(熱安定性・反応暴走)評価

化学反応の危険性・熱安定性(反応暴走)評価
Ready-solutions Thermal Safety Software (TSS) series
CISP 社 の TSS シ リ ー ズ は 、 解 析 目 的 に 合 わ せ 各 種 ア プ リ ケ ー シ ョ ン を 組 合 せ て 使 用 し ま す 。
例えば、DSC 等の熱量データを解析するには、下記に示す推奨ソリューションが準備されています。
(熱分析用ソリューション) The sub-set for thermal analysis
この汎用的な基本ソリューションは、TDPro と ForK, and/or DesK, and/or IsoKin で構成されています。
TDPro は、付属の TFC を用い、各種の熱分析(熱量、熱安定性)機器(DSC, DTA, TG および組合せ DSC+TG,
DTA+TG)のオリジナル実験データを、反応速度解析ソフトで使用できるように統一データ形式に変換します。
TDPro では、オリジナルのデータを総合的に処理するだけではなく、比熱、熱伝導度等を求めることが可能です。
次に,反応速度を解析するアプリケーション ForK/DesK は、ユーザーが設定した各種の反応モデルについて実験データを
解析し反応速度パラメータを決定します。また IsoKin を用いると、モデルフリーの反応速度解析が可能です。
測定データ変換と解析
反応速度解析
簡易シミュレーション
ForK では、反応スキームを、独立反応、併発反応、逐次反応を組み合わせて記述し、それぞれの反応について、N 次反応、
自己触媒反応、触媒反応から選択します。ただし、反応は液相均一反応とします。
次に示す、ADaExpert から転送された実測データに対して、非線形最適化計算を実行して反応速度パラメータを決定します。
簡易シミュレーションの機能より、ARC® の 測定条件(および実測時のφ値)を入力すれば、ARC® 実測データと比較して
最適化結果を検証できます。また、φ= 1 を 入力すればφ補正が可能です。
1 Thermal Safety Software (TSS) series
反応危険性評価ソフト Ready-solutions
The subset for adiabatic calorimetry
(断熱測定データ解析ソリューション)
断熱熱量計(ARC®、VSP、DEWAR)等は、化学反応の熱的危険性評価に有効であることが知られています。
このソリューションは、断熱下で測定した熱量データを多目的に解析するために CISP 社が提供する TSS の中から選ばれた
最適組み合わせセットです。
ADaExpert, ForK お よ び / ま た は DesK と 各 種 の 反 応 危 険 性 を 評 価 す る ThermEx, ReRank, ConvEx と
BST パッケージで構成されています。
ARC® 等を利用した断熱測定データ
測定データ変換と解析
反応速度解析
簡易シミュレーション
反応危険性の評価
ADaExpert ARC®等の断熱熱量計のデータを TSS を使用して解析するための変換ソフトです。温度データ、圧力データの
スムージング等の機能があります。
★反応速度を解析するソフトには、ForK と DesK が準備されています。
ForK
シンプルな反応モデルを組み合わせて反応速度を解析するソフトです。 変数は反応率となり物質を特定する
必要はありません。
DesK
濃度を変数として反応速度を解析するため、反応式を定義する必要があります。反応プロセス全体についての
反応性を評価します。
★反応危険性評価パッケージは、以下のソフトで構成されています。
ThermEx 固相(高粘性液体)の温度分布を熱伝導シミュレーションし熱暴走に至る限界条件を計算します。
ConvEx
液体中の温度分布をシミュレーションし熱暴走に至る限界条件を計算します。
ReRank
対象化学物質の反応性指数を決定します。
BST
このパッケージは、バッチ反応を想定して熱暴走をシミュレーションできる他、放散口の設計も可能です。
★反応危険性を評価する組み合わせパッケージは、研究目的に合わせて変更可能です。
物 質 の 反 応 危 険 性 の 評 価 ・ ラ ン ク 付 け に は 、 基 本 と な る ThermEx, ConvEx, ReRank が 適 し て い ま す が 、
これら 3 ソフトに加え、 BST(The Batch Stirred Tank )も強力な評価ツールとなります。
2 http://www.cisp.spb.ru/
図1
20%DTBP(ジ-tert-ブチルペルオキシド)トルエン溶液の熱分解挙動
TDPro と ForK によるシミュレーションと測定値を比較
図2
図3
ConvEx を用いたシミュレーション
BST を用いたシミュレーション (出典; 住友化学 2001-Ⅰp.67)
3 http://www.cisp.spb.ru/
Kinetics-based simulation
– How can this approach help when assessing reaction hazard?
Introduction
Reaction hazard of a chemical process, along with toxic and fire hazards, is one of the
main aspects of the general problem of safety in chemical industry. The term “thermal (or
reaction) hazard” covers variety of hazards dealing with heat evolving in a chemical process.
Improper choice of operational conditions or accidental deviations from the normal course
of an exothermic process may result in development of runaway (thermal explosion) and
cause severe consequences.
As far as thermal hazard of a chemical
product is concerned, the main aim of
hazard assessment is the choice of safe
conditions of storage, transportation and
use of a product.
As usual, there is no other way to get data
necessary for assessing thermal hazard
rather than by experimental study.
Typical technique, which is used in this
area, is calorimetric data of various kinds.
Kinetics-based simulation – Principal solution of the scale-up problem
Of course almost all experiments, especially when hazardous materials are investigated,
are carried out in the laboratory small scale. At the same time the key problem that has to be
solved is the scale-up problem.
Among various methods that are used for scaling there is only one almost universal method
that allows prediction of reaction course under any conditions of interest.
This is kinetics-based simulation. It involves 3 main steps.
In the first step: necessary series of
calorimetric experiments is carried out.
In the second step: the mathematical
model of a reaction is created.
Finally: the created model is incorporated
into the model of a process and the
practical target is achieved by using
numerical simulation.
Is this approach simple?
We have to admit that this method is quite complex. In practice the presented procedure
turns out to be iterative rather than the plain one.
Today this can be resolved by CISP;
CISP has designed a problem-oriented system and corresponding software is now available:
Thermal Safety Software series (TSS)
4 Example
1. Verification of the software for ERS design
Reaction: Isopropanol + Propionic anhydride → Isopropyl Propionate + Propionic Acid Experiment: Adiabatic Calorimetry (Phi‐tech); simultaneous use of 2 data sets: To =25 oC & 35 oC Reactor: Vertical tank, V = 312 liters; U = 270 W/m2/K, S = 1.53 m2 with 1.5 bar vent system The created model was incorporated into the model of a BATCH reactor and the runaway scenario has
been simulated. The results are in good accord with the results of the pilot-scale experiment(HSE
Round-Robin test)
2. Designing Inherently Safer Semi-Batch Process
Reaction: Isopropanol + Propionic anhydride → Isopropyl Propionate + Propionic Acid Reactor: Vertical tank, V = 312 liters; U = 270 W/m2/K, S = 1.53 m2, operating in a semi‐BATCH mode Optimization criterion ‐ Inherent Safety: Max { MPT(Maximal Permissible Temperature) – MTSR(Maximal Temperature of Synthesis Reaction)}
Initial Mode (Before optimization)
Safe Mode
Feed rate is assigned as 10 identical pulses with 3
f = 1.65 dm /min and duration = 10 min each. Feed rate is optimized to fPA = fPA (t) Tmax  106 C, tmax  67 min
PA T
max
 125 C, t
max
 60 min
unsafe
Inherent Safety is provided 5 http://www.cisp.spb.ru/
Thermal Safety Software (TSS) series ChemInform St. Petersburg (CISP) has been created in 1994 on the basis of the research
department of the Russian Scientific Center “Applied Chemistry” and inherits more than 40 years
of experience in investigation of thermal safety of propellants, explosives and other energetic
chemicals as well as study of chemical processes and products of general purpose.
TSS – eliminating hazard on the read to profit The CISP achievements in methodology for research of reaction hazards and creation of the
problem-oriented software are recognized worldwide.
Assessing Thermal Hazards of Chemical Processes and Products

From experimental study of a reaction through creation of a kinetic model to the mathematical
modeling of a process

TSS covers the entire spectrum from processing of experimental data to simulation of chemical
reactors and runaways of various kinds

TSS gives general solution of the crucial challenge of hazard assessment – the scale-up problem
TSS applications are addressed to:

R&D Centers of Chemical and Pharmaceutical Companies

R&D Centers and laboratories dealing with assessment of reactive hazards of dangerous goods

Chemical Engineering Departments of Universities
Flowchart of the TSS series
6 TSS – eliminating hazard on the read to profit TSS applications for processing of experimental data
TSS applications for kinetics evaluation
7 http://www.cisp.spb.ru/
Main Features of the TSS components
データ処理アプリケーション – ADaExpert, TDPro, and RCPro
ADaExpert®, TDPro® and RCPro® are powerful tools for processing of experimental data for
kinetics evaluation. These tools implement CISP proprietary data processing methods.
TSS – eliminating hazard on the read to profit ADaExpert®, TDPro and RCPro can be used as the standalone programs in such fields as
kinetics of chemical processes, study of thermal decomposition, and study of physical properties.
Features
Type of
experiment
supported
ADaExpert
Pseudo-adiabatic
calorimeters (Accelerating
Rate Calorimeter (ARC),
VSP, RSST, DEWAR, and
others.)
TDPro
Various thermo-analytical
experiments (DSC, TDA,
TG, combined technique,
etc.)
Non-adiabatic calorimeters
with pressure response
Unique data
processing
methods
Evaluation of simple
kinetics
The unique advanced
method for thermal
inertia correction
Approximate calculation
of adiabatic TMR as
function of onset
temperature
The Vent Sizing based
on Leung and ISO 4126
methods
Consideration of thermal
expansion of a sample
bomb and its contents
Consideration of
temperature dependent
sample and bomb heat
capacities when
calculating thermal inertia
and heat production
Processing of nonadiabatic data containing
pressure response
Determination of
characteristic points of a
DSC or DTG curve
Dynamic calibration of a
calorimeter
Reconstruction of correct
sample temperature
Statistical analysis of
results of parallel runs
Determination of thermal
conductivity of liquid
substances
Deconvolution of DSC
data (correction of
dynamic distortions due
to thermal inertia)
Determining phase
transition parameters
Determining specific
heat measured under
linear or step-wise
heating, Sapphire
Method
Determining vapor
pressure (choice between
August and Antoine
equations); calculating
gas production
8 RCPro
Reaction calorimetry, data
can include:
- thermal responses
(heat, heat release rate,
temperature)
- pressure
- concentration
responses
Estimation of heat
accumulation in a reactor
(preliminary accident
analysis)
Deconvolution of heat
release rate data
(correction of dynamic
distortions due to thermal
inertia)
Determining vapor pressure (choice between
August and Antoine
equations); calculating gas
production
Processing of
concentration responses
http://www.cisp.spb.ru/ 反応速度解析アプリケーション – ForK®, DesK® and IsoKin®
ForKand DesKare unique state-of-the-art programs that allow:
1. Creation of a kinetic model of a chemical reaction on the basis of experimental data.
2. Simulation of a process or product’s behavior.
General characteristics:
TSS – eliminating hazard on the read to profit Use of the non-linear optimization methods for
estimating parameters of complex multi-stage
reaction models
Highly efficient numerical methods for
integration of differential equations and nonlinear optimization
Simultaneous use of several experimental data
sets for kinetics evaluation; each data set may
correspond to its own type of experiment and
temperature mode
Analysis of the uniqueness of the found set of
kinetic parameters
Import of experimental data from
ADPro/TDPro/RCPro, manual load
Automated determination of adiabatic
Time to Maximum Rate (TMR) and Thermal Stability Analysis
Features
ForK
DesK
Reactors
supported
Well stirred BATCH
Continuous stirred tank;
BACTH, semi-BATCH and Plug Flow
reactors are available.
Thermal modes
Adiabatic,
Heat exchange with the environment (with time-dependent parameters)
Forced temperature mode (sample and environment temperatures coincide)
Time-dependent external heat flux (simulation of fire engulfment)
Type of a kinetic
model
Conversion-based complex multi-stage
formal models
Model design
Friendly method for creation of complex multi stage models doesn’t require programming
Properties
required
Cp(T),
Antoine equation for vapor pressure
Concentration-based complex multi-stage
multi-component descriptive kinetic models
Molar mass, Cp (T), density (T),
Antoine equation for vapor pressure.
Internal property data bases
Link to MIXTURE software
New original model is available in the latest version of ForK. It allows taking into account slow
reaction in the solid substance, its melting and appearance of liquid phase in which reaction is much
faster and proceeds till completion. As opposed to the conventional methods of melting simulation
the model of the melting stage used in ForK is based on the physical model of the event.
Recently new member of TSS had been added. This is the IsoKin program designed for creation of
the so-called model-free kinetics. IsoKin may be useful for preliminary analysis of thermo-analytical
data as well as for fast approximate solution of some practical problems
9 http://www.cisp.spb.ru/ 爆発解析アプリケーション – ThermEx® and ConvEx®
ThermEx and ConvEx are the unique analog-free program packages intended for analyzing the
possibility of thermal explosions at production, application, storage, or transportation of unstable
chemical products.
ThermEx and ConvEx help in prediction, assessment and monitoring of thermal hazards by direct
numerical simulation.
TSS – eliminating hazard on the read to profit They provide:
Determination of critical conditions (package
size, ambient temperature, induction period.)
for complex reacting systems
Automated search of Critical Temperature
and Self Accelerating Decomposition
Temperature (SADT)
Analysis of accidental scenarios (a fire, etc.)
Features
Substance
ThermEx package
Solid
ConvEx package
Liquid
Heat transfer
Thermal conductivity
Thermal conductivity and natural convection
Type of a
kinetic model
Formal models, imported from ForK
Formal models, imported from ForK
Descriptive models; imported from DesK
Possibility is foreseen for manual creation of formal or descriptive models
Geometry
Infinite cylinder, slab and sphere
Barrel, variety of lids
Rectangular box, stack of boxes
Complex User-defined geometry
Sphere;
Barrel
tank-track (tank-wagon)
Shell is available
Shell (container) and inert partitions
Simulation of
pressure rise
Available for a barrel and a box; pressure of
gas products is estimated
Total pressure of vapour and gas products is
calculated
Time-dependent boundary conditions (BC) can be set on each surface of a container separately:
BC of the 1st kind (Surface temperature)
BC of the 2nd kind (Heat flux on a surface)
BC of the 3rd kind (Heat exchange with the environment)
One of the unique features of ThermEx is that the time-dependent heat power can be assigned to any
inert or reactive zone thus allowing simulation of such events as functioning of a heater within the
container with the unstable product and so forth.
10 http://www.cisp.spb.ru/ 反応暴走解析・放散口設計アプリケーション - BST®
攪拌槽を想定して実装置の熱暴走、圧力発生挙動をシミュレーションできます。 また、AIChE/
DIERS 手法に準拠した気液二相流放散を考慮した破裂板や安全弁の口径 計算、および下流配管の
設計が可能です。計算に必要な物性は、内蔵物性データベースから参照します。
The batch stirred tank program, BST®, is designed for simulation of physical and chemical processes
in well-stirred batch tanks utilizing emergency relief systems.
BST is based on DIERS methodology of gas-liquid mixture flowing out of the tank.
TSS – eliminating hazard on the read to profit BST modeling facilities are:
Complex multi stage formal or descriptive
kinetic models imported from ForK or DesK
Tanks of various shapes: sphere, vertical and
horizontal cylinder
Time-dependent heat exchange with
environment
Multi sectional vent system (up to 256
elements)
Vent type: rupture disk or valve; vent position:
top or bottom; pipe inclination can be defined
Flow models:
tank:
bubble, churn turbulent, or foam;
vent system: one phase; two-phase homogeneous
equilibrium or frozen for nozzle;
homogeneous equilibrium or nonequilibrium for pipes.
BST is linked to the MIXTURE software, which provides reliable calculation of properties of ideal and
non-ideal liquid and gas mixtures depending on their compositions and temperature.
BST is the main part of the BST program package which comprises also MIXTURE and VENT
混合物質の物理的性質データベース - MIXTURE®
MIXTURE is a powerful and convenient tool for evaluation of physical properties of liquid and gas
multi- component non-ideal mixtures.
Non-ideality of liquid mixtures can be taken into account during calculation of vapor pressures.
Component activity coefficients are determined by the modified UNIFAC method.
MIXTURE has an internal data base containing properties of 400 substances.
Complete compatibility with other TSS applications (DesK-Pro, ConvEx, BST, InSafer)
MIXTURE provides access to data from commercial databases such as DIPPR 801 and PPDS.
11 http://www.cisp.spb.ru/ 本質安全プロセス設計アプリケーション – InSafer®
InSafer® is intended for optimization and design of inherently safer chemical processes.
The software doesn’t have any commercial analogs. The optimization is aimed at finding an
operational mode that ensures an inherently safer
process, i.e. a process which is as safe as possible
under normal operating conditions and in case of an
accident.
TSS – eliminating hazard on the read to profit The most efficient numerical methods for
integration and non-linear optimization
The choices of different criteria that take into
account both process safety and feasibility.
Simple methods for defining control variables
that are to be optimized and can be applied in
practice.
CISP proprietary unique method for stability
analysis of operation mode of a non-stationary
process
パイプライン設計アプリケーション – VENT®
VENT is designed for calculation of steady -state two- phase flow along a multi-segment pipeline.
The pipeline can contain up to 256 hydraulic elements;
Straight pipes,
Elbows, expanders, contractors,
Valves and rupture disks.
Every element is described by the appropriate set of
parameters.
VENT supports two types of flow models in a pipeline:
One- or two-phase homogeneous equilibrium or
frozen for nozzle;
Homogeneous equilibrium or non-equilibrium for pipes
VENT is linked to the MIXTURE software which provides calculation of necessary physical
properties of gas-liquid mixtures. VENT can be used as the module of the BST package and
as the standalone application
VENT can be used as the module of the BST package and as the standalone application
反応性ランク評価アプリケーション - ReRank®
ReRank is the first commercial software intended for Reactivity Rating of individual substances
and mixtures.
お問合せ先 株式会社 住化技術情報センター 担当者: 岡本 弘 TEL: 06‐6220‐3364 [email protected]‐chem.co.jp FAX: 06‐6220‐3361 12