SET 1 - 小型高輝度 X線源とイメージング基盤技術開発

小型加速器による小型高輝度X線源とイメージング基盤技術開発 第9回全体打合せ(2014.12.24@産総研)
サブテーマ名 小型高輝度X線発生装置を用いた X線位相イメージング法の開発
東北大学 多元物質科学研究所 百生 敦 Margie P. Olbinado
!"#$%&'(#"#)*+*",'
!"#$%&'-./*'
'
012"3*'!"#$%&4'!5'
'
(6#,*'!"#$%&4'!7'
@%#A.B*"'!"#$%&4'!:''
89:'/6#,*',6;<'#+'=5'>*?' '
C#+*";#A'
56!
7'!
56!
(*";1D'EF)G'
8*91!
:*;<!
<*4=!
0+"23+2"*''
H*;&6+'EF)G'
>(?'&.@!<2!
>(?'&.@!;*1:!!
#($?6%(/@!A<2!BC32D!! #($?6%(/@!;*:4!BC!2*:;!
!"#$%&'1%'
;2!E!;2!FF1!
IJ;%36'0;'K#L*"' !
!
!
!
!
!
0+"23+2"*,'
'
'
'
'
'
32!JF!
!
!
!
!
!
!
HI#!
>(?'&.@!322!
#($?6%(/@!32:!
;2!E!;2!FF1!
>'$F(G(%@!<2FF!
3!JF!
!
!
!
!
!
!
HI#!
!
!
!
!
!
32!JF!
•  EvaluaLon of the graLngs’ performance in X-­‐
ray Talbot-­‐Lau interferometry was performed by measuring the Moiré fringe visibility via fringe scanning. G2 was moved across one period d2 in steps of d2/5. •  The visibility was calculated from images captured by (1) an area detector and (2) an energy-­‐resolving detector. MJ"#.'-#AN1+JO#2'P%+*"L*"1)*+*"'
MJ"#.'012"3*'
'
[$F$F$G?6!)N0G0.'Q?!#'Q%0CM0Q6?!H06%Q(!YT$%&(!M0Q6?!F0/(Z!
H06%Q(!?'\(@!:22!JF!
S6-(!]0,G$&(@!;2!^]!
S6-(!_6%%(.G@!:22!J5!
MJ"#.'Q*+*3+1"' 5%($!>(G(QG0%@!42!JF!W+H!?Q'.L,,$G0%!Q0..(QG(/!G0!__>!_$F(%$!K'$!`-(%!
Q06P,'.&!YHP(QG%$,!a.?G%6F(.G?Z!
)'E(,!?'\(@!39!JF!
H(.?0%!H'\(@!:922!E!:922!P'E(,?1!Y89*4!E!89*4!FF1Z!
!
I.(%&RC%(?0,K'.&!>(G(QG0%@!5#)SIb!_/S(!/'0/(!
)'.N0,(@!3FFc!)'.N0,(!GN'Q^.(??@!3FF!d!
Q*,;&%'R%*"&.' :2!^(]!
M-OP'0*+J2/'
"C%$R!>(G(QG0% W1
W3
W2
"C%$R!
H06%Q(
!!
:1:*;3!FF
1=4*8:!FF
<38!FF
\*,2A+,'2,;%&'+6*'#"*#'D*+*3+1"'
C1;"S'P)#&*'ERT/1,2"*'$)*U'V5',*31%D,G'
W1
W3
W2
H06%Q(
!!
C1;"S'?;,;N;A;+.'C#/'W;#'XJ,+*/'L";%&*',3#%'
-6*')#T;)2)'L";%&*'W;,;N;A;+.'K#,'=YZ['
SN(!K'?'-','GR!/(Q%($?(?!$U$R!M%0F!GN(!Q(.G(%!0M!GN(!
&%$L.&*!SN'?!F$R!-(!$!Q0.?(e6(.Q(!0M!-($F!N$%/(.'.&!$G!
GN(!?'/(?!/6(!G0!Q0.(!-($F!',,6F'.$L0.*!!
[0%'\0.G$,!,'.(!P%0`,(!!
\*,2A+,'2,;%&'+6*'*%*"&.J"*,1AW;%&'D*+*3+1"'
C1;"S']";%&*'?;,;N;A;+.'W,['MJ"#.'*%*"&.'W;#'XJ,+*/'L";%&*',3#%''
E@332)2A#$1%'$)*'/*"',+*/U'75');%2+*,G'
-6*')#T;)2)'W;,;N;A;+.'3#%'N*'1N,*"W*D'#+':X'>*?['''
SN'?!'?!$.!'./'Q$L0.!GN$G!GN(!PN$?(!&%$L.&!N('&NG!
Q0%%(?P0./?!G0!$!fX1!PN$?(!?N'g!$G!1;!^(]*!SN(!N('&NG!0M!
7'Q^(,!U$?!/'h(%(.G!M%0F!GN(!/(?'&.(/!K$,6(*!!
!
SN(!F$.6M$QG6%(%!Q0.`%F(/!GN$G!N('&NG!0M!7'Q^(,!Q06,/!-(!
,(??!GN$.!GN(!?P(Q'`(/!K$,6(i!-6G!GN(R!/0!.0G!N$K(!$.!
(E$QGX!/'%(QG!F($?6%(F(.G!0M!GN(!&%$L.&!?G%6QG6%(!N('&NG*!
Comparison with the 3-­‐gra$ng set used with X-­‐LCS experiment The performance of the interferometer (SET 1) is compared with another 3-­‐graLng set (SET 2) that was previously used with the LCS X-­‐ray Source at a design energy of 25 keV. The parameters are as shown: Gra$ng Parameters SET 1 SET 2 Gra$ng distances at 25 keV SET 1 SET 2 G0 period, d0 (µm) 6.82 22.7 Source-­‐ G0 (mm) 706 706 G0 duty cycle 0.26 0.35 G0 – G1, R1 (mm) 245.5 995 G0 height (µm) 70 65 G1 – G2, z (mm) 269.6 237.6 G1 period, d1 (µm) 3.57 4.36 Source – G2, R2 (mm) 1221.1 1938.6 G2 period, d2 (µm) 7.49 5.4 G2 height (µm) 100 70 •  SET 1 •  Smaller G0 duty cycle, Higher G2 structure height à be_er visibility •  Shorter interferometer length R2 à more (cone-­‐beam) X-­‐rays are detected Higher visibility + higher X-­‐ray intensity = be_er sensi$vity to X-­‐ray phase imaging ^1)/#";,1%'K;+6'+6*'=J&"#$%&',*+'2,*D'K;+6'MJO^0'*T/*";)*%+'
HIS!3!
SN(!`&6%(?!0.!GN(!%'&NG!?N0U?!?6F!0M!;!F0'%V!
'F$&(?!/6%'.&!M%'.&(!?Q$.!M0%!Y$Z!&%$L.&!HIS!3!
$./!Y-Z!HIS!1*!SN(!P%0`,(?!0M!GN(!G0G$,!
'.G(.?'GR!Y.0%F$,'\(/Zc!F0'%V!M%'.&(!K'?'-','GR!
$./!?G$./$%/!/(K'$L0.!0M!GN(!/'h(%(.L$,!
PN$?(!'F$&(!$G!GN(!'./'Q$G(/!-,6(!YHIS!3Z!$./!
%(/!YHIS!1Z!,'.(?!$%(!?N0U.!-(,0U*!
70%F$,'\(/!S0G$,!a.G(.?'GRc!a!
70%F$,'\(/!S0G$,!a.G(.?'GRc!a
#0'%V!l%'.&(!]'?'-','GRc!]!
HIS!1!
HG$./$%/!>(K'$L0.!0M!>'h(%(.L$,!)N$?(!
P0R-'7'b'P0R-':'''
?0R-'7'c'?0R-':''
@,'#'"*,2A+4'/6#,*',*%,;$W;+.'L1"'0R-'7'#%D'0R-':';,'#A)1,+'+6*',#)*['E-6*',*%,;$W;+.';,'
/"1/1"$1%#A'+1'+6*',+#%D#"D'D*W;#$1%'1L'+6*'D;d*"*%$#A'/6#,*';)#&*[G'
Q;,32,,;1%'
5,GN06&N!GN(!W2!/6GR!QRQ,(!'?!?F$,,(%!$./!GN(!&%$L.&!N('&NG?!0M!W2!$./!W1!$%(!N'&N(%!
M0%!HIS!3c!GN(!0-?(%K(/!K'?'-','GR!U$?!,0U(%*!SN'?!'?!$m%'-6G(/!G0!GN(!6?(!0M!-%'/&(!
?G%6QG6%(!'.!GN(!$-?0%PL0.!&%$L.&?!W2!$./!W1!$?!?N0U.!'.!GN(!'F$&(?!-(,0U*!a.!
Q0.G%$?Gc!HIS!1!6?(?!Q0.L.606?!,$F(,,$?!M0%!W2!$./!?6.%$R!?G%6QG6%(!M0%!W1*!
HIS!3c!W2!
HIS!3c!W1!
HIS!1c!W2!
HIS!1c!W1!
5,GN06&N!F0%(!"C%$R?!$%(!/(G(QG(/!M0%!HIS!3c!GN(!,0U(%!K'?'-','GR!%(?6,G(/!G0!$!PN$?(!
'F$&'.&!?(.?'LK'GR!GN$G!'?!$,F0?G!?'F',$%!U'GN!HIS!1*!!
Summary and Conclusion The set of graLngs composed of a source graLng, a π/2 phase graLng and an analyzer graLng for X-­‐ray Talbot-­‐Lau interferometry has been evaluated. Using a ccd-­‐based X-­‐ray detector, the maximum fringe visibility was 38%. Using an energy-­‐resolving detector, the maximum fringe visibility was observed at 25 keV. The graLng set is therefor opLmum for a design energy of 25 keV. The visibility is lower but the sensiLvity to X-­‐ray phase imaging is almost similar with the graLng set used in X-­‐ray Talbot-­‐Lau interferometry with the LCS X-­‐ray source. The lower visibility is amributed to the bridge structures on the source graLng and the analyzer graLng.