演習問題 2015.7.7 系列データモデリング Sequential Data Modeling 演習問題 2014.7.22 系列モデリング Sequential data modeling 名前 Name ID No. No. n1 n2 n3 n4 nn35 nn62 n7n1 n0 名前 Name 以下のように品詞の異なる系列を設定します。 以下のように品詞の異なる系列を設定する。 Weset setthe thedifferent differenttag tag sequences follows. We sequences as as follows. タグ系列 (tag sequence) Time flies like an arrow 1 N V P D N 2 A N V D N 3 V N P D N ※ 系列の意味はそれぞれ:N=名詞 ・V=動詞 ・P=前置詞 ・D=冠詞 ・A=形容詞 The meaning of each tag is: N=Noun, V=Verb, P=Preposition, D=Definite A= Adjective <意味> タグ列1: 光陰矢のごとし タグ列2: 矢が好きな時蝿 タグ列3: 矢のような蝿の時間を計れ <mean> tag1: Time flies like an arrow tag2: The time flies which likes an arrow tag3: Measure time of flies such as a arrow Submit to : B7F, Augmented Human Communication Lab, Submit Box Submit to: 7/14 : B7F,AM9:00, Augmented Human Communication Lab, Submit Box Deadline Questions to TA (e-mail: [email protected]) 1 演習問題 2014.7.22 系列モデリング Sequential data modeling 演習問題 2015.7.7 Sequential Data Modeling Q1. タグ列1の遷移 生成 T ・系列データモデリング E ・ 大文字 CAPS それぞれの素性関数を求めよ。全12個あり。 Find the transition, emission and caps features of the tag sequence 1. There are 12 features in total. Q1. タグ列1の遷移 T ・ 生成 E ・ 大文字 CAPS それぞれの素性関数を求めよ。全12個あり。 Find the transition, emission and caps features of the tag sequence 1. There are 12 features in total. Answer Answer 2 2 2 演習問題 2014.7.22 系列モデリング Sequential data modeling 演習問題 2014.7.22 系列モデリング Sequential data modeling 演習問題 2014.7.22 系列モデリング Sequential data modeling 演習問題 2015.7.7 系列データモデリング Sequential Data Modeling それぞれの重みを以下のように設定する。 それぞれの重みを以下のように設定する。 それぞれの重みを以下のように設定する。 We We set set the the weight weight vectors vectors as as follows. follows. We set the weight vectors as follows. w =2 w = n1 w =1 wT,<S>,N wT,N,V wT,V,P T,<S>,N = 2 T,N,V = n1 T ,V,P =1 wT,<S>,N==nw2 wT,N,V w= n1 = n w =1 T ,V,P w w = 3 = w = w = n 2 T ,<S>,A 6 0 T,N,V T,V,P = 3 wT,D,N w wT,N,</S> = n T,D,N = n2 T,<S>,N T ,<S>,A T,N,</S> wT,D,N = nw2 3 wT,N,</S> = n66= - n wT w ,<S>,A == = n w w = 2 w = 2 w = n T,D,N 1 T,N,</S> 0 T,<S>,A 7 wT,V,D wT,<S>,V wT,V,N T,V,D = 2 T,<S>,V = 2 T,V,N = n7 wT,V,D = 2wT,V,D = wT,<S>,V = 2 w = n wT,<S>,V = wT,V,N = T,V,N 7 + n1 w w =1 w = 22 E,V," flies" =1 E,P,"like" w =1 w =1 wE,N,"Time" = E,V," flies" E,P,"like" E,N,"Time" w = wE,V," wE,V,"flies" wE,P,"like"=1 = =1 = wE,P,"like" wE,N,"Time" =E,N,"Time" 2 flies" w = nn4 w =1 w =1 flies" wE,N,"arrow" wE,A,"Time" =1 = wE,N," E,N," flies" = E,N,"arrow"w=1 E,A,"Time" = w w = n4 wE,N," wE,N,"arrow" =1 wE,A,"Time" =1 E,N,"arrow" E,A,"Time" E,N,"flies" flies" = n43 w = n wE,V,"Time" n7 wE,V,"Time" E,V,"Time" = wE,V,"Time" = n77 = n2 + n3 w w = nw 55 = 3 - nw w =1 wCAPS,V =1 wCAPS 1 ,,V wCAPS,N w3 CAPS,A =1 = 1 CAPS V CAPS,N = n CAPS,N CAPS,A CAPS,A wCAPS ,V 1 wCAPS,N = n 5 wCAPS,A =1 タグ列1のスコアを求めよ。 タグ列1のスコアを求めよ。 タグ列1のスコアを求めよ。 Find Find score score of of tag tag sequence sequence 1. 1. Find score of tag sequence 1. Q2. Q2. Q2. w =1 wTT,P,D ,P,D =1 wT ,P,D= =1 w 4 w T,A,N = wT,P,D = 4 T,A,N w = 4 w T,A,N== n w T,N,P = n3 wT,A,N T,N,P 3 w wT,N,P T,N,P==n2n3 w E,D,"an" =1 w =1 E,D,"an" wE,D,"an" ==1 w E,D,"an" w =1 E,V,"like" w =1 E,V,"like" w = wE,V,"like" =1 E,V,"like" Score of tag sequence 1 : Score of tag sequence 1 : 3 3 3 演習問題 2014.7.22 系列モデリング Sequential data modeling 演習問題 2015.7.7 Sequential Data Modeling 演習問題 2014.7.22系列データモデリング 系列モデリング Sequential data modeling Q3. タグ列2とタグ列3のスコアを求めよ。 また,どちらが最大になるか。 Find the score of tag sequence 2 and tag sequence 3. And which tag sequence is maximum? Q3. タグ列2とタグ列3のスコアを求めよ。 また,どちらが最大になるか。 Find the score of tag sequence 2 and tag sequence 3. And which tag sequence is maximum? Score of tag sequence 2 : Score of tag sequence 23 : Score of tag sequence 3 : Maximum tag sequence: Maximum tag sequence: 4 4 4 演習問題 2014.7.22 系列モデリング data 演習問題2015.7.7 2014.7.22系列データモデリング 系列モデリング Sequential Sequential data modeling modeling 演習問題 Sequential Data Modeling Q4. Q4. 正解の素性ベクトルとスコア最大の素性ベクトルを利用し、重みの更新を行え。 正解の素性ベクトルとスコア最大の素性ベクトルを利用し、重みの更新を行え。 Update Updatethe theweights weightsvector vector using usingcorrect correct features featuresand andfeatures featureswhich whichisismaximum maximum score. score. ただし、タグ1列を正解の素性ベクトルとする。 ただし、タグ1列を正解の素性ベクトルとする。 We Weassume assumethat thattag tagsequence sequence 11isiscorrect correctfeatures. features. Answer Answer wwT,<S>,N T,<S>,N wwTT,N,V ,N,V wwE,N,"Time" E,N,"Time" w wE,V," E,V,"flies" flies" wwCAPS,N CAPS,N w wCAPS,A CAPS,A w wTT,V,P ,V,P w wTT,P,D ,P,D wwTT,D,N ,D,N wwTT,N,</S> ,N,</S> wwTT,<S>,A ,<S>,A wwTT,A,N ,A,N wwTT,V,V, D, D wwE,P,"like" E,P,"like" wwE,D,"an" E,D,"an" w wCAPS,V CAPS,V wwTT,<S>,V ,<S>,V wwTT,V,N ,V,N wwTT,N,P ,N,P wwE,N,"arrow" E,N,"arrow" wwE,A,"Time" E,A,"Time" w wE,N," E,N,"flies" flies" wwE,V,"like" E,V,"like" wwE,V,"Time" E,V,"Time" 5 55 演習問題 2015.7.7 系列データモデリング Sequential Data Modeling <おまけ課題 (Extra question)> 第3回,第4回の演習問題では、学生の居場所の系列が観測された際のやる気の状態を推定するようなHMM を扱った。このように、観測されるデータから学生のやる気の高低を予測するのに構造化パーセプトロンを用 いたい場合、どのような素性を用いるのがよいか考察せよ。(居場所以外の追加の素性を3つ以上提案せよ) In 3rd and 4th assignment, we used HMM to estimate student’s motivation from observed sequence of his location. Similarly, we want to predict whether student’s motivation is High or Low with CRF from any observed data. Give your opinion what features would be effective. (Propose at least 3 features other than location) 6
© Copyright 2024 ExpyDoc