化学反応の危険性・熱安定性(反応暴走)評価 Ready-solutions Thermal Safety Software (TSS) series CISP 社 の TSS シ リ ー ズ は 、 解 析 目 的 に 合 わ せ 各 種 ア プ リ ケ ー シ ョ ン を 組 合 せ て 使 用 し ま す 。 例えば、DSC 等の熱量データを解析するには、下記に示す推奨ソリューションが準備されています。 (熱分析用ソリューション) The sub-set for thermal analysis この汎用的な基本ソリューションは、TDPro と ForK, and/or DesK, and/or IsoKin で構成されています。 TDPro は、付属の TFC を用い、各種の熱分析(熱量、熱安定性)機器(DSC, DTA, TG および組合せ DSC+TG, DTA+TG)のオリジナル実験データを、反応速度解析ソフトで使用できるように統一データ形式に変換します。 TDPro では、オリジナルのデータを総合的に処理するだけではなく、比熱、熱伝導度等を求めることが可能です。 次に,反応速度を解析するアプリケーション ForK/DesK は、ユーザーが設定した各種の反応モデルについて実験データを 解析し反応速度パラメータを決定します。また IsoKin を用いると、モデルフリーの反応速度解析が可能です。 測定データ変換と解析 反応速度解析 簡易シミュレーション ForK では、反応スキームを、独立反応、併発反応、逐次反応を組み合わせて記述し、それぞれの反応について、N 次反応、 自己触媒反応、触媒反応から選択します。ただし、反応は液相均一反応とします。 次に示す、ADaExpert から転送された実測データに対して、非線形最適化計算を実行して反応速度パラメータを決定します。 簡易シミュレーションの機能より、ARC® の 測定条件(および実測時のφ値)を入力すれば、ARC® 実測データと比較して 最適化結果を検証できます。また、φ= 1 を 入力すればφ補正が可能です。 1 Thermal Safety Software (TSS) series 反応危険性評価ソフト Ready-solutions The subset for adiabatic calorimetry (断熱測定データ解析ソリューション) 断熱熱量計(ARC®、VSP、DEWAR)等は、化学反応の熱的危険性評価に有効であることが知られています。 このソリューションは、断熱下で測定した熱量データを多目的に解析するために CISP 社が提供する TSS の中から選ばれた 最適組み合わせセットです。 ADaExpert, ForK お よ び / ま た は DesK と 各 種 の 反 応 危 険 性 を 評 価 す る ThermEx, ReRank, ConvEx と BST パッケージで構成されています。 ARC® 等を利用した断熱測定データ 測定データ変換と解析 反応速度解析 簡易シミュレーション 反応危険性の評価 ADaExpert ARC®等の断熱熱量計のデータを TSS を使用して解析するための変換ソフトです。温度データ、圧力データの スムージング等の機能があります。 ★反応速度を解析するソフトには、ForK と DesK が準備されています。 ForK シンプルな反応モデルを組み合わせて反応速度を解析するソフトです。 変数は反応率となり物質を特定する 必要はありません。 DesK 濃度を変数として反応速度を解析するため、反応式を定義する必要があります。反応プロセス全体についての 反応性を評価します。 ★反応危険性評価パッケージは、以下のソフトで構成されています。 ThermEx 固相(高粘性液体)の温度分布を熱伝導シミュレーションし熱暴走に至る限界条件を計算します。 ConvEx 液体中の温度分布をシミュレーションし熱暴走に至る限界条件を計算します。 ReRank 対象化学物質の反応性指数を決定します。 BST このパッケージは、バッチ反応を想定して熱暴走をシミュレーションできる他、放散口の設計も可能です。 ★反応危険性を評価する組み合わせパッケージは、研究目的に合わせて変更可能です。 物 質 の 反 応 危 険 性 の 評 価 ・ ラ ン ク 付 け に は 、 基 本 と な る ThermEx, ConvEx, ReRank が 適 し て い ま す が 、 これら 3 ソフトに加え、 BST(The Batch Stirred Tank )も強力な評価ツールとなります。 2 http://www.cisp.spb.ru/ 図1 20%DTBP(ジ-tert-ブチルペルオキシド)トルエン溶液の熱分解挙動 TDPro と ForK によるシミュレーションと測定値を比較 図2 図3 ConvEx を用いたシミュレーション BST を用いたシミュレーション (出典; 住友化学 2001-Ⅰp.67) 3 http://www.cisp.spb.ru/ Kinetics-based simulation – How can this approach help when assessing reaction hazard? Introduction Reaction hazard of a chemical process, along with toxic and fire hazards, is one of the main aspects of the general problem of safety in chemical industry. The term “thermal (or reaction) hazard” covers variety of hazards dealing with heat evolving in a chemical process. Improper choice of operational conditions or accidental deviations from the normal course of an exothermic process may result in development of runaway (thermal explosion) and cause severe consequences. As far as thermal hazard of a chemical product is concerned, the main aim of hazard assessment is the choice of safe conditions of storage, transportation and use of a product. As usual, there is no other way to get data necessary for assessing thermal hazard rather than by experimental study. Typical technique, which is used in this area, is calorimetric data of various kinds. Kinetics-based simulation – Principal solution of the scale-up problem Of course almost all experiments, especially when hazardous materials are investigated, are carried out in the laboratory small scale. At the same time the key problem that has to be solved is the scale-up problem. Among various methods that are used for scaling there is only one almost universal method that allows prediction of reaction course under any conditions of interest. This is kinetics-based simulation. It involves 3 main steps. In the first step: necessary series of calorimetric experiments is carried out. In the second step: the mathematical model of a reaction is created. Finally: the created model is incorporated into the model of a process and the practical target is achieved by using numerical simulation. Is this approach simple? We have to admit that this method is quite complex. In practice the presented procedure turns out to be iterative rather than the plain one. Today this can be resolved by CISP; CISP has designed a problem-oriented system and corresponding software is now available: Thermal Safety Software series (TSS) 4 Example 1. Verification of the software for ERS design Reaction: Isopropanol + Propionic anhydride → Isopropyl Propionate + Propionic Acid Experiment: Adiabatic Calorimetry (Phi‐tech); simultaneous use of 2 data sets: To =25 oC & 35 oC Reactor: Vertical tank, V = 312 liters; U = 270 W/m2/K, S = 1.53 m2 with 1.5 bar vent system The created model was incorporated into the model of a BATCH reactor and the runaway scenario has been simulated. The results are in good accord with the results of the pilot-scale experiment(HSE Round-Robin test) 2. Designing Inherently Safer Semi-Batch Process Reaction: Isopropanol + Propionic anhydride → Isopropyl Propionate + Propionic Acid Reactor: Vertical tank, V = 312 liters; U = 270 W/m2/K, S = 1.53 m2, operating in a semi‐BATCH mode Optimization criterion ‐ Inherent Safety: Max { MPT(Maximal Permissible Temperature) – MTSR(Maximal Temperature of Synthesis Reaction)} Initial Mode (Before optimization) Safe Mode Feed rate is assigned as 10 identical pulses with 3 f = 1.65 dm /min and duration = 10 min each. Feed rate is optimized to fPA = fPA (t) Tmax 106 C, tmax 67 min PA T max 125 C, t max 60 min unsafe Inherent Safety is provided 5 http://www.cisp.spb.ru/ Thermal Safety Software (TSS) series ChemInform St. Petersburg (CISP) has been created in 1994 on the basis of the research department of the Russian Scientific Center “Applied Chemistry” and inherits more than 40 years of experience in investigation of thermal safety of propellants, explosives and other energetic chemicals as well as study of chemical processes and products of general purpose. TSS – eliminating hazard on the read to profit The CISP achievements in methodology for research of reaction hazards and creation of the problem-oriented software are recognized worldwide. Assessing Thermal Hazards of Chemical Processes and Products From experimental study of a reaction through creation of a kinetic model to the mathematical modeling of a process TSS covers the entire spectrum from processing of experimental data to simulation of chemical reactors and runaways of various kinds TSS gives general solution of the crucial challenge of hazard assessment – the scale-up problem TSS applications are addressed to: R&D Centers of Chemical and Pharmaceutical Companies R&D Centers and laboratories dealing with assessment of reactive hazards of dangerous goods Chemical Engineering Departments of Universities Flowchart of the TSS series 6 TSS – eliminating hazard on the read to profit TSS applications for processing of experimental data TSS applications for kinetics evaluation 7 http://www.cisp.spb.ru/ Main Features of the TSS components データ処理アプリケーション – ADaExpert, TDPro, and RCPro ADaExpert®, TDPro® and RCPro® are powerful tools for processing of experimental data for kinetics evaluation. These tools implement CISP proprietary data processing methods. TSS – eliminating hazard on the read to profit ADaExpert®, TDPro and RCPro can be used as the standalone programs in such fields as kinetics of chemical processes, study of thermal decomposition, and study of physical properties. Features Type of experiment supported ADaExpert Pseudo-adiabatic calorimeters (Accelerating Rate Calorimeter (ARC), VSP, RSST, DEWAR, and others.) TDPro Various thermo-analytical experiments (DSC, TDA, TG, combined technique, etc.) Non-adiabatic calorimeters with pressure response Unique data processing methods Evaluation of simple kinetics The unique advanced method for thermal inertia correction Approximate calculation of adiabatic TMR as function of onset temperature The Vent Sizing based on Leung and ISO 4126 methods Consideration of thermal expansion of a sample bomb and its contents Consideration of temperature dependent sample and bomb heat capacities when calculating thermal inertia and heat production Processing of nonadiabatic data containing pressure response Determination of characteristic points of a DSC or DTG curve Dynamic calibration of a calorimeter Reconstruction of correct sample temperature Statistical analysis of results of parallel runs Determination of thermal conductivity of liquid substances Deconvolution of DSC data (correction of dynamic distortions due to thermal inertia) Determining phase transition parameters Determining specific heat measured under linear or step-wise heating, Sapphire Method Determining vapor pressure (choice between August and Antoine equations); calculating gas production 8 RCPro Reaction calorimetry, data can include: - thermal responses (heat, heat release rate, temperature) - pressure - concentration responses Estimation of heat accumulation in a reactor (preliminary accident analysis) Deconvolution of heat release rate data (correction of dynamic distortions due to thermal inertia) Determining vapor pressure (choice between August and Antoine equations); calculating gas production Processing of concentration responses http://www.cisp.spb.ru/ 反応速度解析アプリケーション – ForK®, DesK® and IsoKin® ForKand DesKare unique state-of-the-art programs that allow: 1. Creation of a kinetic model of a chemical reaction on the basis of experimental data. 2. Simulation of a process or product’s behavior. General characteristics: TSS – eliminating hazard on the read to profit Use of the non-linear optimization methods for estimating parameters of complex multi-stage reaction models Highly efficient numerical methods for integration of differential equations and nonlinear optimization Simultaneous use of several experimental data sets for kinetics evaluation; each data set may correspond to its own type of experiment and temperature mode Analysis of the uniqueness of the found set of kinetic parameters Import of experimental data from ADPro/TDPro/RCPro, manual load Automated determination of adiabatic Time to Maximum Rate (TMR) and Thermal Stability Analysis Features ForK DesK Reactors supported Well stirred BATCH Continuous stirred tank; BACTH, semi-BATCH and Plug Flow reactors are available. Thermal modes Adiabatic, Heat exchange with the environment (with time-dependent parameters) Forced temperature mode (sample and environment temperatures coincide) Time-dependent external heat flux (simulation of fire engulfment) Type of a kinetic model Conversion-based complex multi-stage formal models Model design Friendly method for creation of complex multi stage models doesn’t require programming Properties required Cp(T), Antoine equation for vapor pressure Concentration-based complex multi-stage multi-component descriptive kinetic models Molar mass, Cp (T), density (T), Antoine equation for vapor pressure. Internal property data bases Link to MIXTURE software New original model is available in the latest version of ForK. It allows taking into account slow reaction in the solid substance, its melting and appearance of liquid phase in which reaction is much faster and proceeds till completion. As opposed to the conventional methods of melting simulation the model of the melting stage used in ForK is based on the physical model of the event. Recently new member of TSS had been added. This is the IsoKin program designed for creation of the so-called model-free kinetics. IsoKin may be useful for preliminary analysis of thermo-analytical data as well as for fast approximate solution of some practical problems 9 http://www.cisp.spb.ru/ 爆発解析アプリケーション – ThermEx® and ConvEx® ThermEx and ConvEx are the unique analog-free program packages intended for analyzing the possibility of thermal explosions at production, application, storage, or transportation of unstable chemical products. ThermEx and ConvEx help in prediction, assessment and monitoring of thermal hazards by direct numerical simulation. TSS – eliminating hazard on the read to profit They provide: Determination of critical conditions (package size, ambient temperature, induction period.) for complex reacting systems Automated search of Critical Temperature and Self Accelerating Decomposition Temperature (SADT) Analysis of accidental scenarios (a fire, etc.) Features Substance ThermEx package Solid ConvEx package Liquid Heat transfer Thermal conductivity Thermal conductivity and natural convection Type of a kinetic model Formal models, imported from ForK Formal models, imported from ForK Descriptive models; imported from DesK Possibility is foreseen for manual creation of formal or descriptive models Geometry Infinite cylinder, slab and sphere Barrel, variety of lids Rectangular box, stack of boxes Complex User-defined geometry Sphere; Barrel tank-track (tank-wagon) Shell is available Shell (container) and inert partitions Simulation of pressure rise Available for a barrel and a box; pressure of gas products is estimated Total pressure of vapour and gas products is calculated Time-dependent boundary conditions (BC) can be set on each surface of a container separately: BC of the 1st kind (Surface temperature) BC of the 2nd kind (Heat flux on a surface) BC of the 3rd kind (Heat exchange with the environment) One of the unique features of ThermEx is that the time-dependent heat power can be assigned to any inert or reactive zone thus allowing simulation of such events as functioning of a heater within the container with the unstable product and so forth. 10 http://www.cisp.spb.ru/ 反応暴走解析・放散口設計アプリケーション - BST® 攪拌槽を想定して実装置の熱暴走、圧力発生挙動をシミュレーションできます。 また、AIChE/ DIERS 手法に準拠した気液二相流放散を考慮した破裂板や安全弁の口径 計算、および下流配管の 設計が可能です。計算に必要な物性は、内蔵物性データベースから参照します。 The batch stirred tank program, BST®, is designed for simulation of physical and chemical processes in well-stirred batch tanks utilizing emergency relief systems. BST is based on DIERS methodology of gas-liquid mixture flowing out of the tank. TSS – eliminating hazard on the read to profit BST modeling facilities are: Complex multi stage formal or descriptive kinetic models imported from ForK or DesK Tanks of various shapes: sphere, vertical and horizontal cylinder Time-dependent heat exchange with environment Multi sectional vent system (up to 256 elements) Vent type: rupture disk or valve; vent position: top or bottom; pipe inclination can be defined Flow models: tank: bubble, churn turbulent, or foam; vent system: one phase; two-phase homogeneous equilibrium or frozen for nozzle; homogeneous equilibrium or nonequilibrium for pipes. BST is linked to the MIXTURE software, which provides reliable calculation of properties of ideal and non-ideal liquid and gas mixtures depending on their compositions and temperature. BST is the main part of the BST program package which comprises also MIXTURE and VENT 混合物質の物理的性質データベース - MIXTURE® MIXTURE is a powerful and convenient tool for evaluation of physical properties of liquid and gas multi- component non-ideal mixtures. Non-ideality of liquid mixtures can be taken into account during calculation of vapor pressures. Component activity coefficients are determined by the modified UNIFAC method. MIXTURE has an internal data base containing properties of 400 substances. Complete compatibility with other TSS applications (DesK-Pro, ConvEx, BST, InSafer) MIXTURE provides access to data from commercial databases such as DIPPR 801 and PPDS. 11 http://www.cisp.spb.ru/ 本質安全プロセス設計アプリケーション – InSafer® InSafer® is intended for optimization and design of inherently safer chemical processes. The software doesn’t have any commercial analogs. The optimization is aimed at finding an operational mode that ensures an inherently safer process, i.e. a process which is as safe as possible under normal operating conditions and in case of an accident. TSS – eliminating hazard on the read to profit The most efficient numerical methods for integration and non-linear optimization The choices of different criteria that take into account both process safety and feasibility. Simple methods for defining control variables that are to be optimized and can be applied in practice. CISP proprietary unique method for stability analysis of operation mode of a non-stationary process パイプライン設計アプリケーション – VENT® VENT is designed for calculation of steady -state two- phase flow along a multi-segment pipeline. The pipeline can contain up to 256 hydraulic elements; Straight pipes, Elbows, expanders, contractors, Valves and rupture disks. Every element is described by the appropriate set of parameters. VENT supports two types of flow models in a pipeline: One- or two-phase homogeneous equilibrium or frozen for nozzle; Homogeneous equilibrium or non-equilibrium for pipes VENT is linked to the MIXTURE software which provides calculation of necessary physical properties of gas-liquid mixtures. VENT can be used as the module of the BST package and as the standalone application VENT can be used as the module of the BST package and as the standalone application 反応性ランク評価アプリケーション - ReRank® ReRank is the first commercial software intended for Reactivity Rating of individual substances and mixtures. お問合せ先 株式会社 住化技術情報センター 担当者: 岡本 弘 TEL: 06‐6220‐3364 [email protected]‐chem.co.jp FAX: 06‐6220‐3361 12
© Copyright 2024 ExpyDoc