (U, ϕ) ◦i (V, ψ) := (U ϕi ×ψ0 V, ϕ ∗i ψ) 9 n≥1 (plot) Diffeological space K.T. Chen Differentiable space 57 Souriau P(Lk ) 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 3: Lk de Rham de Rham CNdR := & ' (U,ϕ)∈P(Lk ) A∗c (U ) R N ( dim U −N Ac (U ) /ZN R U ZN (U, ϕ, π! ω) − (V, ϕ ◦ π, ω) ∞ C C∗dR (Lk ) (U, ϕ) ∈ P(Lk ), V ∈ U , π : V → U π! ∂ ∂[(U, ϕ, ω)] := [(U, ϕ, dω)] 2 ∂ =0 de Rham 5.1 well-defined Lk de Rham C∗dR (Lk ) de Rham k≥0 (i): Lk → L0 ; (γ, t1 , . . . , tk , T ) "→ (γ, T ) C∗dR (Lk ) → C∗dR (L0 ) (ii): H∗ (C∗dR (L0 )) ∼ = H∗ (LM : R) 1≤i≤k LM C∞ dR dR dR ◦i : C∗+d (Lk ) ⊗ C∗+d (Ll ) → C∗+d (Lk+l−1 ) l≥0 [(U, ϕ, ω)] ◦i [(V, ψ, η)] := ±[(U ϕi ×ψ0 V, ϕ ∗i ψ, ω × η)] dR CL := (C∗+d (Lk ))k≥0 dg dR 10 [(M, i1 , 1)] ∈ Cd (L1 ) Z/(k + 1)Z Lk dR C∗ (Lk ) CL (cyclic) dg LM 4: C∗ 11 5.2 O = (O(k))k≥0 µ ◦1 µ = µ ◦2 µ µ ◦1 ε = µ ◦ 2 ε = 1 O 10 11 M Euclid µ ∈ O(2)0 ε ∈ O(0)0 1O O dg O µ M ∈U Gerstenhaber-Voronov 58 ∂µ = 0, ∂ε = 0, 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 O dg ∂µ : Õ∗ → Õ∗−1 Õ∗ := µ ∂µ (xk )k≥0 := (∂xk )k≥0 + &! k−1 j=1 (Õ∗ , ∂µ ) End(A) ! End(A) ±xk−1 ◦j µ + j=1 O(k)∗+k ±µ ◦j xk−1 ( k≥1 A dga End(A) A A k=0 5.2 Hochschild CL 3 µ := [(M, i2 , 1)], µ 2 ! )∞ ε := [(M, i0 , 1)] Z/3Z CL(2) * ∗ , ∂µ ) C∗LM := (CL dR C∗LM → C∗+d (L0 ); (xk )k "→ x0 5.1 (ii) k=0 5.1 (i) H∗ (C LM ) ∼ = H∗+d (C∗dR (L0 )) ∼ = H∗ (LM : R) k≥0 4.1(iii) Φ dR Jk : C∗+d (Lk ) → Hom−∗ (A⊗k M , AM ) Jk ([(U, ϕ, ω)])(η1 ⊗ · · · ⊗ ηk ) := ±(ϕ0 )! (ω ∧ ϕ∗1 η1 ∧ · · · ∧ ϕ∗k ηk ) (Jk )k≥0 : CL → End(AM ) dg 4.1(iii) J : C∗LM → CH −∗ (AM , AM ) I 5.3. C∗LM O dg (x ◦ y)k := l+m=k {, } ∼ H∗ (LM ) = H∗ (C LM ) 5.3 dg (a): (O, µ) ! ◦ Õ∗ µ ±(µ ◦1 xl ) ◦1 ym , ◦ (Õ∗ , ∂µ ) dg Lie dg (x ∗ y)k := dga H∗ (J) ◦ Φ ! ∗ l+m=k+1 1≤i≤l ±xl ◦i ym {x, y} := x ∗ y ± y ∗ x O = CL ◦ {, } P fP P 4.1 (i) P dg 59 (Õ∗ , ∂µ ) 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 (b): (O, µ, ε) O(2)0 O(2) fP 5.4 5.3 dg Z/3Z P (Õ∗ , ∂µ ) µ∈ [8] [15] P fP Kaufmann [9], [10] cacti 5.3(a) End(A) CH (A, A) dg P C∗LM dg f P −∗ HH (A, A) Gerstenhaber A −∗ H∗ (LM ) 4.1 dga Hochschild (b) CL BV [1] M. Abouzaid, Symplectic cohomology and Viterbo’s theorem, arXiv:1312.3354. [2] M. Chas, D. Sullivan, String Topology, arXiv:math/9911159. [3] F. R. Cohen, The homology of Cn+1 -spaces, n ≥ 0, The homology of iterated loop spaces, 207–351, Lecture Notes in Math. vol. 533, Springer-Verlag, Berlin-New York, 1976. [4] K. Fukaya, Application of Floer homology of Lagrangian submanifolds to symplectic topology, Morse theoretic methods in nonlinear analysis and in symplectic topology, 231–276, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006. [5] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. [6] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265–285. [7] K. Irie, Transversality problems in string topology and de Rham chains, arXiv:1404.0153. [8] K. Irie, A chain level Batalin-Vilkovisky structure in string topology and decorated cacti, arXiv:1503.00403. [9] R. M. Kaufmann, On spineless cacti, Deligne’s conjecture and Connes-Kreimer’s Hopf algebra, Topology 46 (2007), no. 1, 39–88. [10] R. M. Kaufmann, A proof of a cyclic version of Deligne’s conjecture via cacti, Math. Res. Lett. 15 (2008), no. 5, 901–921. [11] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346. Springer, Heidelberg, 2012. Gorenstein , 61 [12] , 2014. [13] P. Seidel, A biased view of symplectic cohomology, Current developments in mathematics, 2006, 211–253, Int. Press, Somerville, MA, 2008. [14] D. Sullivan, String topology background and present state, Current developments in mathematics 2005, 41–88, Int. Press, Somerville, MA, 2007. [15] B. Ward, Maurer-Cartan Elements and Cyclic Operads, arXiv:1409.5709. 60
© Copyright 2024 ExpyDoc