ネームレター効果の算出アルゴリズムの比較 各

ࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢ⟬ฟ࢔ࣝࢦࣜࢬ࣒ࡢẚ㍑
ྛ࢔ࣝࣇ࢓࣋ࢵࢺࡢ୍⯡ⓗዲពᗘ࡜ಶேࡢ཯ᛂഴྥ࡟╔┠ࡋࡓศᯒ
ὠ⏣ ᜤ඘
ឡ▱ᏛἨ኱Ꮫ
A comparison of the algorithms for calculating the name letter effect
Hisamitsu Tsuda
࣮࣮࢟࣡ࢻ㸸ࢿ࣮࣒ࣞࢱ࣮ࢸࢫࢺ name letter testࠊ࢖ࢽࢩࣕࣝ㑅ዲㄢ㢟 initial preference taskࠊ
⮬ᑛᚰ self-esteemࠊㄆ▱ࣂ࢖࢔ࢫ cognitive bias
1㸬ၥ㢟
ᚰࡑࡢࡶࡢࢆࡼࡾṇ☜࡟࡜ࡽ࠼ࡿࡓࡵࡢ◊✲ࡶ
✚ࡳ㔜ࡡࡽࢀ࡚࠸ࡿࠋࡇࢀࡲ࡛࡟ࠊ₯ᅾⓗ⮬ᑛ
⮬ᕫㄆ▱࡟㛵ࡍࡿࡇࢀࡲ࡛ࡢ◊✲࡛ࠊேࡣ୍
ᚰࢆ ᐃࡍࡿࡓࡵࡢᡭἲࡀᩘከࡃ⪃᱌ࡉࢀ࡚ࡁ
⯡ⓗ࡟⮬ᕫ࡟ᑐࡋ࡚࣏ࢪࢸ࢕ࣈ࡞ែᗘࢆ᭷ࡋ࡚
ࡓࡀࠊ᭱ࡶᗈࡃ⏝࠸ࡽࢀ࡚࠸ࡿࡶࡢࡢࡦ࡜ࡘࡀ
࠾ࡾࠊ⌧ᐇ௨ୖ࡟⮬ᕫࢆ࣏ࢪࢸ࢕ࣈ࡟࡜ࡽ࠼ࡓ
ࢿ࣮࣒ࣞࢱ࣮ࢸࢫࢺ(name letter test)࡛࠶ࡿࠋ
ࡾ(e.g., Alicke & Olesya, 2005)ࠊ⮬ศ࡟㒔ྜࡼ
ࡇࢀࡣࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿዲពᗘ㸦࠶
ࡃ≀஦ࢆゎ㔘ࡋࡀࡕ࡛࠶ࡿ(e.g., Miller & Ross,
ࡿ࠸ࡣ㨩ຊᗘ㸧ࢆ┤ឤⓗ࡟ホᐃࡋ࡚ࡶࡽ࠺࡜࠸
1975)ࡇ࡜ࡀࡉࡲࡊࡲ࡞ᐇ㦂ࡸㄪᰝࢆ㏻ࡌ࡚᫂
࠺༢⣧࡞ㄢ㢟࡛ࠊ⮬ศࡢྡ๓࡟ྵࡲࢀ࡚࠸ࡿ࢔
ࡽ࠿࡟ࡉࢀ࡚ࡁࡓࠋࡇࢀࡽࡣ୍✀ࡢㄆ▱ࣂ࢖࢔
ࣝࣇ࢓࣋ࢵࢺࡢ┦ᑐⓗ࡞ዲពᗘࢆ₯ᅾⓗ⮬ᑛᚰ
ࢫ࡛࠶ࡿࡀࠊࣂ࢖࢔ࢫ࡜࠸ࡗ࡚ࡶ୙ᚲせ࡛ྲྀࡾ
ࡢᣦᶆ࡜ࡍࡿࠋෑ㢌࡟♧ࡋࡓ࠸ࡃࡘ࠿ࡢ◊✲࡜
㝖࠿࡞ࡅࢀࡤ࡞ࡽ࡞࠸ᛶ㉁ࡢࡶࡢ࡛ࡣ࡞ࡃࠊࡴ
ྠࡌࡃࠊࡇࡢㄢ㢟࡛ࡶ⮬ᕫ࡟ᑐࡍࡿ࣏ࢪࢸ࢕ࣈ
ࡋࢁ⢭⚄ⓗ೺ᗣࡢ⥔ᣢ࡟㔜せ࡞ᐤ୚ࢆࡋ࡚࠸ࡿ
࡞ែᗘࡀほᐹࡉࢀ࡚࠾ࡾࠊ୍⯡ⓗ࡟ࠊ⮬ศࡢྡ
ࡇ࡜ࡶᣦ᦬ࡉࢀ࡚࠸ࡿ(Taylor & Brown, 1988;
๓࡟ྵࡲࢀ࡚࠸ࡿ࢔ࣝࣇ࢓࣋ࢵࢺࡣ௚ࡢ࢔ࣝࣇ
1994)ࠋࡇ࠺ࡋࡓ࣏ࢪࢸ࢕ࣈ࡞ࡺࡀࡳࡣࠊ㢧ᅾ
࢓࣋ࢵࢺࡼࡾࡶዲࡲࢀࡓࡾࠊ⮬ศࡢྡ๓࡟ྵࡲ
ᣦᶆࡢࡳ࡞ࡽࡎ₯ᅾᣦᶆࢆ⏝࠸ࡓ◊✲࡛ࡶ☜ㄆ
ࢀࡿ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿዲពᗘࡣࡑࡢ࢔ࣝ
ࡉࢀ࡚࠾ࡾࠊ୍⯡ⓗ࡟₯ᅾⓗ⮬ᑛᚰࡣ࣏ࢪࢸ࢕
ࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡ⓗ࡞ዲពᗘࡼࡾࡶ㧗࠸
ࣈ࡟೫ࡗ࡚࠸ࡿࡇ࡜ࡀ᫂ࡽ࠿࡟ࡉࢀ࡚࠸ࡿ
ഴྥࡀ࠶ࡿࠋࡇࢀࢆࢿ࣮࣒ࣞࢱ࣮ຠᯝ࡜࿧ࡪ
(Farnham et al., 1999)ࠋࡇࡢᩥ⬦ࡢ◊✲࡛⯆
(Nuttin, 1985; 1987)ࠋ₯ᅾⓗ⮬ᑛᚰࡣࠊࠕ⮬ᕫ
࿡῝࠸ࡢࡣࠊ㢧ᅾᣦᶆ࡛ࡣ᪥ᮏேࡢ⮬ᑛᚰᚓⅬ
࡜⤖ࡧࡘ࠸ࡓᑐ㇟ࡸ⮬ᕫ࡜஋㞳ࡋࡓᑐ㇟࡟ཬࡰ
ࡣ໭⡿ேࡼࡾࡶప࠸ࡢ࡟ࡶ࠿࠿ࢃࡽࡎ(Heine
ࡍࠊෆほ࡛ࡣ≉ᐃࡉࢀ࡞࠸㸦࠶ࡿ࠸ࡣ୙ṇ☜࡟
et al.,1999)ࠊ₯ᅾᣦᶆ࡛ࡣᙼࡽ࡜ྠ➼ࡢᚓⅬ
≉ᐃࡉࢀࡓ㸧⮬ᕫែᗘࡢຠᯝࠖ࡜ᐃ⩏ࡉࢀࡿ
ࢆ♧ࡍ(Yamaguchi et al., 2007)Ⅼ࡛࠶ࡿࠋࡇ
(Greenwald & Banaji,1995)ࠋࡋࡓࡀࡗ࡚ࠊࢿ
ࡢࡇ࡜࠿ࡽࠊ᪥ᮏேࡢ⮬ᑛᚰࡣᐇ㝿࡟ࡣḢ⡿ே
࣮࣒ࣞࢱ࣮ຠᯝࡀ኱ࡁ࠸࡯࡝₯ᅾⓗ⮬ᑛᚰࡀ㧗
࡜ẚ࡭࡚ࡶపࡃ࡞࠸ࡀࠊㅬ㐯ࠊ௚⪅㓄៖ࠊ㞟ᅋ
࠸ࡇ࡜࡟࡞ࡿࠋ
୺⩏ഴྥ࡞࡝ࡢᙳ㡪ࢆཷࡅ࡚⾲㠃ⓗ࡟ࡣపࡃࡳ
ࢿ࣮࣒ࣞࢱ࣮ຠᯝࡣ≉࡟࢖ࢽࢩࣕࣝ࡟࠾࠸࡚
࠼࡚࠸ࡿ࡞࡝ࡢྍ⬟ᛶࡀ⪃࠼ࡽࢀࠊࡑࡢヲ⣽ࢆ
㢧ⴭ࡛࠶ࡿࡇ࡜ࡀࢃ࠿ࡗ࡚࠸ࡿ(Kitayama &
᫂ࡽ࠿࡟ࡍࡿࡓࡵࡢ◊✲ࡀ┒ࢇ࡟⾜ࢃࢀ࡚࠸
Karasawa, 1997)ࠋࡑࡢࡓࡵࠊ᭱㏆ࡢ◊✲࡛ࡣ
ࡿࠋ
࢖ࢽࢩࣕࣝࡢࡳࢆศᯒᑐ㇟࡜ࡍࡿࡇ࡜ࡀከ࠸
ࡇ࠺ࡋࡓ◊✲ࡀ⾜ࢃࢀࡿ୍᪉࡛ࠊ₯ᅾⓗ⮬ᑛ
(e.g., Stieger et al., 2012)ࠋࡇࡢሙྜࠊㄢ㢟⮬
- 65 -
愛知学泉大学・短期大学紀要
యࡣࢿ࣮࣒ࣞࢱ࣮ࢸࢫࢺ࡜ࡲࡗࡓࡃྠࡌ࡛࠶ࡿ
࠾ࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡ⓗ࡞ዲពᗘ
ࡀࠊࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢศᯒᑐ㇟ࡀ࢖ࢽࢩࣕࣝ
࡜ಶேࡢ཯ᛂഴྥࡢᙳ㡪ࢆྠ᫬࡟⤫ไࡍࡿ࢔ࣝ
ࡢࡳ࡛࠶ࡿࡇ࡜ࢆ᫂☜࡟♧ࡍࡓࡵ࡟࢖ࢽࢩࣕࣝ
ࢦࣜࢬ࣒ࡣ௚࡟ࡶ 2 ࡘ࠶ࡾ㸦Double-correction
㑅ዲㄢ㢟(initial preference task)࡜ࡶ࿧ࡪࠋࢿ
algorithm:
࣮࣒ࣞࢱ࣮ຠᯝ࡜࠸࠺⏝ㄒࡣࠊ⮬㌟ࡢྡ๓࡟ྵ
double-correction algorithm : Z-algorithm㸧
ࠊ
ࡲࢀࡿࡍ࡭࡚ࡢ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ㑅ዲຠ
ࡇࢀࡽࡶྠᵝ࡟᳨ウࡉࢀ࡚࠸ࡿࡀࠊI-algorithm
ᯝࢆᣦࡍሙྜࡶ࠶ࡿࡋࠊ࢖ࢽࢩࣕࣝࡢࡳ࡬ࡢ㑅
ࡢࡳ࡞ࡽࡎ B-algorithm ࡸ S-algorithm ࡜ẚ
ዲຠᯝࢆᣦࡍሙྜࡶ࠶ࡿࡀࠊ᭱㏆ࡢ࡯࡜ࢇ࡝ࡢ
࡭࡚ࡶ≉࡟ඃࢀ࡚࠸ࡿ࡜ࡣ࠸࠼࡞࠸⤖ᯝ࡜࡞ࡗ
◊✲࡛ࡣᚋ⪅ࡢព࿡࡛⏝࠸ࡽࢀ࡚࠸ࡿࠋᮏ◊✲
࡚࠸ࡿࠋ
D-algorithm;
Z-transformed
LeBel & Gawronski(2009)࡛ࡣ I-algorithm
ࡶྠᵝ࡛࠶ࡿࠋ
࢖ࢽࢩࣕࣝ㑅ዲㄢ㢟ࡣࠊ୙Ᏻᐃ࡞₯ᅾᣦᶆࡶ
ࡀ᭱ࡶ᥎ዡࡉࢀ࡚࠸ࡿࡀࠊࡇࡢ࢔ࣝࢦࣜࢬ࣒࡛
ከ࠸୰࡛ẚ㍑ⓗ㧗࠸ಙ㢗ᛶࡀ☜ㄆࡉࢀ࡚࠸ࡿ
ࡶ࡞࠾ᚓⅬࡢゎ㔘࡟ࡣὀពࢆせࡍࡿሙྜࡀ࠶ࡿࠋ
(Bosson et al., 2000)ࠋࡑࡢࡓࡵࠊ࢖ࢽࢩࣕࣝ
౛࠼ࡤࠊ኱ࡁ࡞ࢹ࣮ࢱࡢ೫ࡾࡀᏑᅾࡍࡿሙྜ࡟
㑅ዲㄢ㢟ࡣ₯ᅾⓗ⮬ᑛᚰࡢ ᐃἲ࡜ࡋ࡚⡆౽࡛
ࡣ⿵ṇࡀᶵ⬟ࡋ࡞࠸ྍ⬟ᛶࡀ࠶ࡿࠋᴟ➃࡞ලయ
ಙ㢗ᛶࡶ㧗࠸ᡭἲ࡛࠶ࡿ࡜࠸࠼ࡿࡀࠊࢿ࣮࣒ࣞ
౛࡜ࡋ࡚ࡣࠊ7 ௳ἲ࡛ᅇ⟅ࢆồࡵࡓ࡜ࡁ࡟≉ᐃ
ࢱ࣮ຠᯝࡢ⟬ฟ࡟࠶ࡓࡗ࡚ࡣᕤኵࡀᚲせ࡛࠶ࡿࠋ
ࡢ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿዲពᗘᖹᆒࡀ 7 ࡛࠶
౛࠼ࡤࠊ࢖ࢽࢩࣕࣝ࡟ᑐࡍࡿዲពᗘ࠿ࡽࠊࡑࡢ
ࡗࡓሙྜࠊB-algorithm ࡸ I-algorithm ࢆ⏝࠸
࢖ࢽࢩࣕࣝࢆྵࡲ࡞࠸ேࡓࡕࡢࡑࡢ࢔ࣝࣇ࢓࣋
ࡿ࡜ࠊࡑࡢ࢔ࣝࣇ࢓࣋ࢵࢺࢆ࢖ࢽࢩࣕࣝ࡟ࡶࡘ
ࢵࢺ࡟ᑐࡍࡿዲពᗘࡢᖹᆒ್ࢆᘬࡃ᪉ἲࡀ࠶ࡿ
ಶேࡢࢿ࣮࣒ࣞࢱ࣮ຠᯝࡣࠊཎ⌮ⓗ࡟ࢮࣟࡼࡾ
(LeBel & Gawronski(2009)࡟࡞ࡽࡗ࡚ࠊᮏ◊
኱ࡁࡃ࡞ࡾ࠼࡞࠸ࠋࡘࡲࡾࠊ࣏ࢪࢸ࢕ࣈ࡞₯ᅾ
✲࡛ࡣࡇࢀࢆ Baseline-corrected algorithm:
ⓗ⮬ᑛᚰࢆࡶ࡚࡞࠸ࡇ࡜࡟࡞ࡗ࡚ࡋࡲ࠺ࠋᐇ㝿
B-algorithm ࡜࿧ࡪ)ࠋࡇࡢ᪉ἲࡣࡋࡤࡋࡤ⏝
࡟ࡣዲពᗘᖹᆒࡀ᭱኱࡟࡞ࡿࡇ࡜ࡣ࠶ࡾ࠼࡞࠸
࠸ࡽࢀࡿࡀࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡ⓗ
ࡀࠊࡇࢀ࡟㏆࠸⌧㇟ࡀ⏕ࡌࡿྍ⬟ᛶࡣṧࡉࢀ࡚
࡞ዲពᗘࡢࡳࢆ⪃៖ࡋ࡚࠾ࡾࠊಶேࡢ཯ᛂഴྥ
࠸ࡿࠋࡲࡓࠊS-algorithm ࡛ࡣ࢔ࣝࣇ࢓࣋ࢵࢺ
ࢆ⤫ไࡋ࡚࠸࡞࠸࡜࠸࠺ḞⅬࢆࡶࡘࠋࡇࢀ࡟ᑐ
ࡢ୍⯡ⓗዲពᗘࢆィ⟬࡟⏝࠸࡞࠸ࡓࡵࠊㄡࡶࡀ
ࡋ࡚ࠊಶேࡢ࢖ࢽࢩࣕࣝ࡟ᑐࡍࡿዲពᗘ࠿ࡽ࢖
ዲࡴࡼ࠺࡞࢔ࣝࣇ࢓࣋ࢵࢺࢆࡓࡲࡓࡲ࢖ࢽࢩࣕ
ࢽࢩࣕࣝ௨እࡢዲពᗘࡢᖹᆒ್ࢆᘬ࠸ࡓ್ࢆồ
ࣝ࡟ࡶࡗ࡚࠸ࡿࡔࡅ࡛ࡶ㧗࠸ࢿ࣮࣒ࣞࢱ࣮ຠᯝ
ࡵࡿ᪉ἲࡶ࠶ࡿ(LeBel & Gawronski(2009)࡟
ࡀ⟬ฟࡉࢀ࡚ࡋࡲ࠺ࡇ࡜࡟࡞ࡿࠋ౛࠼ࡤࠊ࢔ࣝ
࡞ࡽࡗ࡚ࠊᮏ◊✲࡛ࡣࡇࢀࢆ Self-corrected
ࣇ࢓࣋ࢵࢺࡢ A ࡣ᪥ᮏ࡟࠾࠸࡚ࡣ㧗࠸ホ౯ࢆព
algorithm: S-algorithm ࡜࿧ࡪ)ࠋࡇࡢ᪉ἲࡣࠊ
࿡ࡍࡿࡓࡵࠊ୍⯡ⓗ࡟ዲࡲࢀࡸࡍ࠸࢔ࣝࣇ࢓࣋
ࡉࡁ࡯࡝࡜ࡣ཯ᑐ࡟ࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍ
ࢵࢺ࡛࠶ࡿ࡜ᛮࢃࢀࡿࡀࠊࡑࡢሙྜࠊ
ࡿ୍⯡ⓗ࡞ዲពᗘࡢᙳ㡪ࢆ⪃៖ࡋ࡚࠸࡞࠸ࠋࡋ
S-algorithm ࢆ⏝࠸ࡿ࡜ࠊA ࢆ࢖ࢽࢩࣕࣝ࡟ࡶ
ࡓࡀࡗ࡚ࠊࢿ࣮࣒ࣞࢱ࣮ຠᯝࢆ⟬ฟࡍࡿ㝿࡟ࡣࠊ
ࡗ࡚࠸ࡿಶேࡢࢿ࣮࣒ࣞࢱ࣮ຠᯝࡣపࡃ⟬ฟࡉ
ྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡ⓗ࡞ዲពᗘࡢᙳ
ࢀࡸࡍ࠸ࠋࡋ࠿ࡋࠊ᪥ᮏேࢆᑐ㇟࡜ࡋࡓࣛࢸࣥ
㡪࡜ಶேࡢ཯ᛂഴྥࡢᙳ㡪ࢆඹ࡟⤫ไࡍࡿࡇ࡜
࢔ࣝࣇ࢓࣋ࢵࢺࡢዲࡳ࡟㛵ࡍࡿ◊✲ࡣⓙ↓࡛࠶
ࡀᮃࡲࡋ࠸ࠋࡇ࠺ࡋࡓ⫼ᬒࢆ㋃ࡲ࠼࡚ࠊLeBel
ࡿࡓࡵࠊᐇ㝿࡟ࡇ࠺ࡋࡓၥ㢟ࡀ⏕ࡌࡿ࠿࡝࠺࠿
& Gawronski(2009)ࡣࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢ୺せ
ࢆ᳨ウࡍࡿࡇ࡜࡟ࡣព⩏ࡀ࠶ࡿ࡜࠸࠼ࡿࡔࢁ࠺ࠋ
࡞⟬ฟ࢔ࣝࢦࣜࢬ࣒ 5 ࡘࢆẚ㍑ࡋࠊBaccus et
ࡇࡢࡼ࠺࡟ࠊ⌮ㄽୖࡣ࡝ࡢ⟬ฟ࢔ࣝࢦࣜࢬ࣒
al.(2004) ࡞ ࡝ ࡛ ⏝ ࠸ ࡽ ࢀ ࡚ ࠸ ࡿ Ipsatized
ࡶᴟ➃࡞ᚓⅬࡢ೫ࡾࡀ⏕ࡌࡓ࡜ࡁ࡟ࡣఱࡽ࠿ࡢ
double-correction algorithm: I-algorithm ࢆᙉ
ၥ㢟ࢆ⏕ࡌ࠺ࡿࡀࠊᐇࢹ࣮ࢱࢆ⏝࠸࡚ࡇ࠺ࡋࡓ
ࡃ᥎ዡࡋ࡚࠸ࡿࠋࡇࡢ⟬ฟ࢔ࣝࢦࣜࢬ࣒ࡣୖ㏙
ၥ㢟ࢆ᳨ウࡋࡓ◊✲ࡣᮏ㑥࡛ࡣᑡ࡞࠸ࠋࡑࡇ࡛
ࡢ 2 ࡘࡢᙳ㡪ࢆྠ᫬࡟⤫ไࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋ
ᮏ◊✲࡛ࡣ㸪᪥ᮏேࢆᑐ㇟࡜ࡋࡓ࢖ࢽࢩࣕࣝ㑅
࡚⪃᱌ࡉࢀࡓࡶࡢ࡛ࠊ」ᩘࡢⅬ࡛௚ࡢ࢔ࣝࢦࣜ
ዲㄢ㢟ࡢࢹ࣮ࢱࢆ⏝࠸࡚ࠊ3 ࡘࡢ௦⾲ⓗ࡞ࢿ࣮
ࢬ࣒ࡼࡾࡶඃࢀ࡚࠸ࡿࡇ࡜ࡀ♧ࡉࢀ࡚࠸ࡿࠋ࡞
࣒ࣞࢱ࣮ຠᯝࡢ⟬ฟ࢔ࣝࢦࣜࢬ࣒(B-algorithmࠊ
- 66 -
ネームレター効果の算出アルゴリズムの比較
S-algorithmࠊ I-algorithm)ࡢẚ㍑ࢆ⾜࠸ࠊᐇ
㝿࡟ୖ㏙ࡢࡼ࠺࡞ၥ㢟ࡀ⏕ࡌࡿࡢ࠿࡝࠺࠿ࢆ᫂
Table 1䚷䜲䝙䝅䝱䝹䛾ᗘᩘ
A
23
74
ࡽ࠿࡟ࡋࡓୖ࡛ࠊ᭱ࡶ㐺ษ࡞⟬ฟ࢔ࣝࢦࣜࢬ࣒
B
2
0
ࢆ≉ᐃࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋࡓࠋ
C
3
19
D
0
0
E
3
8
F
11
1
G
4
2
H
42
22
I
48
7
2㸬᪉ἲ
(1)ㄪᰝᑐ㇟⪅
኱Ꮫ⏕ 521 ྡ㸦⏨ᛶ 81 ྡࠊዪᛶ 438 ྡࠊ୙
᫂ 2 ྡ㸧࡛ࠊᖹᆒᖺ㱋ࡣ 19.08 ṓ࡛࠶ࡗࡓࠋ
(2)ㄪᰝෆᐜ
J
0
1
K
69
50
ࣛࢸࣥ࢔ࣝࣇ࢓࣋ࢵࢺ 26 ᩥᏐࢆ࢔ࣝࣇ࢓࣋
L
0
0
ࢵࢺ㡰࡟୪࡭ࡓ⏝⣬ࢆ㓄ᕸࡋࠊࡑࢀࡒࢀࡢ࢔ࣝ
M
48
109
ࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿዲពᗘࢆࠕ1. ኱᎘࠸ࠖࠕ2.
N
37
31
࠿࡞ࡾ᎘࠸ࠖࠕ3. ࡸࡸ᎘࠸ࠖࠕ4. ࡝ࡕࡽ࡜ࡶ࠸
O
43
3
࠼࡞࠸ࠖ
ࠕ5. ࡸࡸዲࡁࠖ
ࠕ6. ࠿࡞ࡾዲࡁࠖ
ࠕ7. ኱
P
0
0
ዲࡁࠖࡢ 7 ௳ἲ࡛ホᐃࡋ࡚ࡶࡽࡗࡓࠋᅇ⟅࡟࠶
Q
0
0
ࡓࡗ࡚ࡣ┤ឤⓗ࡟ᅇ⟅ࡍࡿࡼ࠺ᩍ♧ࡋࡓࠋ
R
2
42
S
74
46
3㸬⤖ᯝ࡜⪃ᐹ
T
48
25
U
13
2
(1)࢔ࣝࣇ࢓࣋ࢵࢺࡈ࡜ࡢ࢖ࢽࢩࣕࣝࡢᗘᩘ࡜
V
0
0
ዲពᗘᖹᆒ
W
5
1
࢔ࣝࣇ࢓࣋ࢵࢺࡈ࡜࡟ࠊࡑࡢ࢔ࣝࣇ࢓࣋ࢵࢺ
X
0
0
ࢆ࢖ࢽࢩࣕࣝ࡟ࡶࡘேࡢᩘࢆࡲ࡜ࡵࡓ(Table
Y
46
76
1)ࠋࡲࡓࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺࡢዲពᗘࢆࠊࡑࡢ
Z
0
2
ᕥࡣⱑᏐࠊྑࡣྡ๓ࡢᗘᩘ
࢔ࣝࣇ࢓࣋ࢵࢺࢆ࢖ࢽࢩࣕࣝ࡟ࡶࡓ࡞࠸ேࡓࡕ
ࡢࢹ࣮ࢱࢆᖹᆒࡋ࡚⟬ฟࡋࡓ(Table 2)ࠋࡇࢀ
ࡣࠊࡑࢀࡒࢀࡢ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡ⓗ
ࡍࡿࡓࡵࠊ࢔ࣝࣇ࢓࣋ࢵࢺࡈ࡜࡟ࢿ࣮࣒ࣞࢱ࣮
࡞ዲពᗘࢆ⾲ࡍࠋA ࡢዲពᗘࡀ᭱ࡶ㧗࠿ࡗࡓࡀࠊ
ຠᯝࡢ኱ࡁࡉࡀ␗࡞ࡿ࠿࡝࠺࠿ࢆࠊ3 ࡘࡢ࢔ࣝ
ᖹᆒ್+1 ᶆ‽೫ᕪ௨ෆ࡛࠶ࡾࠊኳ஭ຠᯝࢆ⏕
ࢦࣜࢬ࣒ࡑࢀࡒࢀ࡟ࡘ࠸࡚ㄪ࡭ࡓࠋ
ࡣࡌࡵ࡟ࠊⱑᏐࡢ࢖ࢽࢩࣕࣝ࡟࠾ࡅࡿࢿ࣮࣒
ࡌࡿ࡯࡝ࡢ㧗ࡉ࡛ࡣ࡞࠸࡜⪃࠼ࡽࢀࡿࠋ
ࣞࢱ࣮ຠᯝ࡟ࡘ࠸࡚ࡢ᳨ウࢆ⾜ࡗࡓࠋ
(2)ྛ࢔ࣝࣇ࢓࣋ࢵࢺࡢ୍⯡ⓗዲពᗘ࡟╔┠ࡋ
B-algorithm ࡟ࡼࡗ࡚ࢿ࣮࣒ࣞࢱ࣮ຠᯝࢆ⟬ฟ
ࡓศᯒ
ࡋࠊ୍ඖ㓄⨨ࡢศᩓศᯒ࡛࢔ࣝࣇ࢓࣋ࢵࢺࡈ࡜
࡟ࢿ࣮࣒ࣞࢱ࣮ຠᯝࢆẚ㍑ࡋࡓࠋࡑࡢ⤖ᯝࠊ࢔
๓㏙ࡢ౛ࡢࡼ࠺࡟ࠊ≉ᐃࡢ࢔ࣝࣇ࢓࣋ࢵࢺ࡟
ᑐࡍࡿ୍⯡ⓗዲពᗘࡀ㠀ᖖ࡟㧗࠸ሙྜࠊ⟬ฟἲ
ࣝࣇ࢓࣋ࢵࢺࡢຠᯝࡣ᭷ព࡛ࡣ࡞࠿ࡗࡓ(F(17,
࡟ࡼࡗ࡚ࡣࡑࡢ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿࢿ࣮࣒
503)=1.07, p=.38)ࠋS-algorithm ࡟ࡘ࠸࡚ࡶྠ
ࣞࢱ࣮ຠᯝࡀ⏕ࡌ࡟ࡃࡃ࡞ࡿࡇ࡜ࡀ⪃࠼ࡽࢀࡿࠋ
ᵝ࡟ศᯒࢆ⾜ࡗࡓ࡜ࡇࢁࠊ࢔ࣝࣇ࢓࣋ࢵࢺࡢຠ
୍᪉ࠊS-algorithm ࡛ࡣࠊ୍⯡ⓗ࡟ዲࡲࢀࡸࡍ
ᯝࡀ᭷ព࡛࠶ࡗࡓ(F(17, 503)=1.79, p=.03)ࠋ
࠸࢔ࣝࣇ࢓࣋ࢵࢺࢆ࢖ࢽࢩࣕࣝ࡟ࡶࡗ࡚࠸ࡿሙ
Tukey ἲ࡟ࡼࡿከ㔜ẚ㍑ࡢ⤖ᯝࠊAࠊKࠊM ࡢ
ྜࠊᐇ㝿ࡢ₯ᅾⓗ⮬ᑛᚰ௨ୖ࡟ࢿ࣮࣒ࣞࢱ࣮ຠ
ࢿ࣮࣒ࣞࢱ࣮ຠᯝࡣࠊH ࡢࡑࢀࡼࡾࡶ᭷ព࡟኱
ᯝࡀ㧗ࡃ࡞ࡿྍ⬟ᛶࡀ࠶ࡿࠋࡇࡢၥ㢟ࢆ᳨ウ
ࡁ࠸ࡇ࡜ࡀ᫂ࡽ࠿࡟࡞ࡗࡓ(ࡑࢀࡒࢀ p =.00,
- 67 -
愛知学泉大学・短期大学紀要
503)=2.15, p=.01)ࠊከ㔜ẚ㍑࡛ࡣ࠸ࡎࢀ࡟ࡶ᭷
Table 2䚷ྛ䜰䝹䝣䜯䝧䝑䝖䛾୍⯡ⓗዲពᗘ
䠄䜲䝙䝅䝱䝹䛷䛿䛺䛔ሙྜ䛾ᖹᆒ䠅
A
B
ᖹᆒ ᶆ‽೫ᕪ
5.44
1.12
4.33
1.23
A
ព࡞ᕪࡣࡳࡽࢀ࡞࠿ࡗࡓࠋ௨ୖࡢศᯒ⤖ᯝࡣ
ᖹᆒ ᶆ‽೫ᕪ
5.44
1.12
K
5.00
1.18
Table 3 ࡟ࡲ࡜ࡵࡽࢀ࡚࠸ࡿࠋ
ࡇࢀࡽࡢ⤖ᯝࢆ⥲ྜⓗ࡟ゎ㔘ࡍࡿ࡜ࠊ
B-algorithm ࠾ࡼࡧ I-algorithm ࡛ࡣ࢔ࣝࣇ࢓
C
4.25
1.15
S
4.89
1.35
D
4.14
1.18
R
4.77
1.32
E
4.29
1.21
N
4.60
1.29
ࡳࡽࢀ࡞࠿ࡗࡓࠋࡘࡲࡾࠊ୍⯡ⓗዲពᗘࡀ㧗࠸
࣋ࢵࢺࡢ㐪࠸࡟ࡼࡿࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢ㐪࠸ࡣ
F
4.14
1.13
M
4.59
1.37
㸦ప࠸㸧
ࡇ࡜࡟ࡼࡿࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢ୙ᙜ࡞๭
G
3.91
1.27
I
4.58
1.32
ᘬ㸦๭ቑ㸧ࡢྍ⬟ᛶࡣప࠸࡜⪃࠼ࡽࢀࡿࠋ୍᪉ࠊ
H
4.18
1.18
T
4.57
1.20
I
1.32
O
S-algorithm ࡛ࡣࠊA ࡞࡝ࡢ୍⯡ⓗዲពᗘࡀ㧗
4.58
4.52
1.29
J
4.48
1.31
J
4.48
1.31
࠸࢔ࣝࣇ࢓࣋ࢵࢺ࡟࠾ࡅࡿࢿ࣮࣒ࣞࢱ࣮ຠᯝࡀ
K
5.00
1.18
P
4.42
1.20
L
4.38
1.19
Y
4.42
1.24
1.37
L
4.38
1.19
Table 2 ࠿ࡽࢃ࠿ࡿࡼ࠺࡟ࠊ᪥ᮏே࡟ࡣࠊAࠊKࠊ
M
4.59
H ࡞࡝ࡢ୍⯡ⓗዲពᗘࡀప࠸࢔ࣝࣇ࢓࣋ࢵࢺࡼ
ࡾࡶ኱ࡁࡃ࡞ࡿഴྥࡀࡳࡽࢀࡓࠋTable 1 ࡸ
N
4.60
1.29
X
4.36
1.36
SࠊRࠊMࠊN ࡜࠸ࡗࡓ୍⯡ⓗዲពᗘࡀ㧗࠸࢔ࣝ
O
4.52
1.29
B
4.33
1.23
ࣇ࢓࣋ࢵࢺࢆ࢖ࢽࢩࣕࣝ࡟ࡶࡘேࡀከ࠸ࡓࡵࠊ
P
4.42
1.20
Z
4.30
1.33
ࡇࡢၥ㢟ࡀ⏕ࡌࡿ㢖ᗘࡣ㧗࠸࡜ᛮࢃࢀࡿࠋࡋࡓ
Q
4.09
1.32
E
4.29
1.21
R
4.77
1.32
C
4.25
1.15
ࡀࡗ࡚ࠊS-algorithm ࡢ㐺⏝ࡣ㑊ࡅࡓ࡯࠺ࡀⰋ
S
4.89
1.35
H
4.18
1.18
T
4.57
1.20
W
4.17
1.36
U
4.15
1.28
U
4.15
1.28
1.23
D
4.14
1.18
B-algorithm ࡣࠊ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍
V
4.11
࠸ࡔࢁ࠺ࠋ
(3)ಶேࡢ཯ᛂഴྥ࡟╔┠ࡋࡓศᯒ
W
4.17
1.36
F
4.14
1.13
⯡ⓗዲពᗘ࡜⮬㌟ࡢ࢖ࢽࢩࣕࣝࡢホᐃ್ࡢࡳࢆ
X
4.36
1.36
V
4.11
1.23
ィ⟬࡟⏝࠸ࡿࠋࡑࡢࡓࡵࠊィ⟬ୖࡣࠊ඲యⓗ࡟
Y
4.42
1.24
Q
4.09
1.32
Z
4.30
1.33
G
3.91
1.27
㧗࠸ዲពᗘホᐃࢆ⾜࠺ഴྥࡀ࠶ࡿಶேࡢࢿ࣮࣒
ᕥࡣ࢔ࣝࣇ࢓࣋ࢵࢺ㡰ࠊྑࡣᖹᆒ㡰࡟ࢯ࣮ࢺࡋࡓࡶࡢ
ࣞࢱ࣮ຠᯝࢆ㧗ࡃぢ✚ࡶࡿ୍᪉࡛ࠊ඲యⓗ࡟ప
࠸ዲពᗘホᐃࢆ⾜࠺ഴྥࡀ࠶ࡿಶேࡢࢿ࣮࣒ࣞ
p=.00, p=.02)ࠋI-algorithm ࡟ࡘ࠸࡚ࡣ࢔ࣝࣇ
࢓ ࣋ ࢵ ࢺ ࡢ ຠ ᯝ ࡣ ᭷ ព ࡛ ࡣ ࡞ ࠿ ࡗ ࡓ (F(17,
503)=0.98, p=.49)ࠋḟ࡟ࠊྡ๓ࡢ࢖ࢽࢩࣕࣝ࡟
ࢱ࣮ຠᯝࢆపࡃぢ✚ࡶࡿ࡜࠸࠺ࣂ࢖࢔ࢫࡀ⏕ࡌ
࠾ࡅࡿࢿ࣮࣒ࣞࢱ࣮ຠᯝ࡟ࡘ࠸࡚ࡢ᳨ウࢆ⾜ࡗ
ࢩࣕࣝ࡟ᑐࡍࡿዲពᗘࡢᖹᆒࢆồࡵࠊࡇࢀࢆಶ
ࡓࠋ ࡉࡁ࡯࡝࡜ྠᵝ࡟ࡋ࡚ B-algorithm ࡟ࡘ
ேࡢ཯ᛂഴྥ࡜ࡋࡓࠋࡑࡋ࡚ࠊࢿ࣮࣒ࣞࢱ࣮ຠ
࠸࡚ศᯒࢆᐇ᪋ࡋࡓ࡜ࡇࢁࠊ࢔ࣝࣇ࢓࣋ࢵࢺࡢ
ᯝ࡜ࡢ┦㛵ಀᩘࢆ⟬ฟ࢔ࣝࢦࣜࢬ࣒ࡈ࡜࡟ồࡵ
ຠᯝࡀ᭷ព࡛࠶ࡗࡓ(F(14, 503)=2.07, p=.01)ࠋ
ࡓ (Table 4) ࠋ ࡑ ࡢ ⤖ ᯝ ࠊ ண ࡝ ࠾ ࡾ ࠊ
ࡋ࠿ࡋࠊTukey ἲ࡟ࡼࡿከ㔜ẚ㍑ࡢ⤖ᯝࠊ࠸ࡎ
B-algorithm ࡟࠾࠸࡚㠀࢖ࢽࢩࣕࣝࡢዲពᗘᖹ
ࢀ࡟ࡶ᭷ពᕪࡣࡳࡽࢀ࡞࠿ࡗࡓࠋS-algorithm
ᆒ࡜ࢿ࣮࣒ࣞࢱ࣮ຠᯝ࡜ࡢ㛫࡟᭷ព࡞ṇࡢ┦㛵
࡛ࡶ࢔ࣝࣇ࢓࣋ࢵࢺࡢຠᯝࡣ᭷ព࡛࠶ࡗࡓ
ࡀࡳࡽࢀࡓ(r=.34㹼.35, ࡍ࡭࡚ p=.00)ࠋ
࠺ࡿࠋᐇ㝿࡟ࡇ࠺ࡋࡓ⌧㇟ࡀ⏕ࡌ࡚࠸ࡿ࠿࡝࠺
࠿ࢆ᳨ウࡍࡿࡓࡵ࡟ࠊㄪᰝ༠ຊ⪅ࡈ࡜࡟㠀࢖ࢽ
(F(14, 503)=5.23, p=.00)ࠋከ㔜ẚ㍑ࡢ⤖ᯝࠊAࠊ
୍᪉ࠊS-algorithm ࡜ I-algorithm ࡛ࡣࠊ㠀
NࠊR ࡣ C ࡼࡾࡶ㸦ࡑࢀࡒࢀ p=.00ࠊp=.02ࠊ
࢖ࢽࢩࣕࣝࡢዲពᗘᖹᆒ࡜ࢿ࣮࣒ࣞࢱ࣮ຠᯝ࡜
p=.00㸧ࠊAࠊKࠊNࠊRࠊS ࡣ H ࡼࡾࡶ(ࡑࢀࡒ
ࢀ p=.00, p=.04, p=.00, p=.00, p=.01)ࠊAࠊR
ࡣ Y ࡼࡾࡶ(ࡍ࡭࡚ p=.00)ࢿ࣮࣒ࣞࢱ࣮ຠᯝࡀ
ࡢ┦㛵ࡣ࡯ࡰⓙ↓࡛࠶ࡗࡓࠋS-algorithm ࡛ࡣ
᭷ព࡟኱ࡁ࠿ࡗࡓࠋI-algorithm ࡟࠾࠸࡚ࡶ࢔
ࡀࡕ࡞ಶேࡀ୙ᙜ࡟㧗࠸㸦ప࠸㸧ࢿ࣮࣒ࣞࢱ࣮
ࣝࣇ࢓࣋ࢵࢺࡢຠᯝࡣ᭷ព࡛࠶ࡗࡓࡀ(F(14,
ຠᯝࢆ⋓ᚓࡋ࡚ࡋࡲ࠺࡜࠸࠺⌧㇟࠿ࡽண ࡉࢀ
ࢃࡎ࠿࡟᭷ព࡞㈇ࡢ┦㛵ࡀࡳࡽࢀࡓࡀࠊࡇࢀࡣࠊ
࡝ࡢࡼ࠺࡞㉁ၥ࡟ࡶ㧗࠸㸦ప࠸㸧ホᐃ್ࢆࡘࡅ
- 68 -
ネームレター効果の算出アルゴリズムの比較
Table 3䚷䜰䝹䝣䜯䝧䝑䝖䛻䜘䜛䝛䞊䝮䝺䝍䞊ຠᯝ䛾㐪䛔
family name
Iirst name
B-algorithm
S-algorithm
I-algorithm
B-algorithm
n.s.
AࠊKࠊM>H
n.s.
n.s.
S-algorithm
I-algorithm
AࠊNࠊR>C
n.s.
AࠊKࠊNࠊRࠊS>H
A䚸R>Y
ࡿ㛵ಀ࡜ࡣ㏫ࡢ㛵ಀ࡛࠶ࡾࠊಶேࡢ཯ᛂഴྥ࡟
ࡗࡓࠋB-algorithm ࡸ S-algorithm ࡣィ⟬ࡀᐜ
⏤᮶ࡍࡿࢿ࣮࣒ࣞࢱ࣮ຠᯝࡢ୙ᙜ࡞๭ቑ㸦๭ᘬ㸧
࡛᫆࠶ࡿ࡜࠸࠺฼Ⅼࡀ࠶ࡿ཯㠃ࠊ⤫ィⓗ࡞ၥ㢟
ࡣࡳࡽࢀ࡞࠿ࡗࡓ࡜࠸࠼ࡿࠋ
ࡶከ࠸࡜⪃࠼ࡽࢀࡿࠋࡋࡓࡀࡗ࡚ࠊࢿ࣮࣒ࣞࢱ
࣮ຠᯝࡢ⟬ฟ࡟ࡣ I-algorithm ࡢ฼⏝ࡀ᥎ዡࡉ
ࡇࢀࡽࡢ⤖ᯝࢆࡲ࡜ࡵࡿ࡜ࠊB-algorithm ࢆ
⏝࠸ࡿ࡜ಶேࡢ཯ᛂഴྥࡢᙳ㡪࡟ࡼࡗ࡚ࢿ࣮࣒
ࢀࡿࠋ
ࣞࢱ࣮ຠᯝࡢ୙ᙜ࡞๭ቑ㸦๭ᘬ㸧ࡀ⏕ࡌࡿࡀࠊ
S-algorithm ࡜ I-algorithm ࡟࠾࠸࡚ࡣࡑ࠺ࡋ
ᘬ⏝ᩥ⊩
ࡓಶேࡢ཯ᛂഴྥࡢᙳ㡪ࡣ↓ど࡛ࡁࡿ࡜⪃࠼ࡽ
1) Alicke, M.D., & Olesya, G The
ࢀࡿࠋ
better-than-average effect. In M.D. Alicke, D.A.
(4)ࡲ࡜ࡵ
judgment. Studies in self and identity. New York,
Dunning, & J.I. Krueger(Eds.), The self in social
NY: Psychology Press. pp. 85-106(2007)
ᮏ◊✲࡛ࡣࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ࡟ᑐࡍࡿ୍⯡
ࡽ࠿࡟࡞ࡗࡓࠋ୍᪉ࠊࡇࢀࡽ 2 ࡘࡢ࢔ࣝࢦࣜࢬ
2) Baccus, J. R., Baldwin, M. W., & Packer, D. J.
Increasing implicit self-esteem through
classical conditioning. Psychological Science,
15, 498-502(2004)
3) Bosson, J. K., Swann, W .B., Jr., & Pennebaker,
J. W. Stalking the perfect measure of implicit
self-esteem: The blind men and the elephant
revisited? Journal of Personality and Social
Psychology, 79, 631-643(2000)
࣒ࡢḞⅬࢆᨵⰋࡋࡓ I-algorithm ࡟࠾࠸࡚ࡣࠊ
4) Farnham, D. S., Greenwald, G. A., & Banaji,
ⓗዲពᗘ࡜ಶேࡢ཯ᛂഴྥ࡟↔Ⅼࢆᙜ࡚࡚ࠊࢿ
࣮࣒ࣞࢱ࣮ຠᯝࡢ୺せ࡞⟬ฟ࢔ࣝࢦࣜࢬ࣒ࡢẚ
㍑᳨ウࢆ⾜ࡗࡓࠋࡑࡢ⤖ᯝࠊྛ࢔ࣝࣇ࢓࣋ࢵࢺ
࡟ᑐࡍࡿ୍⯡ⓗዲពᗘ࡜࠸࠺Ⅼ࡛ࡣ
S-algorithm ࡟ၥ㢟ࡀ࠶ࡾࠊಶேࡢ཯ᛂഴྥ࡜
࠸࠺Ⅼ࡛ࡣ B-algorithm ࡟ၥ㢟ࡀ࠶ࡿࡇ࡜ࡀ᫂
࠸ࡎࢀࡢⅬ࡛ࡶၥ㢟ࡣぢᙜࡓࡽ࡞࠿ࡗࡓࠋ
M.N. Implicit self-esteem. In D. Abrams,
LeBel & Gawronski (2009)ࡶࠊࡉࡲࡊࡲ࡞ศᯒ
& M. Hogg(Eds.), Social identity and social
ࢆ㏻ࡌ࡚ I-algorithm ࡢ౑⏝ࢆ᥎ዡࡋ࡚࠸ࡿࠋ
cognition.
ᮏ◊✲ࡣࡇࢀࢆูࡢഃ㠃࠿ࡽᨭᣢࡍࡿ⤖ᯝ࡜࡞
pp.230-248(1999)
Oxford,
UK:
Blackwell.
Table 4ࠉ࢖ࢽࢩࣕࣝ࡬ࡢ㑅ዲຠᯝ࡜㠀࢖ࢽࢩࣕࣝࡢዲពᗘᖹᆒࡢ┦㛵
ձ
ղ
ճ
ձB-algorithm (family name)
Ɇ
ղB-algorithm (first name)
.30**
Ɇ
ճS-algorithm (family name)
.89**
.17**
Ɇ
մS-algorithm (first name)
.15**
յI-algorithm (family name)
նI-algorithm (first name)
շ㠀࢖ࢽࢩࣕࣝࡢዲពᗘᖹᆒ
մ
յ
.86**
.20**
Ɇ
**
.17**
.97**
.20**
**
.89**
.21**
.95**
.91
.15
**
.34
**
.35
** p <.01. * p <.05.
- 69 -
䠉.07
*
䠉.10
ն
Ɇ
.21**
䠉.07
Ɇ
*
䠉.11
愛知学泉大学・短期大学紀要
498-500(2007)
5) Greenwald, A. G., & Banaji, M. R. Implicit social
cognition:
Attitudes,
self-esteem,
Psychological
stereotypes.
and
Review,
102,
ὀ
4-27(1995)
ᮏ◊✲ࡣࠊ⛉Ꮫ◊✲㈝⿵ຓ㔠㸦ⱝᡭ◊✲㸦B㸧
ࠊㄢ
㢟␒ྕ 25780432ࠊ◊✲௦⾲⪅ ὠ⏣ᜤ඘㸧ࡢຓ
6) Heine, S.J., Lehman, D.R., Markus, H.R., &
Kitayama, S. Is there a universal need for
positive self-regard? Psychological Review, 106,
766-794(1999)
7)
Kitayama,
S.,
&
Karasawa,
M.
Implicit
self-esteem in Japan: Name letters and birthday
numbers. Personality and Social Psychology
Bulletin, 23, 736-742(1997)
8) LeBel, E. P., & Gawronski, B. How to find what's
in a name: Scrutinizing the optimality of five
scoring algorithms for the name-letter task.
European
Journal
of
Personality,
23,
85-106(2009)
9) Miller, D. T., & Ross, M. Self-serving biases in
the attribution of causality: Fact or fiction?
Psychological Bulletin, 82, 213-225(1975)
10) Nuttin, J.M. Narcissism beyond Gestalt and
awareness: The name letter effect. European
Journal of Social Psychology, 15, 353-361(1985)
11) Nuttin, J.M. Affective consequences of
mere ownership: The name-letter effect in
twelve European languages. European Journal
of Social Psychology, 15, 381-402(1987)
12) Stieger, S., Voracek, M., & Formann, A.K. How
to administer the Initial Preference Task.
European
Journal
of
Personality,
26,
63-78(2012)
13) Taylor, S.E., & Brown, J.D. Positive illusions
and well-being revisited: Separating fact from
fiction.
Psychological
Bulletin,
116,
21-27(1994)
14) Taylor, S.E., & Brown, J. Illusion and
well-being: A social psychological perspective
on mental health. Psychological Bulletin, 103,
193-210(1988)
15) Yamaguchi, S., Greenwald, A.G., Banaji, M.R.,
Murakami, F., Chen, D., Shiomura, K.,
Kobayashi, C., Cai, H., & Krendl, A. Apparent
Universality of Positive Implicit
Self-Esteem. Psychological Science, 18,
- 70 -
ᡂࢆཷࡅࡓࠋ