小型加速器による小型高輝度X線源とイメージング基盤技術開発 第9回全体打合せ(2014.12.24@産総研) サブテーマ名 小型高輝度X線発生装置を用いた X線位相イメージング法の開発 東北大学 多元物質科学研究所 百生 敦 Margie P. Olbinado !"#$%&'(#"#)*+*",' !"#$%&'-./*' ' 012"3*'!"#$%&4'!5' ' (6#,*'!"#$%&4'!7' @%#A.B*"'!"#$%&4'!:'' 89:'/6#,*',6;<'#+'=5'>*?' ' C#+*";#A' 56! 7'! 56! (*";1D'EF)G' 8*91! :*;<! <*4=! 0+"23+2"*'' H*;&6+'EF)G' >(?'&.@!<2! >(?'&.@!;*1:!! #($?6%(/@!A<2!BC32D!! #($?6%(/@!;*:4!BC!2*:;! !"#$%&'1%' ;2!E!;2!FF1! IJ;%36'0;'K#L*"' ! ! ! ! ! ! 0+"23+2"*,' ' ' ' ' ' 32!JF! ! ! ! ! ! ! HI#! >(?'&.@!322! #($?6%(/@!32:! ;2!E!;2!FF1! >'$F(G(%@!<2FF! 3!JF! ! ! ! ! ! ! HI#! ! ! ! ! ! 32!JF! • EvaluaLon of the graLngs’ performance in X-‐ ray Talbot-‐Lau interferometry was performed by measuring the Moiré fringe visibility via fringe scanning. G2 was moved across one period d2 in steps of d2/5. • The visibility was calculated from images captured by (1) an area detector and (2) an energy-‐resolving detector. MJ"#.'-#AN1+JO#2'P%+*"L*"1)*+*"' MJ"#.'012"3*' ' [$F$F$G?6!)N0G0.'Q?!#'Q%0CM0Q6?!H06%Q(!YT$%&(!M0Q6?!F0/(Z! H06%Q(!?'\(@!:22!JF! S6-(!]0,G$&(@!;2!^]! S6-(!_6%%(.G@!:22!J5! MJ"#.'Q*+*3+1"' 5%($!>(G(QG0%@!42!JF!W+H!?Q'.L,,$G0%!Q0..(QG(/!G0!__>!_$F(%$!K'$!`-(%! Q06P,'.&!YHP(QG%$,!a.?G%6F(.G?Z! )'E(,!?'\(@!39!JF! H(.?0%!H'\(@!:922!E!:922!P'E(,?1!Y89*4!E!89*4!FF1Z! ! I.(%&RC%(?0,K'.&!>(G(QG0%@!5#)SIb!_/S(!/'0/(! )'.N0,(@!3FFc!)'.N0,(!GN'Q^.(??@!3FF!d! Q*,;&%'R%*"&.' :2!^(]! M-OP'0*+J2/' "C%$R!>(G(QG0% W1 W3 W2 "C%$R! H06%Q( !! :1:*;3!FF 1=4*8:!FF <38!FF \*,2A+,'2,;%&'+6*'#"*#'D*+*3+1"' C1;"S'P)#&*'ERT/1,2"*'$)*U'V5',*31%D,G' W1 W3 W2 H06%Q( !! C1;"S'?;,;N;A;+.'C#/'W;#'XJ,+*/'L";%&*',3#%' -6*')#T;)2)'L";%&*'W;,;N;A;+.'K#,'=YZ[' SN(!K'?'-','GR!/(Q%($?(?!$U$R!M%0F!GN(!Q(.G(%!0M!GN(! &%$L.&*!SN'?!F$R!-(!$!Q0.?(e6(.Q(!0M!-($F!N$%/(.'.&!$G! GN(!?'/(?!/6(!G0!Q0.(!-($F!',,6F'.$L0.*!! [0%'\0.G$,!,'.(!P%0`,(!! \*,2A+,'2,;%&'+6*'*%*"&.J"*,1AW;%&'D*+*3+1"' C1;"S']";%&*'?;,;N;A;+.'W,['MJ"#.'*%*"&.'W;#'XJ,+*/'L";%&*',3#%'' E@332)2A#$1%'$)*'/*"',+*/U'75');%2+*,G' -6*')#T;)2)'W;,;N;A;+.'3#%'N*'1N,*"W*D'#+':X'>*?[''' SN'?!'?!$.!'./'Q$L0.!GN$G!GN(!PN$?(!&%$L.&!N('&NG! Q0%%(?P0./?!G0!$!fX1!PN$?(!?N'g!$G!1;!^(]*!SN(!N('&NG!0M! 7'Q^(,!U$?!/'h(%(.G!M%0F!GN(!/(?'&.(/!K$,6(*!! ! SN(!F$.6M$QG6%(%!Q0.`%F(/!GN$G!N('&NG!0M!7'Q^(,!Q06,/!-(! ,(??!GN$.!GN(!?P(Q'`(/!K$,6(i!-6G!GN(R!/0!.0G!N$K(!$.! (E$QGX!/'%(QG!F($?6%(F(.G!0M!GN(!&%$L.&!?G%6QG6%(!N('&NG*! Comparison with the 3-‐gra$ng set used with X-‐LCS experiment The performance of the interferometer (SET 1) is compared with another 3-‐graLng set (SET 2) that was previously used with the LCS X-‐ray Source at a design energy of 25 keV. The parameters are as shown: Gra$ng Parameters SET 1 SET 2 Gra$ng distances at 25 keV SET 1 SET 2 G0 period, d0 (µm) 6.82 22.7 Source-‐ G0 (mm) 706 706 G0 duty cycle 0.26 0.35 G0 – G1, R1 (mm) 245.5 995 G0 height (µm) 70 65 G1 – G2, z (mm) 269.6 237.6 G1 period, d1 (µm) 3.57 4.36 Source – G2, R2 (mm) 1221.1 1938.6 G2 period, d2 (µm) 7.49 5.4 G2 height (µm) 100 70 • SET 1 • Smaller G0 duty cycle, Higher G2 structure height à be_er visibility • Shorter interferometer length R2 à more (cone-‐beam) X-‐rays are detected Higher visibility + higher X-‐ray intensity = be_er sensi$vity to X-‐ray phase imaging ^1)/#";,1%'K;+6'+6*'=J&"#$%&',*+'2,*D'K;+6'MJO^0'*T/*";)*%+' HIS!3! SN(!`&6%(?!0.!GN(!%'&NG!?N0U?!?6F!0M!;!F0'%V! 'F$&(?!/6%'.&!M%'.&(!?Q$.!M0%!Y$Z!&%$L.&!HIS!3! $./!Y-Z!HIS!1*!SN(!P%0`,(?!0M!GN(!G0G$,! '.G(.?'GR!Y.0%F$,'\(/Zc!F0'%V!M%'.&(!K'?'-','GR! $./!?G$./$%/!/(K'$L0.!0M!GN(!/'h(%(.L$,! PN$?(!'F$&(!$G!GN(!'./'Q$G(/!-,6(!YHIS!3Z!$./! %(/!YHIS!1Z!,'.(?!$%(!?N0U.!-(,0U*! 70%F$,'\(/!S0G$,!a.G(.?'GRc!a! 70%F$,'\(/!S0G$,!a.G(.?'GRc!a #0'%V!l%'.&(!]'?'-','GRc!]! HIS!1! HG$./$%/!>(K'$L0.!0M!>'h(%(.L$,!)N$?(! P0R-'7'b'P0R-':''' ?0R-'7'c'?0R-':'' @,'#'"*,2A+4'/6#,*',*%,;$W;+.'L1"'0R-'7'#%D'0R-':';,'#A)1,+'+6*',#)*['E-6*',*%,;$W;+.';,' /"1/1"$1%#A'+1'+6*',+#%D#"D'D*W;#$1%'1L'+6*'D;d*"*%$#A'/6#,*';)#&*[G' Q;,32,,;1%' 5,GN06&N!GN(!W2!/6GR!QRQ,(!'?!?F$,,(%!$./!GN(!&%$L.&!N('&NG?!0M!W2!$./!W1!$%(!N'&N(%! M0%!HIS!3c!GN(!0-?(%K(/!K'?'-','GR!U$?!,0U(%*!SN'?!'?!$m%'-6G(/!G0!GN(!6?(!0M!-%'/&(! ?G%6QG6%(!'.!GN(!$-?0%PL0.!&%$L.&?!W2!$./!W1!$?!?N0U.!'.!GN(!'F$&(?!-(,0U*!a.! Q0.G%$?Gc!HIS!1!6?(?!Q0.L.606?!,$F(,,$?!M0%!W2!$./!?6.%$R!?G%6QG6%(!M0%!W1*! HIS!3c!W2! HIS!3c!W1! HIS!1c!W2! HIS!1c!W1! 5,GN06&N!F0%(!"C%$R?!$%(!/(G(QG(/!M0%!HIS!3c!GN(!,0U(%!K'?'-','GR!%(?6,G(/!G0!$!PN$?(! 'F$&'.&!?(.?'LK'GR!GN$G!'?!$,F0?G!?'F',$%!U'GN!HIS!1*!! Summary and Conclusion The set of graLngs composed of a source graLng, a π/2 phase graLng and an analyzer graLng for X-‐ray Talbot-‐Lau interferometry has been evaluated. Using a ccd-‐based X-‐ray detector, the maximum fringe visibility was 38%. Using an energy-‐resolving detector, the maximum fringe visibility was observed at 25 keV. The graLng set is therefor opLmum for a design energy of 25 keV. The visibility is lower but the sensiLvity to X-‐ray phase imaging is almost similar with the graLng set used in X-‐ray Talbot-‐Lau interferometry with the LCS X-‐ray source. The lower visibility is amributed to the bridge structures on the source graLng and the analyzer graLng.
© Copyright 2025 ExpyDoc