第4回 計画研究B02若若⼿手研究会@早稲⽥田⼤大学 8/31-‐‑‒9/1 暗⿊黒物質由来のスペクトル 神戸大学 M2 橋本 隆 1. 2. 3. 4. 暗黒物質探索手法 エネルギースペクトル 角度スペクトル まとめ 1. 暗黒物質探索手法 暗⿊黒物質探索索⼿手法 sues for the detection via WIMP-nucleus elastic scatterings. Direct e• direct evidence of the existence of the dark matter in the halo of WIMPと原⼦子核との弾性散乱を検出し、暗⿊黒物質特有の信号を得る on, the framework of the direct detection focusing on the – theoretical エネルギースペクトルの季節変動 ed[33].– 到来⽅方向の異異⽅方性 到来⽅方向異異⽅方性(数倍) 季節変動(数%) 座 白鳥 ctrum od is to detect the 座 鳥 白 energy deposition on the DM Nucleus θ nucleus via WIMP-nucleus hus the calculation of the expected energy spectrum is the first step Because we are on the Earth, the relative velocity between the Earth xy affects the expected energy spectrum. The solar system rotates in 後 rotates around of 8 kpc from the center of the galaxy, and the Earth ity of the Earth relative to the galactic halo is written as vE (= |vE |) = vsun + vorb cos θorb sin 2πy ≃ 244 + 15 sin(2πy) [km/sec], 前 cosθ (2.1) vsun: 銀河ハローに対する太陽の相対速度度 vobs: 太陽の周りを回る地球の公転速度度 θobs: 銀河⾯面と地球の公転⾯面がなす⾓角 y: 3⽉月2⽇日から経過した時間を年年で表したもの y of the Sun relative to the galactic halo, vorb is the orbital rotation 3 2. エネルギースペクトル n0 3 n0 3 n ≡ dn , (2 dn = f (v, v )d v, dn = f (v, v )d v, (2.2) E : The schematic view of the motionkEof the Sun and the Earth in our 0galaxy. k ! 0 ! ! ! ! ! ! v 2π +1 v esc esc vesc +1 of the Sun and v ure 2.1.1: The schematic view2π of the motion the escEarth in our galaxy. 2 vE )v 2 dv , n ≡ dn , k = dφ d(cos θ) f (v, 0 where k is the constan dn , k = dφ d(cos θ) f (v, v )v dvnormalize , as density of WIMPs, dn, with the velocity of v ∼ v + dv isEwritten WIMPの数密度度分布dnは WIMPの数密度度 0 of WIMPs,0 dn, with 0−1 −1of v ∼0 v + dv is0 written as umber density the velocity n0 the escape velocity of the galaxy 3 dn = f (v, v )d v, (2.2) n e normalize constant, n is the total number of WIMPs in our galaxy, E 0 3 0 lize constant, n0 isdnthe of WIMPs in our (2.2) galaxy, vesc isvesc =k total f (v, vEnumber )d v, ! vesc ! 90 ! !2π k !! +1 ! Lewin, v angle taking WIMP velo ! azimuth J.D. Smith/Astroparticle Physics 6 (19%) 87-11 locity of the galaxy, θ is the vEWIMP and WIMP velocity, and φ v 2π +1angle between vesc esc PE esc n : WIMPの全数密度度 2 the galaxy, θ is the angle between v and velocity, and φ is o 2 E ≡ n0 ≡ dn , dn , k =k = dφ d(cosθ)θ) f (v,fv(v, , dφ d(cos , dv E )v E )vvdv k: 規格化定数 0 0 vector −1 as a zenith. 0the 0 0 and 0 velocity distribution da eWIMP taking WIMP velocity Assuming a Boltzmann distributio distribution, is the local Galactic escape velocity; dndistribution, is thenof thethe particle velocity vector asuesc a −1 zenith. Assuming a Boltzmann s the normalize constant, isthe the total totalwithin number of of WIMPs galaxy, vesc is v 0 velocities with relative d3v about v.in our ormalize constant, n0 nis number WIMPs in our galaxy, esc is istribution of the dark matter f (v, v ) is written as WIMPは銀河の重⼒力力に束縛され、熱平衡状態になっていると考られる。 E on of the dark matter f (v, v ) is written as e velocity of the galaxy, θ is theMaxwellian angleE between vE matter and WIMP velocity, and φ is We θassume dark ty よって WIMPの速度度分布はボルツマン分布に従うと考えられており of the galaxy, is thea angle between v and velocity WIMP distribution: velocity, and φ is E 2 /v 2 ngle taking WIMP velocity vector as a zenith. Assuming a Boltzmann distribution, −(v+v ) E 2 2 0 , 2 /v 2 f (v, v ) = e −(v+v ) E E king WIMP velocity as a zenith. a Boltzmann distribution,(2.3) 0Assuming f(Y,Q)vvector (v, ) == ee--(“+“E) , as ty distribution of f the darkEmatter f (v, vE ) is /uo; written vo: 分散速度度 (2 where v0 is the velocity dispersio ibution of the dark matter f (v,−(v+v vE ) is written as 2 2 E ) /v0and if the galaxy rotation velocity is flat, he v velocity dispersion our (v,of v=E )00, = e galaxy , (2.3) then, for fuesc =∞ とした時 esc ty dispersion of our galaxy−(v+v and if)2 /vthe galaxy rotation velocity is flat, it 2 becomes rotation velocity. The no E 0 , f (v, e constant (2.3) or not tion The normalize is derived caseisvflat, E) = esc is is the velocity. velocity dispersion ofvour galaxy and if the kgalaxy rotation in velocity it infinite k = klJconstant = (m;)3’2; city. The normalize k is derived in case vesc is infinite or not as otation velocity. The normalize constant k is derived in case v is infinite or not as esc 2 3/2 elocity dispersion of our galaxy and if the galaxy rotation velocity is flat,give it k whereas the distribution truncated ’ at 1v +(vVE j==uesc would k =same k20 = (πv ) ∞) (2 vescが有限であるとすると esc 0 3/2 % k= k0" ) 02$ (v = ∞) k= = k(πv = (πv )3/2 k is derived (v = esc ∞) (2.4)or not as(2.4)" 0# esc 0 velocity. " The normalize constant in case v is infinite % %2 # " #$v $vesc 2 v 2 2 vesc 2 esc −v /v esc -&& 0 esc −vesc2/v022 e vosc &= k = k1 = k0 (2e k k==kk11 = =kk0 k=kt=ka −5esc ̸= (2.5) ∞), v 2 (v 0verf esc: 脱出速度度 escerf esc −2 e = ̸ ∞), (v erf −v /v esc 1/2 esc 1/2 0 2 3/2 vLO v0 k1 = k0 erf k = k0 =v− (vescesc≠=∞) ∞), 0 (πv 001/2 )π v0πe (v (2.4)(2.5) v0 " v#0 $ π % & 2 & x −t22 & x −t 2 v (x) ≡2 π1/2 x0 e−t dt is thevesc error function. 2 2 esc 2 −v --+ co. Derivations of these and subsequent results are g so k, + ko as vex esc /v0 2 ≡k−t e dt is the error function. = k = k erf − e (v = ̸ ∞), (2.5) 2 1/2 1 0 esc 0 where erf(x) ≡ e dt is t π 1/2 v0days π600per 0 e dt event is the 0target π 1/2 h/k, km s-’ is(see Appendix B), we obtain = 0.9965. 23Okms-‘, ~esc=mass ifferential rateerror R pervfunction. . ---e lr’J2 lJ0 1, , σ depends on the momentum transfer. In this section, we discuss the cros WIMPの計数率率率 mentum transfer σ . The cross section taking account of the momentum transfer pends on the momentum this section, discussaccount the cross of section ro momentum transfertransfer. σ0 . TheIn cross sectionwetaking the momentum he error function. 0 latter section 2.3. 運動量量移⾏行行が0と考えσ=σ (定数)とした discussed in the The total event rate 0R is derived by in per target mass per 2.3. daysTheis total sedWIMPの微分係数率率率は in the latter section on (2.6) as ) as dR = event rate R is derived by integrating ! [tru]=[counts/kg/day] NA ! N 0 N 0 [dru] σvdn, (2.6) R = σ vdn [tru] [dru]=[counts/keV/kg/day] 0 R = σ vdn (2.7) 0 A A A N : アボガドロ数 A 26 σ: WIMPと原⼦子核の散乱断⾯面積 rate R0 for vE=∞の時の全計数率率率は 0for and =0∞ isnumber described as the rate R=0A vvEesc=mass and vesc = ∞ is described as rntal(6.02×10 ), is the of target nucleus, v= vevent =0、v E esc 2 the NA ρtarget, D 2 N σ ρis the WIMP-nucleus cross section. y relative R0 = to σ0 v 0 A D (2.8) 1/2 R σ0 v 0 A MD1/2 MD: WIMPの質量量 π0 = " π #" # " # A MD ρ MN: 標的原⼦子核の質量量 361 σ0 v0 " # " # D# " = , (2.9) [tru] (=0.932A) 361 0.3 GeV/c σ0 2 /cm3 ρDkm/s v0 MD M 1 pb 220 28 N = , 2 3 MD MN 1 pb 0.3 GeV/c /cm 220 km/s he mass density of the dark matter, MD is the mass of the dark matter, MN (= 規格化 of the target nucleus. The dark Equation (2.9) is by σ0 of = the 1 pb,dark matte ρeDmass is the mass density of the matter, Mnormalized D is the mass , ρD = 0.3 GeV/c2 /cm3 . ) is the mass of the target nucleus. The Equation (2.9) is normalized by σ0 2 a mass 3 MN caused by an elastic scattering of the the0.3 nucleus with 0energy km/s,ERρDof = GeV/c $ /cm . % with the kinematic energy E = 12 MD v 2 in the laboratory system is recoil energy ER of the nucleus with a mass MN caused by an elastic scatteri % ER = Er (1 − cos θ) $/2, 1 (2.10) 2 atter with the kinematic energy E = 2 MD v in the laboratory system is r= 4MD MN , (2.11) 2 Er 3. c= /cm . dEρRD = 0.3 GeV/c $ 1 % 220 km/s, Emin /cm 2 ! vmax dark matter with the kinematic energy E = 2 MD v in the laborato 2 obtained as 1 v The recoil energy of theM nucleus with mass by an elasticofscattering of the 0 aby N caused nucleus with = aERmass an%Melastic the N caused dR(0, ∞) scattering R dR(v), $ = e , E r E0 r2 % energy v 2 = 12 MD v2 in dE k matter with$the 1kinematic the laboratory system is vmin E ! " 2/2)のWIMPに⾓角度度θ(重⼼心 v v)Er kis dR(0, ∞) θ) /2, R EdR(0, = (1 − cos c energy E = 2 MD v in the laboratory system 実験室系で標的原⼦子核が運動エネルギーE(=M R D = e − e , dE k dE E r ! # $ # $" dR(v , ∞) R π the v v +v E v(2.10) −v he 系)で散乱した時の反跳エネルギーは minimum kinetic energyEof WIMP capable to give energy to = Er (1 − cos θ) /2, R = erf −R erf 4M dE E r D 4 M v N v v ! " ここで、 E = Er (1 − cos θ) /2, (2.10) ra,= dR(v v ) k dR(v , ∞) R , R the maximum kinetic energy of WIMP laboratory system, E. 0 is = − 2 e 4MD MN in dE k dEM )E r (M + D N r = , (2.11) 2shows the normalized energy spectrum. v02 Figure 2.1.2 D + MN ) using Equation (2.6), (2.2), = v2 E. The energy is(Mobtained 4MD Mspectrum N where θ is the scattering angle in the center of mass system, r is the r= , center (2.11) ereエネルギースペクトルは θ is the scattering angle in2 the of mass system, r is the reduced mass. Assuming 1 (MD + M N) ! v the scattering is isotropic in the center of mass system, cosflat θ distribu max scattering cos0.9θ distribution become and ER dR is isotropic R0 kin 1 of mass system, 0 the center 3 the center of mass system, r isvE the reduced mass. Assuming =in the f (v, )d v. (2.12) dR 0.8 oin becomes flat 0 ≤ E ≤ Er region. Then the energy spectrum is written as R also becomes flat in the 0 ≤ E ≤ Er region. Then the energy spectr dER dER E0 r k vmin v R 0.7 es center of mass system, cos θ distribution become flat and ER ! Emax 0.6 ! ofEmax dR the specific 1 formula dR(0, ∞)of Equation R0 −E /E r (2.12), gration energy spectra are dR = e , (2.13) = dR(E) dR 1 as 0.5 is written dER region. E0 r Then the R ≤ Er dERenergy Espectrum Er dE ! " =0.4 R dR(E) dR(0, vesc ) k0 dR(0, ∞) −E /E r R0 −v /v min! = e − e vmax R v02 0.3(2.14)Emin Er 1 , dE dER dER E0 r !k1 E1/2 $ # $" dR(v), = ! vmax 2 max ! # dR(vE , ∞) R0 π v0 1 vmin + vE vrmin − vE v 2 dR E 0.2 v0 vmin = erf − erf 0 , (2.15)1 dR(E) dER = E0 r 4 vE v0 v0 =0.1 dR(v), ! dE Er R0 −v /v " 2 dR(vR k0Emin dR(vE , ∞) E , vesc ) E r v 0 ere Emin = E energy of WIMP capable give the energy ER to vto = R /r is the − e kinetic . min 0(2.16) ! R vminimum 29 0 1 2 3 4 5 6 7 8 9 10 dER k1 dE E r 0 2 max E (normalized energy) 1 v r arget Emaxenergy is the maximum kinetic energy of WIMP in a laboratory Esystem, E0 is 0 .2 showsnuclei, the normalized spectrum. = dR(v), 2 where Eminr 2= Ev0R /rv 2is the minimum kinetic energy of WIMP capable WIMPと標的原子核(F)における反跳エネルギー fined as E0 = 12E M0D v0 = E. The energy spectrum is obtained using Equation (2.6), (2.2), vmin v2 Figure 2.1.2: The normalized energy spectrum of nucleus caused by an elastic scatterin の規格化されたエネルギースペクトル F is assumed for the target. a as target nuclei, Emax is the maximum kinetic energy of WIMP in a 1 d (2.3) ! v02 vmax 1to give the energy ER to mum kinetic energy of 1dRWIMP 2R0 kcapable エネルギースペクトル 0 R esc R 0 R 0 R 2 esc 0 2 esc 0 1 0 min E R E 0 E 0 2 0 2 /v 2 −vesc 0 0 2 0 0 rate) 19 min E 0 E0r dR (normalized event rate) R0 dE R 0 1/2 2 /v 2 −vesc 0 0 R 0 esc E 0 −ER /E0 r 1 E R −ER /E0 r 0 用いて次のように表すことができる。 (p) e to the Spin-Independent(SI) and(p) Spin-Dependent(SD) interactions, respectively, fTG = 1 − q=u,d,s fTq , 2 diagrams of each interaction are shown in Figure 2.2.1. λ2 J(J + 1) or n(neutro ! ”odd”(n) SDnucleon; SD µχ−N where refers an unpaired p(proton) (n) subscript σχ−N = σχ−p 2 fTG = 1 − q=u,d,s fTq . µχ−p 0.75 l l s s = the orbital and spin nucleon g-factor; g = 1, g = 0, g = 5.586 and g p n p n n Independent (SI) cross section 2 表 2.1 にいくつかの標的核種に対する λ J(J + 1) の値をまとめる。 (n)WIMPがニュートラリーノであった場合、散乱にはSpin Independent(SI)と 2 J(J + 1)/a 2 J(J + SI 2 µ A2 and the spin J, measured the calculated Λ (≡ λ , therefore σ ∝ µ is practically derived. Thus, the mag odd χ−N χ−N Tq section of SI interaction is written as Spin dependent(SD)が考えられる。それぞれのニュートラリーノと原⼦子核 原子核中の陽子の寄与 SI , is の弾性散乱の散乱断⾯面積は written using nucleus. neutralino-proton SI cross section; σ for somebytarget For experimental use, the SD cross 2section is wr χ−p 2 4µ 元素 J 自然存在比 (%) λ J(J + 1) 散乱断⾯面積 SI σχ−N = χ−N [Zfp + (A − Z)fn ]2 , 1 (2.18) H 1/2SD 2 100 0.750 2π 2 µ µ 対する SD 反応の散乱断面積は、陽子に対する SI 反応の散乱断面積 σ を χ−N 2 7 χ−p χ−N λ J(J + 1) SI SI SD Li SD 3/2 92.5 0.244 σ = σ A . (2.22) σ = σ . A are theχ−N atomic number mass number of a target, respectively. µ is the χ−p and χ−N すことができる。 χ−N 19 χ−p 2 µ2χ−p F 1/2 µχ−p 100 0.75 0.647 of the neutralino mass2 MD2 and a target mass MN , 23 Na 3/2 100 0.0041 SD SD µχ−N λ J(J + 1) σχ−N = σχ−p (2.22) σ : 陽 子との散乱断面積 2 127 SI-interacting χ-‐p 0.75 MA a target large isσNSD effective I 5/2 100 neu0.007 SDµwith SD for χ−p SD DM Valueselement of σ /σ and /σ for some target nucleus are shown µ = . (2.19) χ−N χ−p M + Mχ−N χ−n ここで χ−N 133 Cs 7/2 100 cross 0.052 D N 2 the SI cross λsections normalized by neutralino-proton SI 標的核種に対する J(J + 1) の値をまとめる。 Figure 2.2.4, respectively. e proton-neutralino and neutron-neutralino SI couplings, respectively. They are s. 原子核中の中性子の寄与 原子核中の陽子の寄与 (p) (n) e sum of the neutralino-quarks SI couplings, fTq and fTq as λ2(%) J(J λ+2 J(J 1) + 1)unpair 元素 J Isotope 自然存在比 (%)J λ2 J(JAbundance(%) + 1) 元素 J µmag 自然存在比 1 1 H100 (p) α1/2 # # H 1/2 fp α3q 3 He 1/22.793 20.750 1.3 × 10−4 0.750 0.928 3q (p) 100 p = f + f (2.20) 7 T TG 29 Li M 3/2 92.5 q Mq 0.244 732 27 Mq Si 1/23.256 4.7 0.063 p Li 3/2 92.5 0.244 p q=u,d,s q=c,t,b 19 F 1/2 100 0.647 73 0.065 # 11 B (n) α3q α3q Ge 9/22.689 7.8 fn 2 (n) #80.1 23 3/2 0.112 p Na 3/2 100 0.0041 = fTq + fTG , 129 Xe 1/2 (2.21) 26.4 0.124 270.007 Mq 15 N 127 n q I M 5/2 100 M1/2 q=u,d,s q=c,t,b 0.4 −0.283 21.2 0.087 0.055 p 131 Xe 3/2 133 Cs 7/2 100 0.052 19 F 183 1/2 100 and 0.647 0.003 p W 1/22.629 14.3 The and M are the mass of the proton, the neutron quarks, respectively. n q 23 (p) (p) (n) (n) 100 表 2.218 0.041 p ue of the fTq原子核中の中性子の寄与 , fTq , Na fTG and3/2 fTG are calculated from mass of quarksλ2and 2.1:the 標的核種に対する J(J + 1) の値 [?]。 9 10 19 8 10 SD SD / σDM-p σDM-N SI SI / σDM-p σDM-N 中村輝石博士論文2014年3月京都大 F 73 Ge 128 Xe 102 107 6 10 10 7 Li 19 F 5 23 10 Na 127 I 2 10 1 3 102 10 MD [GeV/c2] 3 10 MD [GeV/c2] SI SD SI SD oss sections normalized by neutralino-proton SI cross section, /σ/σ as aasfunction Figure 2.2.3:σχ−N σχ−N a function of neutralino mass. Red, black, blue and gre χ−p χ−p 19 73 1287 19 s. Black, red and blue line shows target difference as F, Ge and as Xe. isotope difference Li, F, 23 Na and 127 I, respectively. SD DM-N ction of SD interaction is written as "2 J + 1 32 2 2 ! SD σχ−N = GF µχ−N ap ⟨Sp ⟩ + an ⟨Sn ⟩ , π J SD / σDM-n • XeはSIに対する散乱断⾯面積が⼤大きい • NEWAGEで⽤用いているFはSDに対する散乱断⾯面積が⼤大きい Dependent (SD) cross section 3 10 29 Si 73 Ge (2.23) 129 131 Xe F (qr·nr)dr )=3 exp − n , (2.29) ρ(r)exp(iq 19 qr 2 e ’scatteringenergy centres’, ρ(r), asSI with Fr)dr target is factors shown of in some Figure 2.3.2, F of (qr = n ρ(r)exp(iq ·the n ) interaction !spectra SI form isotopes e rn is an effective effective neutralino∞nuclear radius. The shows 4π !! ∞ = rssin(qr)ρ(r)dr. 19 F tar is taken into account. 1/3 4π energy spectra of SI interaction with r ≃ 1.14A fm, and ≃ 0.9 fm representing the nuclear skin thickness. Figure 2.3.1 n with this form qfactor as 0 = r sin(qr)ρ(r)dr. F (qrn ) = フォームファクター 実際はσは定数ではなく、以下のような補正を受ける ! ∞nucleon, the nuclei q: 運動量量移⾏行行 n, since neutralino would interact with any 4π of the 2 19 y spectra SI F target is shown inand Figure 2.3.2, wheresince the form factor σ(qrnof )= σinteraction F approximated (qrn ),withrn: 原⼦子核の⼤大きさ[fm] (2.28) 0be can as a thin shell, this assumption is called the w For the SD interaction, neutralino = r sin(qr)ρ(r)dr. For the SI interaction, since neutralino would interact with any of the nucleon, the nucle a solid sphere. In this case, the form factor is written using Bessel q 0 en into account. can be approximated as a thin and tha 2 this case, the form factor is written using Bessel function j0 =shell, sin(x)/x approximated as a solid sphere. In this case, the form factor is written using Besse −nSIの場合 xbe cos(x))/x as SDの場合 s: 原子核の厚み= fm a zero momentum transfer. 0.9 In the firstthis Born (plane wave) 2 case, the form factornucleon, is written Be r the interaction, since interact with the surplus theusing nuclei "neutralino # aswould nction jSI = (sin(x) − xsince cos(x))/x i (x) 2 or theSD interaction, neutralino would interact with any of the nucleon, the j1 (qrntransformation ) (qs) given by Fourier of assumption the density distribution Fis(qr )(2.29) = the j0 (qr n# n ), F (qr ) = 3 exp − , this n " e approximated as a thin shell, and called odd-group model. In 2 2 be approximatedqras case, the form factor is written n a solid sphere. j1In (qrthis ) (qs) Fusing (qrn n F (qrn ) = q ρ(r)exp(iq · r)dr isneutralino takenofinto account. the SI form factors of some isotopes assince a 0function thewould recoilinteract energy E R . Expected For the SD interaction, with the surpl F2 F2 F (qr 3 exp −j0 = sin(x)/x , (2.29 n) = ase, the form factor is written using Bessel function as 2 1/3 qr 2 tion =where (sin(x) cos(x))/x rn−≃x1.0A fm. as Figure 2.3.3 shows the2.3.1 SD form factors of some and jsi (x) ≃ 0.9 representing the nuclear skinnthickness. Figure ! fm 1/3 where " rn ≃ 1.0A# fm. Figure 2.3.3 shows t 1/3 s of some isotopes as a function of the recoil energy E Expected of the fm, recoil spectra SD interaction with R . nuclear FE(qr )Expected =(qr j0 (qr (2.30) R .nrepresenting 2 skinofthickness. here and·energy s ≃ 0.9 fm the Figure 2.3. n ),energy ρ(r)exp(iq r)dr n ≃ 1.14A n ) r= j ) (qs) 1 n of the recoil energy E . Expected energy sp R 19 F target is shown 1 F (qr ) = 3 exp − , 1 action with in Figure 2.3.2, where the form factor nisotopes in! Figure where the form is taken ows the SI form factors2.3.4, of some as a factor function of 2the into recoilaccount. energy ER . Expecte qr ∞ n 1/3 in Figure 2.3.4, where the formasfactor is tak 4π fm. Figure 2.3.3 shows rn ≃ 1.0A the SD form factors of some isotopes a function 19 ergy = spectra of SI interaction with F target is shown in Figure 2.3.2, where the form facto r sin(qr)ρ(r)dr. 10 19 F target is shown 1/3 q 10 recoil energy E . Expected energy spectra of SD interaction with 0 R e r ≃ 1.14A fm, and s ≃ 0.9 fm representing the nuclear skin thickness. Figu n into n, since neutralino would interact with the surplus nucleon, the nuclei taken account. 36 10 2.3.4, where the form taken the into account. thin shell, andfactors this assumption called model. In recoil energy ER . Ex saure the SI form offactor someisisisotopes asodd-group a function of the For the SDwould interaction, sincewith neutralino would with thenuclei surplus nucleon, the nucle 10 eutralino interact any of the interact nucleon, the -1 19 F -1 74 19 F 7 Ge Li 132 127 Xe I -2 -2 is spectra written using Bessel functionwith j0 =19sin(x)/x as is shown in Figure 2.3.2, where the form gy of SI interaction F target 10 n be approximated as a the thin form shell, factor and thisisassumption is called the odd-group model. I phere. In this case, 36 written using Bessel ken into account. 10 is case, the form using Bessel function j0 = (2.30) sin(x)/x as F (qrfactor ) = j0is (qrwritten ), 2 n n 10 )/x as 中村輝石博士 or the SD interaction, since neutralino would interact with the surplus nucleon, th " # 論文2014年3月 Figure 2.3.3 shows the SD form factors of some a50 function 10 0 F (qr ) j0 (qrn10 ), as (2.30 2 0 100 150 200 250 300 350 400 n =isotopes 50 100 150 200 250 300 350 400 j1 (qr (qs) recoil energy [keV] n) recoil energy [keV] 京都大 -3 -3 -4 -5 -4 SD反応で予想させるエネルギースペクトル 19 SD, F, M =100 [GeV], σ=1 [pb] rate [counts/keV/kg/day] 2 R F (E ) Form Factor [SD (keV)] 1 -1 10 -2 10 -3 10 -4 10 -5 10 -6 D 2 1.8 赤:6月 青:12月 1.6 1.4 1.2 10 1 -7 10 -8 10 0 2 ] 0.8 100 200 300 400 500 600 700 800 900 1000 ER [keV] F原子核の場合のフォームファクター 19 event rate [counts/keV/kg/day] SD, F, σ=1 [pb], average 0.6 0.4 0.2 10 19 19 19 1 19 F MD =10GeV F MD =50GeV 0 0 20 40 60 80 100 120 140 160 180 200 recoil energy [keV] F MD =100GeV F MD =200GeV -1 10 ニュートラリーノの質量が100GeVの場合の季節変動 SDによる反応を仮定し、フォームファクタを考慮に入れ ている -2 10 -3 10 0 20 40 60 80 100 120 140 160 180 200 recoil energy [keV] F原子核に開けるSD反応で予想されるエネルギースペクトル σSDχ-‐p = 1 pbとした 3. 角度スペクトル D nce the Cygnus 400 direction Dis varying per hour and per day, the systematic 400 recoil energy [keV] recoil energy [keV] 到来⽅方向異異⽅方性 1.6 ily and seasonal 350environmental changes will 3 be 350canceled. 18 16 1.4 2.5 14 ry 実験室系におけるWIMPとの弾性散乱による⾓角度度スペクトルは system, expected angular spectrum of recoil nucleus is written as 250 250 300 12 300 ! " 10 2 2 200 200 d R 1 R0 (vE cos θ − v1.5min ) 8 ≃ exp − , 150 150 2 dER d cos θ 2 E0 r v0 1 6 100 D. Spergel Phys. 4Rev. D 37 (1988) 1353. 2 座 白鳥 1.2 1 Nucleus0.8 (2.31) 0.6 DM θ 100 0.4 rmed by the2 WIMP-wind direction and the 0.5recoil nuclei direction[36]. Fig50 50 0.2 19 F for the SD 0 0 0 0 0 e0.2実験室系におけるWIMPとの弾性散乱による⾓角度度スペクトルは、標 expected the is 0.4 0.6 0.8 1 angle-energy -1 -0.8 -0.6 -0.4distribution, -0.2 0 0.2 0.4 0.6 where 0.8 1 -1 target -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cosθ cosθ cosθ 0.1 rate [count/keV/kg/day/cos θ] D rate [count/keV/kg/day/cos θ] 的原⼦子核F、SDによる弾性散乱、M SD = 1 pb. Figure D=100GeV、σ= 1pbとした場合 100 GeV, and σ 2.4.5 shows the expected cos θ distriχ−p σ=1 [pb] SD, F, M =100 [GeV], 0.1 y selecting the events with recoil energy of 1000.09 − 120 keV in Figure 2.4.4. 0.09 3 2.5 recoil energy [keV] 400 350 300 250 2 200 1.5 150 1 80-100keV 0.08 1.4 0.07 41 1.2 0.06 0.05 0.8 0.04 0 -1 -0.8 0.4 0.6 0.8 -0.61 -0.4 -0.2 cosθ 0.07 0.06 0.05 0.03 0.4 0.2 0.01 0 0.02 00.2 0.4 0.6 0.8 1 0 -1 -0.8 -0.6 -0.4 -0.2 cosθ 0.01 0 0.2 0.4 0.6 0.8 1 cosθ 色分布は[counts/keV/kg/day/cosθ]での計数率 0.1 θ] 0.08 0.04 0.03 50 100-120keV 0.6 0.02 0 100~120keV部 分を抽出 1 100 0.5 0.2 1.6 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cosθ SD, F, MD=50 [GeV], σ=1 [pb] 180 18 160 16 400 recoil energy [keV] 400 recoil energy [keV] 200 SD, F, MD=100 [GeV], σ=1 [pb] 350 3 300 140 14 120 12 100 10 80 8 60 6 40 4 20 2 2.5 250 0.4 0.6 0.8 1 cosθ 0.5 0.45 20-40keV 0.4 0.35 0.3 0.25 1.2 1 200 0.8 1.5 150 150 1 0 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cosθ 0.1 0.09 0.4 50 0.2 0.5 50 80-100keV 0.08 0.07 0.06 0.05 0.6 100 0 0 -1 rate [count/keV/kg/day/cos θ] 0.2 1.4 300 250 200 rate [count/keV/kg/day/cos θ] rate [count/keV/kg/day/cos θ] 0 1.6 350 2 100 0 -1 -0.8 -0.6 -0.4 -0.2 recoil energy [keV] SD, F, MD=10 [GeV], σ=1 [pb] 0.09 0.03 0.1 0.02 0.02 0.05 0.01 0.01 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cosθ 0 0.6 100-120keV 0.05 0.03 0.8 1 cosθ 0 0.06 0.15 0.4 0.6 0.8 1 cosθ 0.07 0.04 0.2 0.2 0.4 0.6 0.08 0.04 0 0 0.1 0.2 0 -1 -0.8 -0.6 -0.4 -0.2 -0.8 -0.6 -0.4 -0.2 0 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.8 1 cosθ • MD=100GeVの場合、100~∼120keVでのcosθ分布を⾒見見るとの異異⽅方性を観 測できる • MD=10GeVの場合、20~∼40keVでのcosθ分布を⾒見見る必要がある まとめ • WIMPとの原⼦子核反跳イベントからは特有のスペクトルを得ることができる – 季節変動 – 到来⽅方向異異⽅方性 • WIMPがニュートラリーノであったとき、SIな散乱の場合Aが⼤大きいほど感 度度が⾼高く、SDの場合λJ(J+1)が⼤大きいほうが感度度が⾼高い • どのように実験を進めていくか考えるには、得られるスペクトルを予想す ることは⾮非常に重要 – エネルギースペクトルに関して: J. D. Lewin and P. F. Smith Astropart. Phys. 6 (1996) 87 – ⾓角度度スペクトルに関して: D. Spergel Phys. Rev. D 37 (1988)
© Copyright 2024 ExpyDoc