Electroweak gauginos in scenarios with heavy scalers and LHC searches 山本 真平 (ICEPP) テラスケール物理研究会 March 25, 2014 Outline ๏ Introduction ‣ これまでのLHCの成果を受けて ‣ Electroweak SUSY productionの基礎 ‣ 種々のシナリオとLHCでの探索ストラテジー ๏ LHC 8TeVデータをつかったelectroweak SUSY探索 ๏ LHC 14TeV (Run2-) prospectと新しい試み ๏ まとめ 2 Introduction mh~126GeV and SUSY ๏ LHC 7/8TeV dataから学んだこと ! ‣ SM Higgs mass: ~126GeV ! ‣ No colored sparticle below ~1.3TeV ! ๏ SUSYの枠組みの中でm h~126GeVは自動的(簡単)には実現できない…良くも悪 くも多くのシナリオ・パラメータ領域を棄却。 ! ๏ 現状をどう理解するか? ‣ minimal/simpleなSUSYシナリオ - heavy scalars (split SUSY, AMSB) - ‣ electroweak gauginoは~TeVまでにはあるはず.. Large A-term (いちおうnaturalnessを尊重) non-minimalシナリオ - おもしろいお話を期待してます 4 重いSUSYをどう攻めるか? ๏ Gluino-pair production ‣ Large cross-section (via strong interaction), 探索感度は ~LHCエネルギーのkinematic limit ‣ 2~3TeVあたりがLHC 14TeV初期データですんなり見えたら らうれしい - 昨今の不自然なくらいラッキーな発見(large θ13, B-mode polarization,..) にあやかりたいところ ! ๏ いずれにしても今後はelectroweak gaugino(slepton) production searchが正道 ‣ LHC 8/14TeV・高統計データで~TeV以下までにあると思わ れるgauginoを高い感度で隈無く探索することが重要。 5 Electroweak SUSY production (fb) (岩本さんより拝借) ๏ Gauginos(質量固有状態) ± ± 0 0 0 0 ˜ ˜ ˜ ˜ ˜ ˜ ‣ ( 1, 2, 3, 4) ( 1 , 2 ) ‣ Bino, Wino, Higgsinoの mixing ! ๏ LHCにおける典型的な信号 (GeV) ‣ 生成はwino-pair production が主に寄与 ‣ 終状態はmass spectrum/LSP によって多様 6 Electroweak gaugino masses (heavy scalar scenarios) (M1<M2,μ) ˜0 ˜± (M2<M1,μ) ˜0 (μ<M1,2) ˜± ˜0 ˜± ˜0 ˜± + Mass (一応..) Bino Natural SUSY Wino NLSP ± 0 Production: ˜1 ˜2 Wino Higgsino e.g. AMSB/PGM Wino co-LSP ± 0 Production: ˜1 ˜1 Wino重いのでょっ Gravitino ときびしい。 e.g. GMSB/GGM NLSPの種類, cτNLSP LSPも縮退。 によっていろいろな signature 7 Bino LSP (M1<M2,μ) ˜ 0 ˜ ± Winos contribute to the EW production. Dominant processes are: ± 0 + ˜ ˜ ˜ pp ! 1 2 ( 1 ˜1 ) ! ! Decay: ! ` p ˜± 1 ! Bino p ˜02 ⌫ W p ˜± 1 ˜01 ˜01 Z × ⌫/` `/⌫ ` ` p ˜02 ` Signature: Multi-lepton+MET Lepton+h(→bb) W p ⌫ ˜01 ˜01 h b b p ˜± 1 ˜02 ˜⌫ `/˜ ˜⌫ `/˜ ˜01 ˜01 `/⌫ `/⌫ Intermediate sleptonは 無し(heavy scalar) 8 we have seen in thesplitting previous section,δm the charged and the neutral winos are With theAssmall mass ∼ 160 MeV, the charged contribution from this operator to the masswino splitting isdominantly again negligibly small. Phenomenology of PGM highly degenerated in mass. Therefore, the decay width of the charged wino is highly Wino LSP decays into asuppressed neutral wino andintegral, a soft pion. At the leading order, the decay by the phase space and charged hence, the charged wino is long-lived 3 The charged wino decay and has the decay length about cτ = O(1–10) cm. With such a rather long decay width of thelength, charged wino be wino expressed terms thesection, decay width the it is possible to detectcan the charged production at in the As we haveLHC seen experiment in the of previous the charged and the of neutral winos are Wino width charged pion, is sensitive to the mass difference by looking for disappearing tracks. In this section, we estimate the lifetime of theTherefore, the decay width of the charged wino is highly highly degenerated in mass. by the phase space integral, and hence, the charged wino is long-lived charged wino and compare with the constraint from thesuppressed disappearing track search ! the decay length "1/2 cτ!= O(1–10) cm. and has With −2 such a rather long decay 2" 3 2 about m 16δm m it iswino possible to detect the charged wino production at the LHC experiment µ π 0With ± splitting±δm ∼ 160 MeV, thelength, small mass charged dominantly Γ(χ˜± → χ˜decays π ±into )the= Γ(π → µ ν 1 − 1 − , (21) µ) × by2 looking disappearing 2 we estimate the lifetime of the a neutral wino and a soft charged pion. the leading for order, the2decaytracks. In this section, Phenomenology ofπAtm PGM m δm m µ π the disappearing track search charged wino and compare with the constraint from by the ATLAS collaboration [28]. Wino mass splittingはgauge bosonのloop Wino width is sensitive to the mass difference where mπ and mµ denote the masses of the charged pion and the muon, respectively.8 Wino mass difference at two-loop level [’12 MI, Matsumoto, Sato] Phenomenology of the PGMelectron The decaycontributionで決まる width of the sub-leading leptonic decay mode into a pair of width of the charged wino can be expressed in terms of the decay width of the by the ATLAS collaboration [28]. charged pion, 16δm3 Γ(χ˜ → χ˜ π ) = Γ(π → µ νµ ) × mπ m2µ 0 ± ± ±W˜ + + Wino mass difference at level charged [’12 MI,pion, Matsumoto, Sato] and the neutrino [44] bytwo-loop The decay widthisof given the sub-leading leptonic decay mode into a pair of the electron γ/Z ˜0 W 170 to the mass difference Γ(χ˜± → χ˜0 π ± ) = Γ(π ± → µ± νµ ) × 16δm3 mπ m2µ ! "1/2 ! "−2 m2µ m2 1 − π2 1− 2 , δm mπ (21) 2 2GF ± 0 ± 0 ± 2G2F 5 5 ± where m and mµ δm denote (22) the of the charged pion and the muon, respectively.8 Γ( χ ˜ → χ ˜ e ν ) ≃ . masses (22) π Γ( χ ˜ → χ ˜ e ν ) ≃ δm . (1) e e 3 One-loop diagrams contributing to the functions Σ in Eq. (5). 3 ˜ q, ℓ 15π M,K Wino mass difference at two-loop level [’12 MI, Matsumoto, Sato] W 165 15π ˜+W W ˜+ W Figure 1: W ∓ + and˜ +the neutrino [44] ˜is0 given˜ ±by γ/Z W ˜0 W ˜+ W W∓ W ˜+ W ˜0 W W 170 ˜± W (1) Figure 1: One-loop diagrams contributing ˜ to the functions ΣM,K in Eq. (5). q, ℓ W 165 δm [MeV] We consider the above two decay modes. scheme in the SM at the Z-boson mass scale, mW,Z the physical W and Z boson (c) the one-loop masses, mχ˜0(a) the physical neutral wino (b) mass. It should be noted that We consider the above two decay modes. W+ The decay width of the sub-leading leptonic decay mode into a pair of the electron and the neutrino [44] is given by γ/Z W∓ δm [MeV] 160 7 170 can of the bewino obtained from, for instance, a dimension-eight operator relations are precise This enough for operator the two-loop estimation mass splitting, scheme in the SM at the Z-boson mass scale, m W,Z the physical W and Z boson 2G2F ± 0 ± since the leading a mass splitting starts level. † a at the one-loop 4 Γ( χ ˜ → χ ˜ e ν ) ≃ δm5 . (22) (q χ H) (q χ H)/Λ which is generated by integrating out the squarks (especially stops) at the (c) e (a) (b) L L Figure 1: One-loop diagrams contributing to the functions Σ in Eq. (5). 3 ˜ q, ℓ top quark and the Higgs boson appearbe only noted at the two-loop calculation of W masses, mχ˜0 the physical neutralThewino mass. It should that the one-loop 15π 155 (e) 165 (d) (f) 7 the mass tree-level. splitting. Thus, the MS integrating variables m ˆ and m ˆ the may quark-loop be replaced with their By and inserting the gaugino mass, we obtain the dimensionrelations are precise enough forphysical themasses two-loop of the wino splitting, We consider the abovethetwo decay modes. m and m estimation at this level of precision. As for the topmass quark mass, scheme in the SM at the Z-boson mass scale, m physical W and Z boson (c) the one-loop (20). MS top mass atin the Eq. one-loop level for m ˆ . As we will see, the however, seven we use theoperator masses, m (a) the physical neutral wino (b) mass. It should be noted that 150 160 7 since the leading a mass splitting starts at the one-loop level. Q dependence at the two-loop level comes mainly from those † a (g)8of the 4next-to-leading canand bethe from, for instance, a dimension-eight operator two-loop relations are precise This enough for operator the the two-loop estimation of the wino obtained mass splitting, (i) Eq. (21) receives radiative Atmass thesplitting order, corrections from QED (h) of the top mass m ˆ . We set, on the other hand, m ˆ = m since the running of the L L since the leading a mass splitting starts at the one-loop level. one-loop † a 4 The top quark and the Higgs boson appearinteractions only at thesplitting. two-loop calculation of (qquark χ /m H) (q H)/Λ which is generated by integrating out the squarks (especially stops) at the L χ2 Higgs mass does not cause significant effects on the which top L boson appear at the two-loop calculation of electroweak are (α/π)The log(m ≃ %. In only this Letter, χ ˜ and the π )Higgs 155 (e) (d) (f) expected to be around (e) (d) (f) Once we obtain the input parameters, α ˆ, m ˆ , and m ˆ from Eqs. (6)-(8), we the mass tree-level. splitting. Thus, the MS integrating variables m ˆ and m ˆ the may quark-loop be replaced with their 100 1000 By and inserting the gaugino mass, we obtain the dimensionthe mass splitting. Thus, the MS variables m ˆ tthese and corrections m ˆ h may betoreplaced with their we gˆneglect the total decay width and leave the detailed of theAs decay physical masses m and m atanalysis this level of precision. for the top quark mass, can calculate , gˆ using tree-level relations. In deriving the one-loop relations in (k) m theoperator [GeV] (20). MS top mass atin the Eq. one-loop level for m ˆ . As we will see, the however, seven we useneutralino (6)-(9),level we also of obtain the counter-termsAs to subtract ultra-violet diver- mass, (j) physical masses mt and mh atEqs.this precision. for the top(UV) quark 150 width for future study [43]. Q dependence 8of the mass splitting at the two-loop level comes mainly from those two-loop gences. These counter-terms play important roles to calculate Σ , as will be (i) Eq. (21) receives radiative corrections from the order, QED and the Figure 2: Two-loop diagrams contributing to the functions Σ 4in Eq. (5). Diagram (a) (h) (g) At the next-to-leading of the top mass m ˆ . We set, on the other hand, m ˆ = m since the running of the discussed later. one-loop at the one-loop level for m ˆ . As we will see, the however, we use the MS top mass t includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the ˜+ W ˜0 W ˜+ W ˜+ W ˜0 W ˜± W 160 This operator can be obtained from, for instance, h h t 4 a dimension-eight operator δm [MeV] t t (1) M,K W,Z χ ˜0 (q χ H) (q χ H)/Λ which is generated by integrating out the squarks (especially stops) at the 155 tree-level. By integrating the quark-loop and inserting the gaugino mass, we obtain the dimensiont h h W Z t Heavy wino limit by Yamada (2009) ˜ width of the charged wino can be expressed in terms of the decay width of the Heavy wino limit by Yamada (2009) ˜ With ! "1/2 ! the 2small "−2 mass splitting δm ∼ 160 MeV, the charged wino dominantly mµ m2π decays 1into and a soft charged pion. At the leading order, the decay 1− − a 2neutral, wino (21) δm2 mπ 8 where mπ and mµ denote the masses of the charged pion and the muon, is respectively. Wino width sensitive W 0 ± Heavy wino limit by Yamada (2009) (M2<M1,μ) ± h ′ t h t t 2.1.3 t The mass splitting at one-loop level h known [25]–[27] and used in the earlier literature. The loop diagrams of the winos formula in Eq. (5) and the self-energies given in the appendix B, the mass 2.1.3 The mass splitting at one-loop level The one-loop result of the mass splitting between neural and charged winos is well ˆ 2 /8π 2 )[f (m ˆ 2 ) − cˆ2 f (m ˆ 2 )], = (ˆ g 2M ˆ 2W /M ˆ 2Z /M 2 W 2 known [25]–[27] and used in the earlier literature. The loop diagrams of the winos (10) (1) t and gauge bosons shown in Fig. 1 lead to the functions ΣK,M . With the use of the (1) formula in Eq. (5) and the self-energies ΣK,M given in the appendix B, the mass h The finite renormalization effect connecting between m ˆ t (MS mass) and mt (pole mass) is the (c)because the scalar top quarks are heavy and (d)decoupled. (2) same as those in the SM, (2) K,MΣ in Figure 3: Diagrams counter-terms which contribute to the (5). functionDiagram Figure 2: Two-loop diagrams contributing toincluding the functions ΣM,K in Eq. (a) Eq. (5). The counter-terms are determined to renormalize one-loop divergences. discussed later. 5 includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the (2) M,K splitting δm = mχ˜± − mχ˜0 at the one-loop level is given by (b) ˆ 2 Σ(1) (M ˆ 2 ) − Σ(1) (M ˆ 2) + M ˆ 2 Σ(1) (M ˆ 2 ) + Σ(1) (M ˆ 2) δm = −M 2 2 2 2 K,± M,± K,0 M,0 Wednesday, December 4, 13 (a) the SM input parameters and the non-logarithmic corrections are negligible (see Tab. 1). An arrow shows the result of Ref. [29], which is given by δm = 164.4 MeV ± 0 Figure 5: The wino mass splitting δm as a function of mχ˜ . The dark green ± 0 ˜ ˜ Uncertainty at the one-loop : ~ ± 5MeV ˜ ˜ 13 The mass splitting at one-loop (level1 , 1 ) = (W ,W band shows δm at)the one-loop level which is evaluated by Eq. (10) with uncertainty ˆ 2 /8π 2 )[f (m ˆ 2 ) − cˆ2 f (m ˆ 2 )], = (ˆ g 2M ˆ 2W /M ˆ 2Z /M 2 W 2 4 Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs loop. 7 2.1.3 χ ˜0 Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs loop. splitting δm = mχ˜± − mχ˜0 at the one-loop level is given W Z by (b) ˆ 2 Σ(1) (M ˆ 2 ) − Σ(1) (M ˆ 2) + M ˆ 2 Σ(1) (M ˆ 2 ) + Σ(1) (M ˆ 2) δm = −M 2 2 2 2 K,± M,± K,0 M,0 4 π (2) Wednesday, December 4, 13 (a) ′ χ ˜ gences. These counter-terms play important roles to calculate ΣK,M , as will be Figure 2: Two-loop diagrams contributing to the functions Σ(2) M,K in Eq. (5). Diagram (a) discussed later. includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the (1) and gauge bosons shown in Fig. 1 lead to the functions ΣK,M . With the use of the (1) ΣK,M h can calculate gˆ, gˆ′ using tree-level relations. In deriving the one-loop relations in (k) Eqs. (6)-(9), we also obtain (j) the counter-terms to subtract ultra-violet (UV) diver- The one-loop result of the mass splitting between neural and charged winos is well h h Higgs mass does not cause significant effects on the splitting. χ ˜0 Once we obtain the input parameters, α ˆ, m ˆ W , and m ˆ Z from Eqs. (6)-(8), we Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs loop. Wino 4 (2) K,M seven operator in Eq. (20). electroweak to be around (α/π) log(m /m ) ≃ 2 %. In this Letter, Figure 5: The wino 150 mass splitting δm as a interactions function of m which . The are darkexpected green Uncertainty at the one-loop : ~we ±neglect 5MeV 100 two-loop 1000 Q dependence 8of the mass splitting at the two-loop level comes mainly from those 13 band shows δm at the one-loop level which is evaluated by Eq.corrections (10) with uncertainty these corrections to the total decay width and leaveQED the detailed analysis of the decay (i) At the next-to-leading order, Eq. (21) receives radiative from the and the (h) (g) mneutralino [GeV] of the top mass m ˆ . We set, on the other hand, m ˆ = m since the running of the induced by Q dependence, and thewidth red band shows δm at two-loop which is evaluated one-loop for future study [43]. Uncertainty at the two-loop : ~ ± 0.5MeV by Eq. (5) in MS scheme. The light green band shows the uncertainty for one-loop Higgs mass does not cause significant effects on the which splitting. are expected electroweak interactions to be around (α/π) log(mχ˜ /m π ) ≃ 2 %. In this Letter, Figure 5: The wino mass splitting δm as a function of m . The dark green result evaluated by Eq. (16). The uncertainties for the two-loop result induced by Uncertainty at the one-loop Once we obtain the input parameters, α ˆ, m ˆ , and m ˆ from Eqs. (6)-(8), we 13 100 1000: ~ ± 5MeV the SM input parameters and the non-logarithmic corrections are negligible (seeband shows δm at the one-loop level which is evaluated by Eq. (10) with uncertainty we gˆneglect these corrections toone-loop the total decay width and leave the detailed the decay can calculate , gˆ using tree-level relations. In deriving the relations in induced by Qanalysis dependence, and the of shows δm at two-loop which is evaluated Tab. 1). An arrow shows the result of Ref. [29], which is given by δm = 164.4 MeV Uncertainty at the two-loop :light ~redgreen ±band 0.5MeV (k) m [GeV] by Eq. (5) in MS scheme. The band shows the uncertainty for one-loop for mdiver= 125 GeV and m = 163.3 GeV. neutralino Eqs. (6)-(9), we also obtain (j) the counter-terms to subtract ultra-violet (UV) model parameterに依らず.. result evaluated by Eq. (16). The uncertainties for the two-loop result induced by width for future study [43]. gences. These counter-terms play important roles to calculate Σ , as will be (2) M,K (10) for mh = 125 GeV and mt = 163.3 GeV. The finite renormalization effect connecting between m ˆ t (MS mass) and mt (pole mass) is the (c)because the scalar top quarks are heavy and (d)decoupled. same as those in the SM, Figure 3: Diagrams including counter-terms which contribute to the function (2) ΣM,K 0 in Eq. (5). The counter-terms are determined to renormalize one-loop divergences. 5 Uncertainty at the two-loop : 0.2ns ~ green ± 0.5MeV ± ⇠ m ˜ ⇠ 170MeV, by Eq. (5) in MS⌧ scheme. The light band shows the uncertainty for one-loop The one-loop result of the mass splitting between neural and charged winos is well 12 induced by Q dependence, and the red band shows δm at two-loop which is evaluated known [25]–[27] and used in the earlier literature. The loop diagrams of the winos and gauge bosons shown in Fig. 1 lead to the functions Σ1 K,M . With the use of the (1) (1) formula in Eq. (5) and the self-energies ΣK,M given in the appendix B, the mass result splitting δm = mχ˜± − mχ˜0 at the one-loop level is given by (b) ˆ 2 Σ(1) (M ˆ 2 ) − Σ(1) (M ˆ 2) + M ˆ 2 Σ(1) (M ˆ 2 ) + Σ(1) (M ˆ 2) δm = −M 2 2 2 2 K,± M,± K,0 M,0 Wednesday, December 4, 13 (a) ˜1 12 evaluated by Eq. (16). The uncertainties for the two-loop result induced by “Meta-stable” chargino ˆ 2 /8π 2 )[f (m ˆ 2 ) − cˆ2 f (m ˆ 2 )], = (ˆ g 2M ˆ 2W /M ˆ 2Z /M 2 W 2 4 7 the SM input parameters and the non-logarithmic corrections are negligible (see Tab. 1). An arrow shows the result of Ref. [29], which is given by δm = 164.4 MeV (10) for mh = 125 GeV and mt = 163.3 GeV. The finite renormalization effect connecting between m ˆ t (MS mass) and mt (pole mass) is the (c)because the scalar top quarks are heavy and (d)decoupled. same as those in the SM, Figure 3: Diagrams including counter-terms which contribute to the function Σ(2) M,K in 9 Gravitino LSP W p p ˜± 1 ˜ G ˜01 0 ˜⌥ 1 / ˜2 ˜01 (Bino-like NLSP) ˜ G CMS 4b searc W/Z/h b p NEW in 2014 (Bino-higgsino mixed) CMS PAS SUS-13-022 • • p GMSB-inspired search for two higgs bosons + ETmiss ˜01 h b ˜ G ˜01 ˜ G ˜± 1 W (Higgsino-like • NLSP) Main backg Selection: – 4-5 jets, at least 2-4 b-tags – Estimate – Binned ETmiss significance (SMET) Δm jj , m jj ˜ + γ, h, Z) Figure 1: Branching ratios of the lightest neutralino Br(χ˜01– →Higgs G 基本的なsignatureは reconstruction uses 4 most b-like −1 as a function of the neutralino mixing angle tan (µ/M a fixed • Likelihood 1 ), for jets, in mass pairs with the smallest Δm jj ちょっと古いpaperを参照してますが(m h~105GeV).. Mχ˜01 = 160 GeV and mh = 105 GeV for (a) tan β = 3 and (b) β = 40. – tan 100 GeV < m jjlepton/b-jet/photon-richな終状態 = 12 ( m jj,1 + m jj,2 ) < 140 GeV M2 , have the same sign, sgn(M1 M2 ) = + then χ˜01 is the NLSP. For sgn(M1 M2 ) = − it € € € 10 見るべき終状態のまとめ Final state 1` 2` 3` 4` Production (w/ or w/o b–jet) ± 0 ˜1 ˜1 + ˜1 ˜1 ± 0 ˜1 ˜2 ˜02 ˜03 ˜+ ˜ ` ` ATLAS+CMSで全部カバー している(はず) ? ? ? 0` (b–jet/photon/LLP) ? ? ? ? ? Bino-LSP Wino-LSP, Gravitino-LSP Gravitino-LSP 11 LHC 8TeVデータをつかった electroweak SUSY探索 (highlights、主にATLAS) SR0τ a (ℓ+ ℓ− ℓ, ℓ+ ℓ− ℓ′ ) – a signal region composed of 20 disjoint bins defined in table 4 is optimised for maximum sensitivity to the ℓ˜L -mediated and W Z-mediated scenarios. SR0τ a also offers sensitivity to the W h-mediated scenario. This signal region requires a pair of SFOS leptons among the three leptons and has five slices in mSFOS (defined 3-leptons + MET search Table 3. Summary of the selection requirements for the signal regions. The index of the signal region corresponds to the number of required τ leptons. The SR0τ a bin definitions are shown in table 4. Energies, momenta and masses are given in units of GeV. The signal models targeted by the selection requirements are also shown. ๏ New! (submitted last month, arXiv:1402.7029) SR0τ b SR1τ Flavour/sign b-tagged jet miss ET ℓ+ ℓ− ℓ, ℓ+ ℓ− ℓ′ veto binned ℓ± ℓ± ℓ′∓ veto > 50 τ ± ℓ∓ ℓ∓ , τ ± ℓ∓ ℓ′∓ veto > 50 Other mSFOS binned mT binned p3T ℓ > 20 ∆φmin ≤ 1.0 ℓℓ′ τ +τ −ℓ veto > 60 ! τ mmax pT > 110 T2 > 100 70 < mτ τ < 120 300 ττℓ veto > 50 ℓ > 30 > 70 mℓτ < 120 SUSY mee Observed limitZ(±veto 1σ ) pℓT theory ∫ -1 ˜ L dt ℓ,W Z-mediated W TeV h-mediated Expected W h-mediated = 20.3 fb , s=8 limit (± 1 σexp) ~ ~ ~ ± 0 ∼ χ ∼ χ → lL ν lLl(∼ ν ν ), l ∼ ν lLl (∼ ν ν) 1 2 0 0 ∼ ∼ → l ν χ l l (ν ν ) χ 1 ∼0 1 2 (*) ∼0 All limits at 95% CL (*) Expected limit (± 1 σexp) ∼0 χ ATLAS 4.7 fb-1, s = 7 TeV 1 m∼χ± = m∼χ0 1 All limits at 95% CL 2 m 200 1 0 m∼χ 2 2 m χ∼ 0 1 1 0 m ∼χ =2 1 1 < m χ∼ 0 mSFOSがZ/non-Zの場合のcounting -m χ∼ 0 m 150 < –8– 300 χ∼ 0 = 2 χ∼ 0 改善点: 1 ± 2 400 -1 χ χ →W χ Z ATLAS 4.7 fb-1, s = 7 TeV 1 m ~l = (mχ∼0 + m∼0)/2 χ L 1 2 mχ∼± = mχ∼0 ∫∼ SUSY Observed limit (± 1 σtheory) τ˜L -mediated 250W h-mediated L dt = 20.3 fb , s=8 TeV m Target model 500 ATLAS 1 1 ATLAS nd p2T ! SR2τ b mχ∼0 [GeV] 600 rd SR2τ a Z SR0τ a mχ∼0 [GeV] Signal region 100 2 χ∼ 0 200 m ! =2 0 0 m ∼χ 1 binned 100 mSFOS, mT (shapeを使う) m∼χ 2 50 - N2/N1 compressedの領域のsensitivity 0 100 をenhance 200 300 400 500 600 700 800 m∼χ0, ∼χ± [GeV] 2 1 (a) ℓ˜L -mediated simplified model 0 100 150 200 250 300 350 400 m∼χ0, ∼χ± [GeV] 2 1 (b) W Z-mediated simplified model 13 mχ∼0 [Ge ) χ̃ 1 ATLAS SUSY 0 Observed limit (± 1 σtheory) χ̃ 2 s=8 TeV 0 χ χ →W χ Z ∼ χ Expected limit (± 1 σexp) m∼χ± = m∼χ0 All limits at 95% CL ± 0 1 2 (*) 0 1 1 (*) ATLAS 4.7 fb-1, s = 7 TeV 1 χ∼ 0 = χ∼ 0 m 2 For and (M1 0 ๏ pp→C1N2→Wh(bb/WW)N1N1: 100 150 200 250 300 350 400 m∼χ0, ∼χ± [GeV] 2 3-lepton 45 ATLAS 40 ∫ SUSY Observed limit (± 1 σtheory) -1 L dt = 20.3 fb , s=8 TeV Expected limit (± 1 σexp) 0 ± 0 ± 0 ∼ χ1 ∼ χ2 → W ∼ χ1 h ∼ χ1 120 100 h <m -1 L dt = 20.3 fb , s=8 TeV ± 0 1 2 0 W± EWK SUSY Searches at ATLAS Expected limit 68% CL Observed limit (±1 SUSY ) theory Expected limit (±1 exp) 0 0 h 1 1 80 2 0 h0 + 1 60 20 fo 0 χ 2 rb 0 id 1 -m χ∼ 0 2 m∼ 25 mχ∼± = mχ∼0 1 ATLAS Preliminary JHEP 1210 (2012) 065 SRA+SRB All limits at 95% CL 35 30 140 1-lepton+bb de n 50 1 1 1 mχ∼0 [GeV] 125 h q Had been already searched for, but low sensitivity due to the small (b) W Z-mediated acceptance & S/N.simplified model ‣ SY ) ory Wh allo cou frac When kinematically allowed, N2→hN1 could have a significant 50 fraction. m 0 [GeV] GeV] m ∼χ0 1 m∼χ 2 1 1 2 m 100 800 =2 0 may help when exploring further… χ∼ 0 ๏ Higgs ‣ -m χ∼ 0 m < 150 Wi 2 m 200 ∫∼ L∼dt = 20.3 fb∼ , Z 1 3-lepton/1-lepton+bb (Wh-mediated) eV 250 -1 15 40 10 20 5 500 GeV] 0 100 110 120 130 140 150 160 170 180 190 200 m∼χ0, ∼χ± [GeV] 2 1 0 120 140 160 180 200 220 240 260 280 300 m ±, 0 [GeV] 1 (d) W h-mediated simplified model 2 14 EW gaugino探索結果の纏め 20.3-20.7 fb-1, s=8 TeV 600 ~ ± 0 pp→∼ χ1∼ χ2, via lL/ ∼ ν, ~ + − pp→∼ χ1∼ χ1, via lL/ ∼ ν, ± pp→∼ χ1∼ χ02, via ∼τL/ ∼ ν τ, ± 0 pp→∼ χ∼ χ , via ∼τ / ∼ ν, 1 m χ∼0 [GeV] ATLAS Preliminary 500 400 300 τ L 1 2 + − ∼ pp→χ1∼ χ1, ± pp→∼ χ1∼ χ02, ± 0 pp→∼ χ1∼ χ2, ± pp→∼ χ1∼ χ02, + − pp→∼ χ1∼ χ1, via ∼τL/ ∼ ν τ, 3l, arXiv:1402.7029 Expected limits 2e/ µ, arXiv:1403.5294 3l, arXiv:1402.7029 Observed limits 2τ, ATLAS-CONF-2013-028 via Wh, via WW, 1 L 2e/µ, arXiv:1403.5294 2 = 0 0 200 m ∼χ 1 m ∼χ 2 0 = 0 m ∼χ + mZ heavy scaler scenarioで考えるかぎりは無し 3l, arXiv:1402.7029 0 < 0 Gauge boson経由に比べて~20倍のacceptance. e/µbb, ATLAS-CONF-2013-093 m ~l / ∼τ / ∼ν = 0.5(m ∼χ0 + m ∼χ0) L Intermediate sleptonの場合は 2τ, ATLAS-CONF-2013-028 via WZ, 2e/ µ+3l, arXiv:1403.5294 via Wh, Status: Moriond 2014 m ∼χ m ∼χ 2 + 1 mh m∼ = 2 χ1 0 m∼χ0 2 1 m ∼χ 2 100 0 100 200 300 400 500 600 700 m ∼χ± (=m ∼χ0) [GeV] 1 2 15 Wino-LSP search ˜01 Wino-LSP scenarios predict the massdegenerate C1 that could have a significant lifetime. ‣ Decaying C1 could be reconstructed as a “high-pT disappearing track” Explore events containing ISR jet + disappearing track ˜± 1 Tracks / GeV ‣ ⇡± 105 4 10 103 ATLAS s = 8TeV, -1 Ldt = 20.3 fb 102 Data Total background Interacting hadron p -mismeasured track T Electron Muon m ± = 200 GeV, ± = 0.2 ns m 1± = 300 GeV, 1± = 0.2 ns m 1± = 300 GeV, 1± = 1.0 ns 1 ⇡ ˜± 1 10 ± 1 10-1 ˜01 ˜01 p g 10-2 high-pT disappearing track (having few hits in the outer ID region) Data / Fit p 1 For triggering the event 10-3 2.5 2 1.5 1 0.5 0 track p [GeV] T 20 30 40 100 200 300 1000 Track p [GeV] T 16 Wino-LSP search ˜01 tan = 5, µ > 0 220 ‣ theory exp -1 ⇡± 1 m [MeV] Observed 95% CL limit (±1 ) Wino-LSP scenarios (AMSB, PGM, Expected 95% CL limit (±1 ) split,…) ATLAS ( s = 7 TeV, 4.7 fb , EW prod.) 210 predict the mass-degenerate ALEPH (Phys. Lett. B533 223 (2002)) C1 that could have a significant lifetime. Theory (Phys. Lett. B721 252 (2013)) ˜± 1 Decaying C1 could be ATLAS reconstructed as a “high-pT 190 s = 8 TeV, L dt = 20.3 fb 10 disappearing track” 180 ATLAS 10 Explore events containing ISR 10 Wino LSP with <260GeV ruled out 170 jet + disappearing track 10 200 ‘Stable’ ± 1 -1 Tracks / GeV ‣ 5 4 3 s = 8TeV, -1 Ldt = 20.3 fb 2 Data Total background Interacting hadron p -mismeasured track T Electron Muon m ± = 200 GeV, ± = 0.2 ns m 1± = 300 GeV, 1± = 0.2 ns m 1± = 300 GeV, 1± = 1.0 ns 1 160 p ± ˜150 1 10 1 Predicted (2-loop calc.) -1 10 ˜01 10-2 high-pT disappearing track 10-3 140 2.5 (having few hits in the ˜01 2 1.5 1 outer300 ID 350 region) 100 150 200 250 400 450 500 550 0.5 600 Data / Fit p ⇡ ± g 1 0 m ± [GeV] 20 For triggering the event 1 track p [GeV] T 30 40 100 200 300 1000 Track p [GeV] T 17 Direct slepton production ⌧ 350 300 ATLAS Observed limit (±1 σSUSY ) theory -1 ∫ Ldt = 20.3 fb , s = 8 TeV ~±~ 0 0 χ1 lRlR → l±∼ χ1l ∼ Expected limit (±1 σexp) ∼ excluded LEP2 µ ± 1 Stau ± mχ∼0 [GeV] Slepton ⌧˜ ˜01 ⌧˜ ˜01 R All limits at 95% CL 250 p ` 200 ~±l ) < ( m 150 ⌧ p ∼χ0 )1 ( m p `˜ ˜01 `˜ ˜01 100 ` 50 0 p 100 150 200 250 300 350 400 m~l± [GeV] 1 (robustにright-handedの場合の制限) Currently has low sensitivity due to the low cross section… ! The theoretical cross section is 0.04 pb, and the excluded cross section is 0.17 pb for m(stau)=140GeV and m(N1)=10GeV 18 4-lepton+MET search p ` ` ˜ G Z ˜01 ˜01 ˜± 1 m~g [GeV] 1200 ˜ G ` ` Z W 1200 ATLAS Preliminary ∫ L dt = 20.7 fb , -1 1100 m~g [GeV] p GGM: Higgsino-like neutralino NLSP s=8 TeV 1100 SUSY Observed limit (± 1 σtheory) tan(β)=1.5 Expected limit (± 1 σexp) ATLAS Preliminary ∫ L dt = 20.7 fb-1, SUSY Observed limit (± 1 σtheory) tan(β)=30 Expected limit (± 1 σexp) 1000 ATLAS 5.8 fb -1, Z+jets 1000 s=8 TeV ATLAS 5.8 fb -1, Z+jets 900 All limits at 95% CL All limits at 95% CL 800 900 700 800 <µ m~g g~ < µ 600 m 700 500 300 600 200 300 400 400 500 500 ∼0 700 m(χ1) [GeV] 600 600 700 800 900 300 400 200 300 400 400 500 500 0 700 m(∼ χ ) [GeV] 600 600 1 700 µ [GeV] (a) GGM tan β=1.5 800 900 µ [GeV] (b) GGM tan β=30 19 NEW in 2014 ATLAS diphoton search Di-photon+MET ATLAS diphoton search • Background estimation ATLAS-CONF-2014-001 NEW in 2014 • Diphoton search, sensitive to bino-like ATLAS-CONF-2014-001 NLSP (GGM) W • – QCD background estimated by inverting Background estimation identification criteria on one photon – QCD backgroundinestimated inverting • Normalised ETmiss < 60 by GeV region on one(W, photon – identification Electroweak criteria background Z, top) from • – Diphoton search, sensitive to bino-like No explicit requirements/vetoes on NLSP (GGM) padditional leptons or jets ± NoEW requirements/vetoes on ˜explicit – – Two signal G regions 1 production ˜ additional or jets ˜01GeV WP1: ETmiss >leptons 200 and HT > 400 GeV • control Normalised in ETmiss < 60 GeV region e+γ region – background (W, MC Z, top) from – Electroweak Irreducible (W/Z+γγ) from e+γ• control region W+γγ normalised in lγγ+ETmiss control – Irreducible region (W/Z+γγ) from MC GGM: Bino-like neutralino NLSP • W+γγ normalised in lγγ+E control missproduction – WP2: TwoEEW signal > 150 GeV and Hregions T miss T > 600 GeV 0 ET >˜ 200 GeV andbetween HT > 400 GeV • WP1: + requirements angles ETmiss 1 on miss ˜ ⌥ Ejets/photons WP2: ˜and ˜T0 > 150 GeV andGHT > 600 GeV p / 2 • 1 + requirements on angles between ETmiss and jets/photons W/Z/h region miss T Interpretation in terms of wino production gluino production, not shown here) Interpretation in(and terms of wino production (and gluino production, not shown here) ETmiss in WP2 region ETmiss in WP2 region WP2 WP2 21st March 2014 21st March 2014 Moriond EW 2014 Moriond EW 2014 16 1620 Stable slepton search 探索手法: ‣ ‣ Candidates / 10 GeV -1 = 15.9 fb small coupling500to∫ Ldt gravitino, stauは 長寿命 ∫ Preliminary -1 Ldt = 15.9 fb Data, s = 8 TeV 102 Bkg estimate ± 1 σ (syst) GMSB, m∼ = 346 GeV τ1 (Λ = 110 TeV, tanβ = 10) GMSB, m∼ = 437 GeV 10 400 τ1 (Λ = 140 TeV, tanβ = 10) 1 Heavy charged massive particle→low 200 β 300 10-1 large dE/dx、muon spectrometerに 100 よるTOF Data, s = 8 TeV GMSB, m∼ = 346 GeV τ (Λ = 110 TeV, tanβ = 10) ! ! ! 0 0 100 200 300 Stau direct prod. cτ~∞の仮定で 400 500 600 m1 [GeV] 0 Data/Bkg ๏ ATLAS 103 ATLAS Preliminary Cross section [fb] ‣ 600 LSP+stau NLSP: m2 [GeV] ๏ Gravitino 5 4 3 2 1 0 -1 10 0 50 100 150 200 250 300 350 400 450 500 min(m1, m2) [GeV] ATLAS Preliminary s = 8 TeV, 50 100 150 ∫ -1 Ldt = 15.9 fb 200 250 production, tanβ = 300 10 350 400 observed limit 450 500 expected limit ± 1σ min(m , m2) [GeV] ± 2σ production, tanβ = 30 observed limit production, tanβ = 50 observed limit 1 m(stau)>~270GeV Figure 3: On the left, observed data and expected signal in the two-candidate signal region in the slepton ๏ Meta-stable search. On the right, the lower of the two masses is plotted1 for observed data, background estimate and expected signal for ⌧˜ 1 masses of 346 GeV and 437 GeV. scenario(decaying stau)に 対する結果も今後。displaced vertexを samples shown on the right have ⌧˜ 1 masses of 346 GeV and 437 GeV. 250 300 350 400 450 500 No indication of signal above the expected background is observed, and limits on newτ∼physics scenarios 使う。 1 mass [GeV] are set. Cross-section limits are obtained using the CL s prescription [50]. Mass limits are derived by Figure 6: Cross-section limits as aof function the ⌧˜ 1 around mass for the directtheoretically ⌧˜ 1 production. Expected comparing the obtained cross-section limits to the lower edge the 1 of band 21 Slight(excess(!(lower(limits( Probability)that)) • GMSB-inspired search for two hig bosons + ETmiss Any excess over SM?? • Sum)of)all)bins)in)1)of)64)categories)shows)such)a) deviation:)p~0.5) • よく聞かれるので.. All)bins)in)1)of)64)category))show)such)a) excessはいつもCMSから.. • Selection: Pluctuation:)p~0.05) – 4-5 jets, at least 2-4 b-tags – Binned ETmiss significance (SMET) – Higgs reconstruction uses 4 most bjets, in pairs with the smallest Δm jj – 100 GeV < m jj = 12 ( m jj,1 + m jj,2 ) < 140 GeV € € 3rd&September&2013& C.&Sander&N&Latest&SUSY&Results&from&CMS& 21st March 2014 35& 22 LHC 14TeV prospectsと 新しい試み 14(13)TeV vs. 8TeV Physics Priorities for Run-2 Andreas Hoecker, ATLAS Trigger Workshop, Sesimbra, Portugal, Mar 11, 2014 parton luminosity ratio WJS2013 100 luminosity ratio ratios of LHC parton luminosities: 13 TeV / 8 TeV gg _ Σqq qg 10 Strong interaction dominated processes Electroweak processes 1 100 1000 MSTW2008NLO 4 TeV MX (GeV) 8→13TeVでcolored sparticle searchほど劇的に探索感度が改善するわけではない。 Physics Priorities — Trigger Workshop 2014 1 • とりあえずデータをためる..新しい結果は数10fb-1まで(2年目)おまちください。 • >~1TeVを探索するにはbeam energyを早めに上げた方が.. 24 EW gauginoの探索感度 600 s= 14 TeV ATLAS Simulation Preliminary 3000 fb-1 exclusion, µ = 140 300 fb-1 exclusion, µ = 60 8 TeV, 20.7 fb-1 exclusion 1 mχ∼0 [GeV] C1N2→WhN1N1→3-lepton+MET 500 400 300 3-lepton channel ∼± χ ∼0 → W± χ ∼0 Z χ ∼0 χ 1 2 1 1 m∼χ± = m∼χ0 1 2 200 100 0 200 300 400 500 600 700 800 900 1000 1100 1200 m∼χ± , m∼ 0 [GeV] 1 χ 2 25 Extending 3-lepton search ๏ まだ感度を改善しないといけないのはcompressed spectrumの場合: m(N2,C1)~m(N1) (例のごとく)“ISR + multi soft leptons” ! Endpoint corresponding to ! mass difference ! fraction 0.20 0.25 0.25 150-130 150-100 WZ bkgd ! 0.15 ! 0.10 0.05 ! 0.00 ! ! 0.25 0.25 150-130 150-100 WZ bkgd 0.20 0.20 0.15 0.15 fraction fraction 0.25 Variables related to ISR (pronounced in squeezed spectra) 0.10 0.10 0.05 0.05 20 40 60 minHmSFOSLHGeVL 80 0.00 0.00 150-130 150-130 150-100 150-100 WZbkgd bkgd WZ 0.20 0.20 fraction fraction ‣ 0.15 0.15 0.10 0.10 0.05 0.05 20 0.5 40 60 1.0 1.5 mSFOSHZLHGeVL METêp T H j1 L 802.0 0.00 0.00 0.0 0.0 0.5 0.51.0 pDfH ,METL T H{1j1Lêp T H j1 L 1.51.0 2.0 1.5 2.5 3.0 !Distribution miss ) spectrum. 4. pT (`Left: ) spectrum. The otherThe details of details the plots Figure 3. Right: ETmiss /pT (jFigure other of are 1 )/pT (j1(j 1 ) spectrum. 1 , ET Figure 2. for the two variables min(mSFOS) (left) and mSFOS(Z) (right) the plots are as for Fig. 1. presented in the text. min(mSFOS) has a clear edge at around . The baseline cut on ๏ あとLSP massを決めることは非常に重要 0 M = mW/Z ` = mW/Z /2. Since m( NLSP ) > mW/Z for the pa min(mSFOS) is relaxed to min(mSFOS) > 2 GeV for illustrative purposes. The and otherEdetails ‣ are interest, expect that, a given pT and (j1 ), thus the leptons from the isback 解析感度の改善、signal yieldと併せてmass bution from the spectrum, second termgaugino構成の決定(モデルの検証) ofweeq.(3.1) is alsoforimportant, the correlation of the plots as for Fig. 1. miss larger boost. weaker. To effectively encode this feature, we introduce a ratio variable E /pT (j1 ) T 難しいですが個人的にアイディア検証してるとこです。また機会があれば(ものになれば)。。 This observation leads us tofor consider a ratioscenarios variable and between in our edge analysis. for this variable two signal for th min(mSFOS)3 . The min(mSFOS) has a clearer at The thandistributions mSFOS(Z) (see Fig. 2 pT (`1 ) the lepton p (see note26that the background are shown in the Fig.4 for 3. the As distribution). expected fromWe eq.(3.1), T :left (jpanel 1) for comparison). This is because, for signal events, the correct pair invariantpTmass is ofFig. ‣ -1 14TeV ~100fb あればwino mass 400~500GeVまでの感度 ‣ LSP massも決められる 1 ! IBL(新しい最内層pixel layer)を利用できる ‣ τ~0.2n Decay radius >~130mmまで拡張(現在は~300mm) 10-1 VBF processも探索 数10%くらい信号が増えるはず。S/Nも良い。 - 1 1000 ATLAS Preliminary 2D efficiency map TRT 0.8 Efficiency ‣ Discovery, 20 fb-1 Exclusion, 20 fb-1 Discovery, 100 fb-1 Exclusion, 100 fb-1 s = 14 TeV 最大限探索感度を上げる: Radius [mm] ๏ ± 1 ๏ [ns] Wino LSP search 100 150 200 250 300 350 400 450 500 m ± [GeV] 1 IBL 800 0.6 600 SCT 0.4 400 200 0 0.2 Pixel -2 -1 0 1 0 2 この大きなgapでdecayするcharginoを救う η 27 Inclus 3rd gen. g˜ med. GMSB (ℓ˜ NLSP) GGM (bino NLSP) GGM (wino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP 0 g˜ →bb¯ χ˜ 1 0 g˜ →tt¯χ˜ 1 0 g˜ →tt¯χ˜ 1 + χ ˜ g˜ →bt¯ 1 3rd gen. squarks direct production 0 b˜ 1 b˜ 1 , b˜ 1 →bχ˜ 1 ˜b1 b˜ 1 , b˜ 1 →tχ˜ ±1 ± t˜1 t˜1 (light), t˜1 →bχ˜ 1 0 t˜1 t˜1 (light), t˜1 →Wbχ˜ 1 0 t˜1 t˜1 (medium), t˜1 →tχ˜ 1 ˜t1 t˜1 (medium), t˜1 →bχ˜ ±1 0 t˜1 t˜1 (heavy), t˜1 →tχ˜ 1 0 Status: Moriond t˜1 t˜1 (heavy), t˜1 →tχ˜ 12014 0 χ ˜ t˜1 t˜1 , t˜1 →c 1 t˜1 t˜1Model (natural GMSB) t˜2 t˜2 , t˜2 →t˜1 + Z 0 0-2 jets 1b 0-3 jets mono-jet Yes Yes Yes Yes Yes Yes 20.7 20.3 4.8 4.8 5.8 10.5 F1/2 scale 0 0 0-1 e, µ 0-1 e, µ 3b 7-10 jets 3b 3b Yes Yes Yes Yes 20.1 20.3 20.1 20.1 g˜ g˜ g˜ g˜ 1-2 τ 2γ 1 e, µ + γ γ 2 e, µ (Z ) g˜ g˜ g˜ g˜ g˜ まとめ 900 GeV 690 GeV 645 GeV 110-167 GeV 130-210 GeV 215-530 GeV 150-580 GeV 200-610 GeV 320-660 GeV 3rd RPV gen. g˜ med. Long-lived EW Inclusive Searches particles direct 2-60jets Yes 3-60jets Yes 7-10- jets Yes 2-60jets Yes 2-60jets Yes 3-62 jets Yes b 0-3 jets 1 jet Yes 2-4 jets Yes 1-5 Yes 0-2 jets jets Yes -Yes -Yes Yes 1b Yes 0-3 -jets Yes τ τ mono-jet 0 Gravitino LSP Yes 1 e, µ + τ LFV pp→˜ντ + X, ν˜ τ →e(µ) + τ 0 1 e, µ 7 jets Yes 0 3b Yes gBilinear ˜ →bb¯ χ˜ RPV CMSSM - jets χ˜ +1 χ˜ −1¯χ,˜ 0χ˜1+1 →W χ˜ 01 , χ˜ 01 →ee˜νµ , eµ˜νe 4 e, µ Yes 7-10 0 Yes g˜ →t t +χ − 10χ + 0 0 30-1 e, µe,+µτ χ Yes ,˜ 1˜ 1 →W χ˜ 1 , χ˜ 1 →ττ˜νe , eτ˜ντ 1 ˜ 1t¯χ 3-b Yes g˜˜ →t + gg˜˜ →qqq 6-73 jets 0-10e, µ b Yes →bt¯χ˜ 1 2 e, µ (SS) g˜ →t˜1 t, t˜1 →bs 0-3 b Yes 0 0 2b Yes b˜ 1 b˜ 1 , b˜ 1 →bχ˜ 1 ± 40-3 jets ˜ 1 b˜ 1 , b˜ 1gluon 2 e, µ0(SS) b Yes bScalar →tχ˜ 1pair, sgluon→qq¯ ± sgluon→tt¯ Scalar gluon pair, 2 e, µ (SS) 2 b Yes 1-2 e, µ 1-2 b Yes t˜1 t˜1 (light), t˜1 →bχ˜ 1 WIMP interaction mono-jet 0µ Yes 2 e, ˜ 01 Dirac χ) 0-2 jets Yes t˜1 t˜1 (light), t˜1 →Wbχ(D5, 2√ jets √t˜1 →tχ˜ 01 √ 2 e, µ Yes t˜1 t˜1 (medium), ± = 7χ˜TeV s = 8 0TeV s = 8 TeV Yes 2 b t˜1 t˜1 (medium), ts˜1 →b 1 0 partial1 data full data e, µ Yes 1 b t˜1 t˜1 (heavy), t˜1full →tχ˜data 1 0 0 Yes 2b t˜1 t˜1 (heavy), t˜1 →tχ˜ 1 *Only ˜a˜selection of the available mass limits on new states 0 mono-jet/c-tag Yes 0 t1 t1 , t˜1 →cχ˜ 1 2 e, µ (Z ) t˜1 t˜1 (natural GMSB) 1b Yes 3 e, µ (Z ) t˜2 t˜2 , t˜2 →t˜1 + Z 1b Yes 20.3 20.3 20.3 20.7 20.3 20.3 20.3 20.3 20.3 4.7 22.9 20.7 15.9 20.3 4.7 4.8 20.3 4.8 5.8 4.6 10.5 4.6 ˜ g˜ ℓq, g˜ ± χ 1 g˜ ± χ 1 q˜ ± , χ˜ 0 χ 1 2 g˜ ± , χ˜ 0 χ 1 2 g˜ ± , χ˜ 0 χ 1 2 g˜ ± χ g˜˜ 1 g g˜˜ 0 χ g˜˜ 1 0 χ g˜˜ 1 qg˜˜ ν˜g˜τ 1/2 ˜ τ scale νF qg˜˜ , g˜ 4.7 20.1 ± χ 20.7 g˜˜ 1 20.3 ± ˜ χ 20.7 g˜ 1 20.1 g ˜ 20.3 g˜ 20.1 g˜ 20.7 20.1 b˜ 1 sgluon 4.6 20.7 b˜ 1 sgluon 14.3 t˜1 4.7 M* 10.5 t˜1 scale 20.3 t˜1 20.3 t˜1 20.1 t˜1 20.7 t˜1 20.5 or20.3 phenomena is t˜1 t˜1 20.3 t˜2 20.3 3rd gen. squarks Other direct production EW direct Long-lived particles 150-580 GeV 290-600 GeV 1.7 TeV 90-325 GeV 140-465 GeV 180-330 GeV 1.2 TeV 1.1 TeV m(χ˜ 1 )<90 GeV ± 0 m(χ˜ 1 )=2 m(χ˜ 1 ) 0 m(χ˜ 1 )=55 GeV 0 ± m(χ˜ 1 ) =m(t˜1 )-m(W )-50 GeV, m(t˜1 )<<m(χ˜ 1 ) 0 χ ˜ m( 1 )=1 GeV 0 ± 0 m(χ˜ 1 )<200 GeV, m(χ˜ 1 )-m(χ˜ 1 )=5 GeV 0 m(χ˜ 1 )=0 GeV 0 −1 m(χ˜ 1 )=0 GeV 0 ˜ m(t1 )-m(χ˜ 1 )<85 GeV 0 m(χ˜ 1 )>150 GeV 0 m(χ˜ 1 )<200 GeV 0 1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222 0 m( q˜ )=m( g˜ ) m(χ 1 )=0 GeV 0 any q˜ )GeV, m(ℓ, ˜ ν˜ )=0.5(m(χ˜ ±1 )+m(χ˜ 01 )) m(χ˜ 1m( )=0 0m(q ± 0 any ˜ ) χ ˜ m( )=0 GeV, m(τ˜ , ν˜ )=0.5(m(χ˜ )+m(χ˜ )) ATLAS-CONF-2013-047 1403.5294 ATLAS-CONF-2013-062 1403.5294 1308.1841 ATLAS-CONF-2013-028 ATLAS-CONF-2013-047 1402.7029 ATLAS-CONF-2013-047 1403.5294, 1402.7029 ATLAS-CONF-2013-062 ATLAS-CONF-2013-093 ATLAS-CONF-2013-089 ATLAS-CONF-2013-069 1208.4688 ATLAS-CONF-2013-057 ATLAS-CONF-2013-026 ATLAS-CONF-2013-058 ATLAS-CONF-2014-001 1304.6310 ATLAS-CONF-2012-144 ATLAS-CONF-2013-092 1211.1167 ATLAS√ L dt = (4.6 - 22.9) fb 1 0 0 1 ± 1 0 ˜ 1m( ˜ ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 1 )) χ˜ 2χ), )=0χ˜ 1GeV m(χ˜ 1 )=m(m( )=0, m(ℓ, 0 1.3 TeV χ˜ 02 ), m(χ˜ 01 )=0, sleptons decoupled m(χ˜ ±11 )=0 GeV 420 GeV m( )=m( 0 χ˜ ± )=0.5(m( χ˜ 01decoupled 1.18 TeV ˜ 01 )=0, m(χ˜ ±11 ))=m( <200χ˜ 02GeV, m( )+m(g˜ )) 285 GeV m( ), m(χ sleptons 0 1.12 TeV m(χ˜ 1±)=0 GeV 0 ± 270 GeV m( tanχ˜β< 15 χ˜ 1 )=160 MeV, τ(χ˜ 1 )=0.2 ns 1 )-m( 1.24 TeV 0 χ ˜ 832 GeV m( tanβ1 )=100 >18 GeV, 10 µs<τ(˜g)<1000 s 1.4 TeV 0tanβ<50 10< 475 GeV 1.28 TeV m(χ˜ 1 )>50 GeV 0 χ ˜ 01 )<2 ns 230 GeV 0.4χ˜<τ( 619 GeV m( GeV 1 )>50 0 0 TeV 1.5 156 mm, BR(µ)=1, m(χ˜ 1 )=108 GeV 9001.0 GeV m(χ˜<cτ< 1 )>220 GeV ˜ )>200 GeV m( 690 GeV λ′311H=0.10, λ132 =0.05 1.61 TeV ′ g m( ˜ )=0.10, >10−4 λeV 645 GeV λ 1(2)33 =0.05 ± 740GeV GeV 700 1.1 TeV 1.2 TeV TeV 1.2 0 311 0 m(q˜ )=m( g˜ ), cτLS P <1 mm m(χ˜ 10 )<600 GeV ˜χ˜ 01 )>300 GeV, λ121 >0 χ m( m( 10 ) <350 GeV χ˜ 0 >80 GeV, λ133 >0 m( m(χ˜ 11 ))< 400 GeV BR(t0)=BR(b)=BR(c)=0% m(χ˜ 1 )<300 GeV 760 GeV 1.1 TeV 350 GeV 1.34 TeV 916 GeV 1.3 TeV 880 GeV 100-620 GeV 100-287 GeV 275-430 GeV 350-800 GeV 110-167 GeV 704 GeV 130-210 GeV ๏ 重たいSUSYシナリオ(heavy 0 m(χ˜ 1 )<90 GeV ± incl. from χ˜ 01 )1110.2693 m(χ˜ 1limit )=2 m( 0 m(χ˜ 1 )=55 GeV m(χ )0<80 GeV, limit of<687 GeV for D8 ± m(χ˜ 1 ) =m(t˜1 )-m(W )-50 GeV, m(t˜1 )<<m(χ˜ 1 ) 0 χ ˜ m( 1 )=1 GeV 0 ± 0 m(χ˜ 1 )<200 GeV, m(χ˜ 1 )-m(χ˜ 1 )=5 GeV 0 m(χ˜ 1 )=0 GeV 0 m(χ˜ 1 )=0 GeV signal cross 0 section uncertainty. m(t˜1 )-m(χ˜ 1 )<85 GeV 0 m(χ˜ 1 )>150 GeV 0 m(χ˜ 1 )<200 GeV Preliminary s = 7, 8 TeV Reference ATLAS-CONF-2012-152 1212.1272 ATLAS-CONF-2012-147 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-061 ATLAS-CONF-2013-036 1308.1841 ATLAS-CONF-2013-036 ATLAS-CONF-2013-061 ATLAS-CONF-2013-091 ATLAS-CONF-2013-061 ATLAS-CONF-2013-007 1308.2631 1210.4826 ATLAS-CONF-2013-007 ATLAS-CONF-2013-051 1208.4305, 1209.2102 ATLAS-CONF-2012-147 1403.4853 scalers)の立場に立ってみれば 1 10 Mass scale [TeV] electroweak gauginosに対する制限はまだまだ。統計不足。 215-530 GeV 150-580 GeV 200-610 GeV 320-660 GeV −1 shown. All limits quoted are observed minus 1σ theoretical 90-200 GeV 150-580 GeV 290-600 GeV 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222 ‣ Bino LSP:<100GeV excluded for m(C1)~m(N2)<400GeV ‣ Wino LSP: <260GeV excluded ˜ χ˜ 01 ℓ˜L,R ℓ˜L,R , ℓ→ℓ ˜ ν) χ˜ +1 χ˜ −1 , χ˜ +1 →ℓν(ℓ˜ χ˜ +1 χ˜ −1 , χ˜ +1 →˜τν(τ˜ν) χ˜ ±1 χ˜ 02 →ℓ˜L νℓ˜L ℓ(˜νν), ℓ˜νℓ˜L ℓ(˜νν) χ˜ ±1 χ˜ 02 →W χ˜ 01 Z χ˜ 01 χ˜ ±1 χ˜ 02 →W χ˜ 01 h χ˜ 01 2 e, µ 2 e, µ 2τ 3 e, µ 2-3 e, µ 1 e, µ 0 0 0 0 2b + − ± Disapp. trk 1 jet Direct χ˜ 1 χ˜ 1 prod., long-lived χ˜ 1 Stable, stopped g˜ R-hadron 1-5 jets 0 0 GMSB, stable τ˜ , χ˜ 1 →˜τ(˜e, µ) ˜ +τ(e, µ) 1-2 µ 0 0 2γ GMSB, χ˜ 1 →γG˜ , long-lived χ˜ 1 0 1 µ, displ. vtx q˜ q˜ , χ˜ 1 →qqµ (RPV) 20.3 20.3 20.7 20.3 20.3 20.3 ℓ˜ χ˜ ±1 χ˜ ±1 χ˜ ±1 , χ˜ 02 χ˜ ±1 , χ˜ 02 χ˜ ± , χ˜ 0 90-325 GeV 140-465 GeV 180-330 GeV Yes Yes Yes - 20.3 22.9 15.9 4.7 20.3 χ˜ ±1 270 GeV Yes Yes Yes - 4.6 4.6 4.7 20.7 20.7 20.3 ν˜ τ ν˜ τ q˜ , g˜ χ˜ ±1 χ˜ ±1 g˜ Yes Yes Yes Yes Yes Yes 1 g˜ χ˜ 01 χ˜ 01 q˜ 2 ๏ 何か出るとしたら14(13)TeV RPV ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061 ! 90-200 GeV Mass limit 0 m(χ˜ 1 )<600 GeV 0 m(χ˜ 1 ) <350 GeV 0 m(χ˜ 1 )<400 GeV 0 χ ˜ m( 1 )<300 GeV 1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV 100-620 GeV 275-430 GeV ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS-CONF-2013-026 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147 0 m(χ˜ 1 )>50 GeV 0 m(χ˜ 1 )>50 GeV 0 m(χ˜ 1 )>220 GeV m(H˜ )>200 GeV m(g˜ )>10−4 eV 619 GeV 0 20.1 b˜ 1 2b Yes 2 e, µ (SS) 20.7 b˜ 1 0-3 b Yes 1-2 e, µ t˜1 1-2 b Yes 4.7 2 e, µ 0-2 jets t˜1 Yes 20.3 2 e, µ 2 jets t˜1 Yes 20.3 t˜1 0 Yes 20.1 2b 1 e, µ t˜1 Yes 20.7 1b t˜1 0 Yes 20.5 2b mono-jet/ c -tag t˜1 0 Yes ! 20.3 miss −1t˜ e, µτ, (Z )γ Jets 20.3 1b Yes e,2 µ, ET L dt[fb ]1 3 e, µ (Z ) t˜2 20.3 1b Yes 0µ ˜L,R ℓ˜L,R , ℓ→ℓ ˜ χ˜ 01 2 e, ℓMSUGRA/CMSSM + − + 1 e, µ MSUGRA/CMSSM ˜ ν) χ ˜ 1 χ˜ 1 , χ˜ 1 →ℓν(ℓ˜ 2 MSUGRA/CMSSM χ ˜ +1 χ˜ −1 , χ˜ +1 →˜τν(τ˜ν) 20τ 0 0˜ χ ˜ 0µ ˜ ˜ ˜ 3 e, χ q˜ q±1˜ ,χ˜q→q 1 ℓL ℓ(˜ νν), ℓ˜νℓL ℓ(˜νν) 2 →ℓL ν 00 0 2-30e, µ χ g˜ g±1˜ ,χ˜g˜02→q →Wq¯ χ˜ 1±1 Z χ˜ 1 0 1 e, µ χ˜˜ 01 h→qqW g˜ g±1˜ ,χ˜g˜02→qq χ ˜ 01 ± χ˜ 1 →W χ 1 χ 0 2 e, µ χ ˜ g˜ g˜ , g˜ →qq(ℓℓ/ℓν/νν) 1 + − ˜ ±1 Disapp. Direct 1 prod., long-lived χ 2 e, µ trk GMSBχ˜(1ℓ˜χ˜NLSP) Stable, (stopped 0τ GMSB ℓ˜ NLSP)g˜ R-hadron 1-2 0 GMSB, stable τ˜ , χ˜ 1 →˜τ(˜e, µ) ˜ +τ(e, µ) 1-2 2 γµ GGM (bino NLSP) 0 χ˜ 01 →γ GMSB, G˜ , long-lived χ˜ 1 1 e,2µγ+ γ GGM (wino NLSP) 0 1 µ, displ. γ vtx qGGM ˜ q˜ , χ˜ 1 →qqµ (RPV) NLSP) (higgsino-bino GGM (higgsino NLSP) 2 e, µ µ(Z ) 2 e, LFV pp→˜ν + X, ν˜ →e + µ tanβ >18 1.4 TeV 1.28 TeV LFV pp→˜ντ + X, ν˜ τ →e + µ LFV pp→˜ντ + X, ν˜ τ →e(µ) + τ Bilinear RPV CMSSM χ˜ +1 χ˜ −1 , χ˜ +1 →W χ˜ 01 , χ˜ 01 →ee˜νµ , eµ˜νe χ˜ +1 χ˜ −1 , χ˜ +1 →W χ˜ 01 , χ˜ 01 →ττ˜νe , eτ˜ντ g˜ →qqq 2 e, µ 1 e, µ + τ 1 e, µ 4 e, µ 3 e, µ + τ 0 7 jets 6-7 jets 0 m(χ˜ 1 )=0 GeV 0 ˜ ν˜ )=0.5(m(χ˜ ±1 )+m(χ˜ 01 )) m(χ˜ 1 )=0 GeV, m(ℓ, 0 ± 0 m(χ˜ 1 )=0 GeV, m(τ˜ , ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 1 )) ± 0 0 ± ˜ ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 01 )) m(χ˜ 1 )=m(χ˜ 2 ), m(χ˜ 1 )=0, m(ℓ, ± 0 0 χ ˜ χ ˜ χ ˜ m( 1 )=m( 2 ), m( 1 )=0, sleptons decoupled ± 0 0 χ ˜ χ ˜ χ ˜ m( 1 )=m( 2 ), m( 1 )=0, sleptons decoupled 700 GeV 420 GeV 285 GeV ± 832 GeV runから。 0 475 GeV 1.0 TeV 1.61 TeV 1.1 TeV 1.2 TeV 760 GeV 916 GeV ATLAS-CONF-2013-093 0.4<τ(χ˜ 1 )<2 ns 0 1.5 <cτ<156 mm, BR(µ)=1, m(χ˜ 1 )=108 GeV ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092 λ′311 =0.10, λ132 =0.05 λ′311 =0.10, λ1(2)33 =0.05 m(q˜ )=m(g˜ ), cτLS P <1 mm 0 m(χ˜ 1 )>300 GeV, λ121 >0 0 χ ˜ m( 1 )>80 GeV, λ133 >0 BR(t)=BR(b)=BR(c)=0% 1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 0 230 GeV 350 GeV ± m(χ˜ 1 )-m(χ˜ 1 )=160 MeV, τ(χ˜ 1 )=0.2 ns 0 m(χ˜ 1 )=100 GeV, 10 µs<τ(˜g)<1000 s 10<tanβ<50 1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 28
© Copyright 2025 ExpyDoc