ATLAS

Electroweak gauginos in scenarios
with heavy scalers and LHC searches
山本 真平 (ICEPP)
テラスケール物理研究会
March 25, 2014
Outline
๏ Introduction
‣
これまでのLHCの成果を受けて
‣
Electroweak SUSY productionの基礎
‣
種々のシナリオとLHCでの探索ストラテジー
๏ LHC
8TeVデータをつかったelectroweak SUSY探索
๏ LHC
14TeV (Run2-) prospectと新しい試み
๏ まとめ
2
Introduction
mh~126GeV and SUSY
๏ LHC
7/8TeV dataから学んだこと
!
‣
SM Higgs mass: ~126GeV
!
‣
No colored sparticle below ~1.3TeV
!
๏ SUSYの枠組みの中でm
h~126GeVは自動的(簡単)には実現できない…良くも悪
くも多くのシナリオ・パラメータ領域を棄却。
!
๏ 現状をどう理解するか?
‣
minimal/simpleなSUSYシナリオ
-
heavy scalars (split SUSY, AMSB)
-
‣
electroweak gauginoは~TeVまでにはあるはず..
Large A-term (いちおうnaturalnessを尊重)
non-minimalシナリオ
-
おもしろいお話を期待してます
4
重いSUSYをどう攻めるか?
๏ Gluino-pair
production
‣
Large cross-section (via strong interaction), 探索感度は
~LHCエネルギーのkinematic limit
‣
2~3TeVあたりがLHC 14TeV初期データですんなり見えたら
らうれしい
-
昨今の不自然なくらいラッキーな発見(large θ13, B-mode polarization,..)
にあやかりたいところ
!
๏ いずれにしても今後はelectroweak
gaugino(slepton)
production searchが正道
‣
LHC 8/14TeV・高統計データで~TeV以下までにあると思わ
れるgauginoを高い感度で隈無く探索することが重要。
5
Electroweak SUSY production
(fb)
(岩本さんより拝借)
๏ Gauginos(質量固有状態)
±
±
0
0
0
0
˜
˜
˜
˜
˜
˜
‣ ( 1, 2, 3, 4) ( 1 , 2 )
‣
Bino, Wino, Higgsinoの
mixing
!
๏ LHCにおける典型的な信号
(GeV)
‣
生成はwino-pair production
が主に寄与
‣
終状態はmass spectrum/LSP
によって多様
6
Electroweak gaugino masses
(heavy scalar scenarios)
(M1<M2,μ)
˜0
˜±
(M2<M1,μ)
˜0
(μ<M1,2)
˜±
˜0
˜±
˜0
˜±
+
Mass
(一応..)
Bino
Natural SUSY
Wino NLSP
± 0
Production: ˜1 ˜2
Wino
Higgsino
e.g. AMSB/PGM
Wino co-LSP
± 0
Production: ˜1 ˜1
Wino重いのでょっ
Gravitino
ときびしい。
e.g. GMSB/GGM
NLSPの種類, cτNLSP
LSPも縮退。
によっていろいろな
signature
7
Bino LSP
(M1<M2,μ)
˜
0
˜
±
Winos contribute to the EW production.
Dominant processes are:
± 0
+
˜
˜
˜
pp ! 1 2 ( 1 ˜1 )
!
!
Decay:
!
`
p
˜±
1
!
Bino
p
˜02
⌫
W
p
˜±
1
˜01
˜01
Z
×
⌫/`
`/⌫
`
`
p
˜02
`
Signature:
Multi-lepton+MET
Lepton+h(→bb)
W
p
⌫
˜01
˜01
h
b
b
p
˜±
1
˜02
˜⌫
`/˜
˜⌫
`/˜
˜01
˜01
`/⌫
`/⌫
Intermediate sleptonは
無し(heavy scalar)
8
we have seen
in thesplitting
previous section,δm
the charged
and the
neutral
winos
are
With theAssmall
mass
∼ 160
MeV,
the
charged
contribution
from this
operator
to the masswino
splitting isdominantly
again negligibly small.
Phenomenology of PGM
highly degenerated in mass. Therefore, the decay width of the charged wino is highly
Wino LSP
decays into asuppressed
neutral
wino
andintegral,
a soft
pion.
At
the leading order, the decay
by the
phase space
and charged
hence, the charged
wino is
long-lived
3 The charged wino decay
and has the decay length about cτ = O(1–10) cm. With such a rather long decay
width of thelength,
charged
wino
be wino
expressed
terms
thesection,
decay
width
the
it is possible
to detectcan
the charged
production
at in
the
As we
haveLHC
seen experiment
in the of
previous
the charged
and the of
neutral
winos are
Wino
width
charged
pion, is sensitive to the mass difference
by looking for disappearing tracks. In this section, we estimate
the lifetime
of theTherefore, the decay width of the charged wino is highly
highly degenerated
in mass.
by the
phase
space integral, and hence, the charged wino is long-lived
charged wino and compare with the constraint from thesuppressed
disappearing
track
search
! the decay length
"1/2 cτ!= O(1–10) cm.
and has
With
−2 such a rather long decay
2"
3
2 about
m
16δm
m
it iswino
possible
to detect the charged wino production
at the LHC experiment
µ
π
0With
± splitting±δm ∼ 160 MeV, thelength,
small mass
charged
dominantly
Γ(χ˜± → χ˜decays
π ±into
)the=
Γ(π
→
µ
ν
1
−
1
−
, (21)
µ) ×
by2 looking
disappearing
2 we estimate the lifetime of the
a neutral
wino and a soft charged pion.
the
leading for
order,
the2decaytracks. In this section,
Phenomenology
ofπAtm
PGM
m
δm
m
µ
π the disappearing track search
charged
wino and compare with the constraint from
by the ATLAS collaboration [28].
Wino
mass
splittingはgauge
bosonのloop
Wino width
is sensitive
to the mass difference
where mπ and
mµ denote
the masses
of the charged pion and the muon, respectively.8
Wino
mass
difference at two-loop level
[’12
MI, Matsumoto,
Sato]
Phenomenology
of the
PGMelectron
The decaycontributionで決まる
width of the sub-leading leptonic decay mode
into a pair of
width of the charged wino can be expressed in terms of the decay width of the
by the ATLAS collaboration [28].
charged pion,
16δm3
Γ(χ˜ → χ˜ π ) = Γ(π → µ νµ ) ×
mπ m2µ
0 ±
±
±W˜
+
+
Wino
mass
difference
at
level charged
[’12 MI,pion,
Matsumoto, Sato]
and the neutrino
[44]
bytwo-loop
The decay
widthisof given
the sub-leading
leptonic decay mode into a pair of the electron
γ/Z
˜0
W
170
to the mass difference
Γ(χ˜± → χ˜0 π ± ) = Γ(π ± → µ± νµ ) ×
16δm3
mπ m2µ
!
"1/2 !
"−2
m2µ
m2
1 − π2
1− 2
,
δm
mπ
(21)
2
2GF
± 0 ± 0 ± 2G2F 5
5
±
where
m
and mµ δm
denote (22)
the
of the charged pion and the muon,
respectively.8
Γ(
χ
˜
→
χ
˜
e
ν
)
≃
. masses
(22)
π
Γ(
χ
˜
→
χ
˜
e
ν
)
≃
δm
.
(1)
e
e
3
One-loop
diagrams
contributing
to
the
functions
Σ
in
Eq.
(5).
3
˜
q, ℓ
15π
M,K
Wino
mass
difference
at
two-loop
level
[’12
MI,
Matsumoto,
Sato]
W
165
15π
˜+W
W
˜+
W
Figure 1:
W
∓
+
and˜ +the neutrino [44] ˜is0 given˜ ±by
γ/Z
W
˜0
W
˜+
W
W∓
W
˜+
W
˜0
W
W
170
˜±
W
(1)
Figure 1: One-loop
diagrams contributing
˜ to the functions ΣM,K in Eq. (5).
q, ℓ
W
165
δm [MeV]
We consider the above two decay modes.
scheme in the SM at the Z-boson mass scale, mW,Z the physical W and Z boson
(c) the one-loop
masses, mχ˜0(a)
the physical neutral wino (b)
mass. It should be noted that
We consider the above two decay modes.
W+
The decay width of the sub-leading leptonic decay mode into a pair of the electron
and the neutrino [44] is given by
γ/Z
W∓
δm [MeV]
160
7
170
can of the
bewino obtained
from, for instance, a dimension-eight operator
relations are precise This
enough for operator
the two-loop estimation
mass splitting,
scheme in the SM at the Z-boson
mass scale,
m
W,Z the physical W and Z boson
2G2F
±
0 ±
since the leading a
mass splitting
starts
level.
†
a at the one-loop
4
Γ(
χ
˜
→
χ
˜
e
ν
)
≃
δm5 .
(22)
(q
χ
H)
(q
χ
H)/Λ
which
is
generated
by
integrating
out
the
squarks
(especially
stops)
at
the
(c)
e
(a)
(b)
L
L
Figure
1:
One-loop
diagrams
contributing
to
the
functions
Σ
in
Eq.
(5).
3
˜
q, ℓ
top quark
and the Higgs
boson appearbe
only noted
at the two-loop
calculation
of
W
masses, mχ˜0 the physical neutralThewino
mass.
It
should
that
the
one-loop
15π
155
(e)
165
(d)
(f)
7
the mass tree-level.
splitting. Thus, the
MS integrating
variables m
ˆ and m
ˆ the
may quark-loop
be replaced with their
By
and inserting the gaugino mass, we obtain the dimensionrelations are precise enough forphysical
themasses
two-loop
of the
wino
splitting,
We consider the abovethetwo
decay modes.
m and m estimation
at this level of precision.
As for
the topmass
quark mass,
scheme in the SM at the Z-boson mass scale, m
physical W and Z boson
(c) the one-loop
(20).
MS top mass atin
the Eq.
one-loop
level for m
ˆ . As we will see, the
however, seven
we use theoperator
masses, m (a)
the physical neutral wino (b)
mass. It should be noted that
150
160
7
since the leading a
mass splitting
starts
at
the
one-loop
level.
Q dependence
at the two-loop level comes mainly from those
†
a (g)8of the
4next-to-leading
canand
bethe
from, for instance, a dimension-eight operator
two-loop
relations
are precise This
enough
for operator
the the
two-loop
estimation
of the
wino obtained
mass splitting,
(i) Eq. (21) receives radiative
Atmass
thesplitting
order,
corrections
from
QED
(h)
of the top mass m
ˆ . We set, on the other hand, m
ˆ = m since the running of the
L
L
since the leading a
mass splitting
starts
at the one-loop
level.
one-loop
†
a
4
The top quark and the Higgs
boson
appearinteractions
only
at thesplitting.
two-loop
calculation of
(qquark
χ /m
H) (q
H)/Λ
which
is generated by integrating out the squarks (especially stops) at the
L χ2
Higgs mass
does not cause significant
effects on the which
top L
boson
appear
at the
two-loop calculation of
electroweak
are
(α/π)The
log(m
≃
%.
In only
this
Letter,
χ
˜ and the
π )Higgs
155
(e)
(d)
(f) expected to be around
(e)
(d)
(f)
Once we obtain the input parameters, α
ˆ, m
ˆ , and m
ˆ from Eqs. (6)-(8), we
the mass tree-level.
splitting. Thus, the
MS integrating
variables m
ˆ and m
ˆ the
may quark-loop
be replaced with their
100
1000
By
and inserting the gaugino mass, we obtain the dimensionthe mass splitting. Thus, the MS variables
m
ˆ tthese
and corrections
m
ˆ h may betoreplaced
with
their
we gˆneglect
the total
decay
width and leave
the
detailed
of theAs decay
physical
masses
m and m atanalysis
this level of precision.
for the top quark mass,
can calculate
, gˆ using tree-level
relations. In deriving the
one-loop
relations in
(k)
m theoperator
[GeV]
(20).
MS top mass atin
the Eq.
one-loop
level for m
ˆ . As we will see, the
however, seven
we useneutralino
(6)-(9),level
we also of
obtain
the counter-termsAs
to subtract
ultra-violet
diver- mass,
(j)
physical masses mt and mh atEqs.this
precision.
for the
top(UV)
quark
150
width for
future study
[43].
Q dependence 8of the mass splitting at the two-loop level comes mainly from those
two-loop
gences. These counter-terms play important roles to calculate Σ
, as will be
(i) Eq. (21) receives radiative corrections from the
order,
QED and the
Figure 2: Two-loop diagrams contributing to the functions Σ 4in Eq. (5). Diagram (a)
(h)
(g) At the next-to-leading
of the top mass m
ˆ . We set, on the other hand, m
ˆ = m since the running of the
discussed
later.
one-loop
at
the
one-loop
level
for
m
ˆ
.
As
we
will
see,
the
however, we use the MS top mass
t
includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the
˜+
W
˜0
W
˜+
W
˜+
W
˜0
W
˜±
W
160
This operator can be obtained from, for instance,
h
h
t
4
a dimension-eight operator
δm [MeV]
t
t
(1)
M,K
W,Z
χ
˜0
(q χ H) (q χ H)/Λ which is generated by integrating out the squarks (especially stops) at the
155
tree-level. By integrating the quark-loop and inserting the gaugino mass, we obtain the dimensiont
h
h
W
Z
t
Heavy wino limit
by Yamada (2009)
˜
width of the charged wino can be expressed in terms of the decay width of the
Heavy wino limit
by Yamada (2009)
˜
With
!
"1/2
! the 2small
"−2 mass splitting δm ∼ 160 MeV, the charged wino dominantly
mµ
m2π
decays 1into
and a soft charged pion. At the leading order, the decay
1−
− a 2neutral, wino
(21)
δm2
mπ
8
where mπ and mµ denote the masses of the charged pion
and the
muon, is
respectively.
Wino
width
sensitive
W
0
±
Heavy wino limit
by Yamada (2009)
(M2<M1,μ)
±
h
′
t
h
t
t
2.1.3
t
The mass splitting at one-loop level
h
known [25]–[27] and used in the earlier literature. The loop diagrams of the winos
formula in Eq. (5) and the self-energies
given in the appendix B, the mass
2.1.3
The mass splitting at one-loop level
The one-loop result of the mass splitting between neural and charged winos is well
ˆ 2 /8π 2 )[f (m
ˆ 2 ) − cˆ2 f (m
ˆ 2 )],
= (ˆ
g 2M
ˆ 2W /M
ˆ 2Z /M
2
W
2
known [25]–[27] and used in the earlier literature. The loop diagrams of the winos
(10)
(1)
t and gauge bosons shown in Fig. 1 lead to the functions ΣK,M . With the use of the
(1)
formula in Eq. (5) and the self-energies ΣK,M given in the appendix B, the mass
h
The finite renormalization effect connecting between m
ˆ t (MS mass) and mt (pole mass) is the
(c)because the scalar top quarks are heavy and
(d)decoupled.
(2)
same as those in the SM,
(2)
K,MΣ
in
Figure 3: Diagrams
counter-terms which
contribute
to the (5).
functionDiagram
Figure 2: Two-loop diagrams contributing
toincluding
the functions
ΣM,K
in Eq.
(a)
Eq.
(5).
The
counter-terms
are
determined
to
renormalize
one-loop
divergences.
discussed
later.
5
includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the
(2)
M,K
splitting δm = mχ˜± − mχ˜0 at the one-loop level is given by
(b)
ˆ 2 Σ(1) (M
ˆ 2 ) − Σ(1) (M
ˆ 2) + M
ˆ 2 Σ(1) (M
ˆ 2 ) + Σ(1) (M
ˆ 2)
δm = −M
2
2
2
2
K,±
M,±
K,0
M,0
Wednesday, December 4, 13
(a)
the SM input parameters and the non-logarithmic corrections are negligible (see
Tab. 1). An arrow shows the result of Ref. [29], which is given by δm = 164.4 MeV
±
0
Figure
5: The
wino mass splitting δm as a function of mχ˜ . The dark green
±
0
˜
˜
Uncertainty
at
the
one-loop
: ~ ± 5MeV
˜
˜
13
The mass splitting at one-loop
(level1 , 1 ) = (W
,W
band shows
δm at)the one-loop level which is evaluated by Eq. (10) with uncertainty
ˆ 2 /8π 2 )[f (m
ˆ 2 ) − cˆ2 f (m
ˆ 2 )],
= (ˆ
g 2M
ˆ 2W /M
ˆ 2Z /M
2
W
2
4
Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs
loop.
7
2.1.3
χ
˜0
Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs loop.
splitting δm = mχ˜± − mχ˜0 at the one-loop
level is given
W
Z by
(b)
ˆ 2 Σ(1) (M
ˆ 2 ) − Σ(1) (M
ˆ 2) + M
ˆ 2 Σ(1) (M
ˆ 2 ) + Σ(1) (M
ˆ 2)
δm = −M
2
2
2
2
K,±
M,±
K,0
M,0
4
π
(2)
Wednesday, December 4, 13
(a)
′
χ
˜
gences. These counter-terms play important roles to calculate ΣK,M , as will be
Figure 2: Two-loop diagrams contributing to the functions Σ(2)
M,K in Eq. (5). Diagram (a)
discussed later.
includes the SM fermion loops, while (b) includes the wino loop. Diagram (c) includes the
(1)
and gauge bosons shown in Fig. 1 lead to the functions ΣK,M . With the use of the
(1)
ΣK,M
h
can calculate gˆ, gˆ′ using tree-level relations. In deriving the one-loop relations in
(k)
Eqs. (6)-(9), we also obtain
(j) the counter-terms to subtract ultra-violet (UV) diver-
The one-loop result of the mass splitting between neural and charged winos is well
h
h
Higgs mass does not cause significant effects on the splitting.
χ
˜0
Once we obtain the input parameters, α
ˆ, m
ˆ W , and m
ˆ Z from Eqs. (6)-(8), we
Faddeev-Popov ghost loop, and (d–f) includes the SM Higgs loop.
Wino
4
(2)
K,M
seven operator in Eq. (20).
electroweak
to be around (α/π) log(m /m ) ≃ 2 %. In this Letter,
Figure 5: The wino 150
mass splitting
δm as a interactions
function of m which
. The are
darkexpected
green
Uncertainty
at
the
one-loop
: ~we
±neglect
5MeV
100 two-loop
1000
Q dependence 8of the mass splitting at the two-loop level
comes mainly from
those
13
band shows
δm at the
one-loop level
which
is evaluated
by Eq.corrections
(10) with
uncertainty
these
corrections
to
the
total
decay
width and
leaveQED
the detailed
analysis
of the decay
(i)
At
the
next-to-leading
order,
Eq.
(21)
receives
radiative
from
the
and
the
(h)
(g)
mneutralino [GeV]
of the top mass m
ˆ . We set, on the other hand, m
ˆ = m since the running
of
the
induced by Q dependence, and thewidth
red band
shows
δm at
two-loop
which is evaluated
one-loop
for
future
study
[43].
Uncertainty at
the two-loop : ~ ± 0.5MeV
by Eq. (5) in MS scheme. The light green band shows the uncertainty for one-loop
Higgs mass
does not cause significant
effects on the which
splitting. are expected
electroweak
interactions
to be around (α/π) log(mχ˜ /m
π ) ≃ 2 %. In this Letter,
Figure 5: The wino mass splitting δm as a function of m . The dark green
result evaluated by Eq. (16). The uncertainties for the two-loop result induced by
Uncertainty
at
the
one-loop
Once we obtain the input parameters, α
ˆ, m
ˆ , and m
ˆ from Eqs. (6)-(8), we
13
100
1000: ~ ± 5MeV
the SM input parameters and the non-logarithmic corrections are negligible (seeband shows δm at the one-loop level which is evaluated by Eq. (10) with uncertainty
we gˆneglect
these
corrections
toone-loop
the total
decay
width and leave
the detailed
the
decay
can calculate
, gˆ using tree-level
relations.
In deriving the
relations
in
induced by Qanalysis
dependence, and the of
shows δm
at two-loop which is evaluated
Tab. 1). An
arrow shows the result of Ref. [29], which is given
by δm = 164.4 MeV
Uncertainty
at
the
two-loop
:light
~redgreen
±band
0.5MeV
(k)
m
[GeV]
by
Eq.
(5)
in
MS
scheme.
The
band
shows
the uncertainty for one-loop
for mdiver= 125 GeV and m = 163.3 GeV.
neutralino
Eqs. (6)-(9), we also obtain
(j) the counter-terms to subtract ultra-violet (UV)
model
parameterに依らず..
result evaluated by Eq. (16). The uncertainties for the two-loop result induced by
width
for
future
study
[43].
gences. These counter-terms play important roles to calculate Σ
, as will be
(2)
M,K
(10)
for mh = 125 GeV and mt = 163.3 GeV.
The finite renormalization effect connecting between m
ˆ t (MS mass) and mt (pole mass) is the
(c)because the scalar top quarks are heavy and
(d)decoupled.
same as those in the SM,
Figure 3: Diagrams including counter-terms which contribute to the function
(2)
ΣM,K
0
in
Eq. (5). The counter-terms are determined to renormalize one-loop divergences.
5
Uncertainty
at
the two-loop
: 0.2ns
~ green
± 0.5MeV
± ⇠
m ˜ ⇠ 170MeV,
by Eq. (5) in MS⌧
scheme.
The light
band shows the uncertainty for one-loop
The one-loop result of the mass splitting between neural and charged winos is well
12
induced by Q dependence, and the red band shows δm at two-loop which is evaluated
known [25]–[27] and used in the earlier literature. The loop diagrams of the winos
and gauge bosons shown in Fig. 1 lead to the functions Σ1
K,M . With the use of the
(1)
(1)
formula in Eq. (5) and the self-energies ΣK,M given in the appendix B, the mass
result
splitting δm = mχ˜± − mχ˜0 at the one-loop level is given by
(b)
ˆ 2 Σ(1) (M
ˆ 2 ) − Σ(1) (M
ˆ 2) + M
ˆ 2 Σ(1) (M
ˆ 2 ) + Σ(1) (M
ˆ 2)
δm = −M
2
2
2
2
K,±
M,±
K,0
M,0
Wednesday, December 4, 13
(a)
˜1
12
evaluated by Eq. (16). The uncertainties for the two-loop result induced by
“Meta-stable” chargino
ˆ 2 /8π 2 )[f (m
ˆ 2 ) − cˆ2 f (m
ˆ 2 )],
= (ˆ
g 2M
ˆ 2W /M
ˆ 2Z /M
2
W
2
4
7
the SM input parameters and the non-logarithmic corrections are negligible (see
Tab. 1). An arrow shows the result of Ref. [29], which is given by δm = 164.4 MeV
(10)
for mh = 125 GeV and mt = 163.3 GeV.
The finite renormalization effect connecting between m
ˆ t (MS mass) and mt (pole mass) is the
(c)because the scalar top quarks are heavy and
(d)decoupled.
same as those in the SM,
Figure 3: Diagrams including counter-terms which contribute to the function Σ(2)
M,K in
9
Gravitino LSP
W
p
p
˜±
1
˜
G
˜01
0
˜⌥
1 / ˜2
˜01
(Bino-like NLSP)
˜
G
CMS 4b searc
W/Z/h
b
p
NEW in 2014
(Bino-higgsino mixed)
CMS PAS SUS-13-022
• 
• 
p
GMSB-inspired search for two higgs
bosons + ETmiss
˜01
h
b
˜
G
˜01
˜
G
˜±
1
W
(Higgsino-like
•  NLSP)
Main backg
Selection:
–  4-5 jets, at least 2-4 b-tags
–  Estimate
–  Binned ETmiss significance (SMET)
Δm jj , m jj
˜ + γ, h, Z)
Figure 1: Branching ratios of the lightest neutralino Br(χ˜01– →Higgs
G
基本的なsignatureは
reconstruction
uses
4
most
b-like
−1
as a function
of
the
neutralino
mixing
angle
tan
(µ/M
a fixed
•  Likelihood
1 ), for jets,
in mass
pairs with the smallest Δm jj
ちょっと古いpaperを参照してますが(m
h~105GeV)..
Mχ˜01 = 160 GeV and mh = 105 GeV for (a) tan β = 3 and (b)
β = 40.
–  tan
100 GeV < m jjlepton/b-jet/photon-richな終状態
= 12 ( m jj,1 + m jj,2 ) < 140 GeV
M2 , have the same sign, sgn(M1 M2 ) = + then χ˜01 is the NLSP. For sgn(M1 M2 ) = − it
€
€
€
10
見るべき終状態のまとめ
Final state
1`
2`
3`
4`
Production
(w/ or w/o b–jet)
± 0
˜1 ˜1
+
˜1 ˜1
± 0
˜1 ˜2
˜02 ˜03
˜+ ˜
` `
ATLAS+CMSで全部カバー
している(はず)
?
?
?
0`
(b–jet/photon/LLP)
?
?
?
?
?
Bino-LSP
Wino-LSP, Gravitino-LSP
Gravitino-LSP
11
LHC 8TeVデータをつかった
electroweak SUSY探索
(highlights、主にATLAS)
SR0τ a (ℓ+ ℓ− ℓ, ℓ+ ℓ− ℓ′ ) – a signal region composed of 20 disjoint bins defined in table 4
is optimised for maximum sensitivity to the ℓ˜L -mediated and W Z-mediated scenarios.
SR0τ a also offers sensitivity to the W h-mediated scenario. This signal region requires
a pair of SFOS leptons among the three leptons and has five slices in mSFOS (defined
3-leptons + MET search
Table 3. Summary of the selection requirements for the signal regions. The index of the signal
region corresponds to the number of required τ leptons. The SR0τ a bin definitions are shown in
table 4. Energies, momenta and masses are given in units of GeV. The signal models targeted by
the selection requirements are also shown.
๏ New! (submitted last month, arXiv:1402.7029)
SR0τ b
SR1τ
Flavour/sign
b-tagged jet
miss
ET
ℓ+ ℓ− ℓ, ℓ+ ℓ− ℓ′
veto
binned
ℓ± ℓ± ℓ′∓
veto
> 50
τ ± ℓ∓ ℓ∓ , τ ± ℓ∓ ℓ′∓
veto
> 50
Other
mSFOS binned
mT binned
p3T ℓ > 20
∆φmin
≤ 1.0
ℓℓ′
τ +τ −ℓ
veto
> 60
! τ
mmax
pT > 110
T2 > 100
70 < mτ τ < 120
300
ττℓ
veto
> 50
ℓ
> 30
> 70
mℓτ < 120
SUSY
mee
Observed
limitZ(±veto
1σ
)
pℓT
theory
∫
-1
˜ L dt
ℓ,W
Z-mediated
W TeV
h-mediated Expected
W h-mediated
= 20.3 fb , s=8
limit (± 1 σexp)
~ ~
~
± 0
∼
χ ∼
χ → lL ν lLl(∼
ν ν ), l ∼
ν lLl (∼
ν ν)
1 2
0
0
∼
∼
→ l ν χ l l (ν ν ) χ
1
∼0
1
2
(*)
∼0
All limits at 95% CL
(*)
Expected limit (± 1 σexp)
∼0
χ
ATLAS 4.7 fb-1, s = 7 TeV
1
m∼χ± = m∼χ0
1
All limits at 95% CL
2
m
200
1
0
m∼χ 2
2
m
χ∼ 0
1
1
0
m ∼χ
=2 1
1
<
m
χ∼ 0
mSFOSがZ/non-Zの場合のcounting
-m
χ∼ 0
m
150
<
–8–
300
χ∼ 0 =
2
χ∼ 0
改善点:
1
±
2
400
-1
χ χ →W χ Z
ATLAS 4.7 fb-1, s = 7 TeV
1
m ~l = (mχ∼0 + m∼0)/2
χ
L
1
2
mχ∼± = mχ∼0
∫∼
SUSY
Observed limit (± 1 σtheory)
τ˜L -mediated 250W h-mediated
L dt = 20.3 fb , s=8 TeV
m
Target model
500
ATLAS
1
1
ATLAS
nd
p2T
!
SR2τ b
mχ∼0 [GeV]
600
rd
SR2τ a
Z
SR0τ a
mχ∼0 [GeV]
Signal region
100
2
χ∼ 0
200
m
!
=2
0
0
m ∼χ 1
binned 100
mSFOS, mT (shapeを使う)
m∼χ 2
50
- N2/N1 compressedの領域のsensitivity
0
100
をenhance
200
300
400
500
600
700
800
m∼χ0, ∼χ± [GeV]
2
1
(a) ℓ˜L -mediated simplified model
0
100
150
200
250
300
350
400
m∼χ0, ∼χ± [GeV]
2
1
(b) W Z-mediated simplified model
13
mχ∼0 [Ge
)
χ̃ 1
ATLAS
SUSY
0
Observed limit (± 1 σtheory)
χ̃ 2
s=8 TeV
0
χ χ →W χ Z ∼
χ
Expected limit (± 1 σexp)
m∼χ± = m∼χ0
All limits at 95% CL
±
0
1
2
(*)
0
1
1
(*)
ATLAS 4.7 fb-1, s = 7 TeV
1
χ∼ 0 =
χ∼ 0
m
2
For
and
(M1
0
๏ pp→C1N2→Wh(bb/WW)N1N1:
100
150
200
250
300
350
400
m∼χ0, ∼χ± [GeV]
2
3-lepton
45
ATLAS
40
∫
SUSY
Observed limit (± 1 σtheory)
-1
L dt = 20.3 fb , s=8 TeV
Expected limit (± 1 σexp)
0
± 0
± 0
∼
χ1 ∼
χ2 → W ∼
χ1 h ∼
χ1
120
100
h
<m
-1
L dt = 20.3 fb , s=8 TeV
±
0
1
2
0
W±
EWK SUSY Searches at ATLAS
Expected limit 68% CL
Observed limit (±1
SUSY
)
theory
Expected limit (±1
exp)
0 0
h
1
1
80
2
0
h0
+
1
60
20
fo
0
χ
2
rb
0
id
1
-m
χ∼ 0
2
m∼
25
mχ∼± = mχ∼0
1
ATLAS Preliminary
JHEP 1210 (2012) 065
SRA+SRB
All limits at 95% CL
35
30
140
1-lepton+bb
de
n
50
1
1
1
mχ∼0 [GeV]
125
h
q
Had been already searched for, but low sensitivity due to the small
(b) W Z-mediated
acceptance
& S/N.simplified model
‣
SY
)
ory
Wh
allo
cou
frac
When kinematically allowed, N2→hN1 could have a significant
50 fraction.
m 0 [GeV]
GeV]
m ∼χ0 1
m∼χ 2
1
1
2
m
100
800
=2
0
may help when exploring further…
χ∼ 0
๏ Higgs
‣
-m
χ∼ 0
m
<
150
Wi
2
m
200
∫∼ L∼dt = 20.3 fb∼ ,
Z
1
3-lepton/1-lepton+bb (Wh-mediated)
eV
250
-1
15
40
10
20
5
500
GeV]
0
100 110 120 130 140 150 160 170 180 190 200
m∼χ0, ∼χ± [GeV]
2
1
0
120 140 160 180 200 220 240 260 280 300
m ±, 0 [GeV]
1
(d) W h-mediated simplified model
2
14
EW gaugino探索結果の纏め
20.3-20.7 fb-1, s=8 TeV
600
~
± 0
pp→∼
χ1∼
χ2, via lL/ ∼
ν,
~
+ −
pp→∼
χ1∼
χ1, via lL/ ∼
ν,
±
pp→∼
χ1∼
χ02, via ∼τL/ ∼
ν τ,
± 0
pp→∼
χ∼
χ , via ∼τ / ∼
ν,
1
m χ∼0 [GeV]
ATLAS Preliminary
500
400
300
τ
L
1 2
+ −
∼
pp→χ1∼
χ1,
±
pp→∼
χ1∼
χ02,
± 0
pp→∼
χ1∼
χ2,
±
pp→∼
χ1∼
χ02,
+ −
pp→∼
χ1∼
χ1,
via ∼τL/ ∼
ν τ,
3l, arXiv:1402.7029
Expected limits
2e/ µ, arXiv:1403.5294
3l, arXiv:1402.7029
Observed limits
2τ, ATLAS-CONF-2013-028
via Wh,
via WW,
1
L
2e/µ, arXiv:1403.5294
2
=
0
0
200
m ∼χ 1
m ∼χ 2
0
=
0
m ∼χ
+
mZ
heavy scaler scenarioで考えるかぎりは無し
3l, arXiv:1402.7029
0
<
0
Gauge boson経由に比べて~20倍のacceptance.
e/µbb, ATLAS-CONF-2013-093
m ~l / ∼τ / ∼ν = 0.5(m ∼χ0 + m ∼χ0)
L
Intermediate sleptonの場合は
2τ, ATLAS-CONF-2013-028
via WZ, 2e/ µ+3l, arXiv:1403.5294
via Wh,
Status: Moriond 2014
m ∼χ
m ∼χ 2
+
1
mh
m∼
= 2 χ1
0
m∼χ0 2
1
m ∼χ 2
100
0
100
200
300
400
500
600
700
m ∼χ± (=m ∼χ0) [GeV]
1
2
15
Wino-LSP search
˜01
Wino-LSP scenarios predict the massdegenerate C1 that could have a
significant lifetime.
‣
Decaying C1 could be
reconstructed as a “high-pT
disappearing track”
Explore events containing ISR
jet + disappearing track
˜±
1
Tracks / GeV
‣
⇡±
105
4
10
103
ATLAS
s = 8TeV,
-1
Ldt = 20.3 fb
102
Data
Total background
Interacting hadron
p -mismeasured track
T
Electron
Muon
m ± = 200 GeV, ± = 0.2 ns
m 1± = 300 GeV, 1± = 0.2 ns
m 1± = 300 GeV, 1± = 1.0 ns
1
⇡
˜±
1
10
±
1
10-1
˜01
˜01
p
g
10-2
high-pT disappearing track
(having few hits in the
outer ID region)
Data / Fit
p
1
For triggering the event
10-3
2.5
2
1.5
1
0.5
0
track p [GeV]
T
20
30 40
100
200 300
1000
Track p [GeV]
T
16
Wino-LSP search
˜01
tan = 5, µ > 0
220
‣
theory
exp
-1
⇡±
1
m [MeV]
Observed 95% CL limit (±1
)
Wino-LSP scenarios (AMSB,
PGM,
Expected 95% CL limit (±1
)
split,…)
ATLAS ( s = 7 TeV, 4.7 fb , EW prod.)
210 predict the mass-degenerate
ALEPH (Phys. Lett. B533 223 (2002))
C1 that could have a significant
lifetime.
Theory (Phys.
Lett. B721 252 (2013))
˜±
1
Decaying C1 could be
ATLAS
reconstructed
as a “high-pT
190
s = 8 TeV, L dt = 20.3 fb
10
disappearing track”
180
ATLAS
10
Explore events containing ISR
10
Wino
LSP
with
<260GeV ruled out
170
jet + disappearing track
10
200
‘Stable’
±
1
-1
Tracks / GeV
‣
5
4
3
s = 8TeV,
-1
Ldt = 20.3 fb
2
Data
Total background
Interacting hadron
p -mismeasured track
T
Electron
Muon
m ± = 200 GeV, ± = 0.2 ns
m 1± = 300 GeV, 1± = 0.2 ns
m 1± = 300 GeV, 1± = 1.0 ns
1
160
p
±
˜150
1
10
1
Predicted (2-loop
calc.)
-1
10
˜01
10-2
high-pT disappearing track
10-3
140
2.5
(having few hits in the
˜01
2
1.5
1
outer300
ID 350
region)
100 150 200 250
400 450 500 550
0.5 600
Data / Fit
p
⇡
±
g
1
0
m ± [GeV]
20
For triggering the event
1
track p [GeV]
T
30 40
100
200 300
1000
Track p [GeV]
T
17
Direct slepton production
⌧
350
300
ATLAS
Observed limit (±1 σSUSY
)
theory
-1
∫ Ldt = 20.3 fb , s = 8 TeV
~±~
0
0
χ1
lRlR → l±∼
χ1l ∼
Expected limit (±1 σexp)
∼ excluded
LEP2 µ
±
1
Stau
±
mχ∼0 [GeV]
Slepton
⌧˜
˜01
⌧˜
˜01
R
All limits at 95% CL
250
p
`
200
~±l ) <
(
m
150
⌧
p
∼χ0 )1
(
m
p
`˜
˜01
`˜
˜01
100
`
50
0
p
100
150
200
250
300
350
400
m~l± [GeV]
1
(robustにright-handedの場合の制限)
Currently has low sensitivity due
to the low cross section…
!
The theoretical cross section is
0.04 pb, and the excluded cross
section is 0.17 pb for
m(stau)=140GeV and
m(N1)=10GeV
18
4-lepton+MET search
p
`
`
˜
G
Z
˜01
˜01
˜±
1
m~g [GeV]
1200
˜
G
`
`
Z
W
1200
ATLAS Preliminary ∫ L dt = 20.7 fb ,
-1
1100
m~g [GeV]
p
GGM: Higgsino-like neutralino NLSP
s=8 TeV
1100
SUSY
Observed limit (± 1 σtheory)
tan(β)=1.5
Expected limit (± 1 σexp)
ATLAS Preliminary ∫ L dt = 20.7 fb-1,
SUSY
Observed limit (± 1 σtheory)
tan(β)=30
Expected limit (± 1 σexp)
1000
ATLAS 5.8 fb -1, Z+jets
1000
s=8 TeV
ATLAS 5.8 fb -1, Z+jets
900
All limits at 95% CL
All limits at 95% CL
800
900
700
800
<µ
m~g
g~
<
µ
600
m
700
500
300
600
200
300
400
400
500
500
∼0
700 m(χ1) [GeV]
600
600
700
800
900
300
400
200
300
400
400
500
500
0
700 m(∼
χ ) [GeV]
600
600
1
700
µ [GeV]
(a) GGM tan β=1.5
800
900
µ [GeV]
(b) GGM tan β=30
19
NEW in 2014
ATLAS diphoton search
Di-photon+MET
ATLAS
diphoton
search
•  Background estimation
ATLAS-CONF-2014-001
NEW
in 2014
• 
Diphoton
search, sensitive to bino-like
ATLAS-CONF-2014-001
NLSP (GGM)
W
• 
–  QCD background estimated by inverting
Background
estimation
identification
criteria on one photon
–  QCD
backgroundinestimated
inverting
•  Normalised
ETmiss < 60 by
GeV
region
on one(W,
photon
–  identification
Electroweak criteria
background
Z, top) from
•  – Diphoton
search,
sensitive to bino-like
No explicit
requirements/vetoes
on
NLSP
(GGM)
padditional
leptons or jets
±
NoEW
requirements/vetoes
on
˜explicit
–  – Two
signal G
regions
1 production
˜
additional
or jets
˜01GeV
WP1:
ETmiss >leptons
200
and HT > 400 GeV
•  control
Normalised
in ETmiss < 60 GeV region
e+γ
region
– 
background
(W, MC
Z, top) from
–  Electroweak
Irreducible (W/Z+γγ)
from
e+γ•  control
region
W+γγ normalised in lγγ+ETmiss control
–  Irreducible
region (W/Z+γγ) from MC
GGM: Bino-like
neutralino
NLSP
•  W+γγ normalised in lγγ+E
control
missproduction
– WP2:
TwoEEW
signal
> 150 GeV
and Hregions
T miss
T > 600 GeV
0
ET
>˜
200
GeV
andbetween
HT > 400 GeV
• WP1:
+ requirements
angles
ETmiss
1 on
miss
˜
⌥ Ejets/photons
WP2:
˜and
˜T0 > 150 GeV andGHT > 600 GeV
p
/ 2
• 1 + requirements
on angles between ETmiss
and jets/photons
W/Z/h
region
miss
T
Interpretation in terms of wino production
gluino production, not shown here)
Interpretation in(and
terms
of wino production
(and gluino production, not shown here)
ETmiss in WP2 region
ETmiss in WP2 region
WP2
WP2
21st March 2014
21st March 2014
Moriond EW 2014
Moriond EW 2014
16
1620
Stable slepton search
探索手法:
‣
‣
Candidates / 10 GeV
-1
= 15.9 fb
small coupling500to∫ Ldt
gravitino,
stauは
長寿命
∫
Preliminary
-1
Ldt = 15.9 fb
Data, s = 8 TeV
102
Bkg estimate ± 1 σ (syst)
GMSB, m∼ = 346 GeV
τ1
(Λ = 110 TeV, tanβ = 10)
GMSB, m∼ = 437 GeV
10
400
τ1
(Λ = 140 TeV, tanβ = 10)
1
Heavy charged massive
particle→low 200
β
300
10-1
large dE/dx、muon
spectrometerに
100
よるTOF
Data, s = 8 TeV
GMSB, m∼ = 346 GeV
τ
(Λ = 110 TeV, tanβ = 10)
!
!
!
0
0
100
200
300
Stau direct prod. cτ~∞の仮定で
400
500
600
m1 [GeV]
0
Data/Bkg
๏
ATLAS
103
ATLAS Preliminary
Cross section [fb]
‣
600
LSP+stau
NLSP:
m2 [GeV]
๏ Gravitino
5
4
3
2
1
0
-1
10
0
50
100
150
200
250
300
350
400
450
500
min(m1, m2) [GeV]
ATLAS Preliminary
s = 8 TeV,
50
100
150
∫
-1
Ldt = 15.9 fb
200
250
production,
tanβ = 300
10
350
400
observed
limit 450
500
expected limit ± 1σ
min(m , m2) [GeV]
± 2σ
production, tanβ = 30
observed limit
production, tanβ = 50
observed limit
1
m(stau)>~270GeV
Figure 3: On the left, observed data and expected signal in the two-candidate signal region in the slepton
๏ Meta-stable
search. On the right, the lower of the two masses is plotted1 for observed data, background estimate and
expected signal for ⌧˜ 1 masses of 346 GeV and 437 GeV.
scenario(decaying stau)に
対する結果も今後。displaced
vertexを
samples shown on the right have
⌧˜ 1 masses of 346 GeV and 437 GeV.
250 300 350 400 450 500
No indication of signal above the expected background is observed, and limits on newτ∼physics
scenarios
使う。
1 mass [GeV]
are set. Cross-section limits are obtained using the CL s prescription [50]. Mass limits are derived by
Figure
6: Cross-section
limits
as aof
function
the ⌧˜ 1 around
mass for the
directtheoretically
⌧˜ 1 production. Expected
comparing the obtained cross-section
limits
to the lower
edge
the 1 of band
21
Slight(excess(!(lower(limits(
Probability)that))
• 
GMSB-inspired search for two hig
bosons + ETmiss
Any
excess
over
SM??
•  Sum)of)all)bins)in)1)of)64)categories)shows)such)a)
deviation:)p~0.5)
• よく聞かれるので..
All)bins)in)1)of)64)category))show)such)a)
excessはいつもCMSから..
•  Selection:
Pluctuation:)p~0.05)
–  4-5 jets, at least 2-4 b-tags
–  Binned ETmiss significance (SMET)
–  Higgs reconstruction uses 4 most bjets, in pairs with the smallest Δm jj
–  100 GeV < m jj = 12 ( m jj,1 + m jj,2 ) < 140 GeV
€
€
3rd&September&2013&
C.&Sander&N&Latest&SUSY&Results&from&CMS&
21st March 2014
35&
22
LHC 14TeV prospectsと
新しい試み
14(13)TeV vs. 8TeV
Physics Priorities for Run-2
Andreas Hoecker, ATLAS Trigger Workshop, Sesimbra, Portugal, Mar 11, 2014
parton luminosity ratio
WJS2013
100
luminosity ratio
ratios of LHC parton luminosities: 13 TeV / 8 TeV
gg _
Σqq
qg
10
Strong interaction
dominated processes
Electroweak processes
1
100
1000
MSTW2008NLO
4 TeV
MX (GeV)
8→13TeVでcolored
sparticle searchほど劇的に探索感度が改善するわけではない。
Physics Priorities — Trigger Workshop 2014
1
•
とりあえずデータをためる..新しい結果は数10fb-1まで(2年目)おまちください。
•
>~1TeVを探索するにはbeam energyを早めに上げた方が..
24
EW gauginoの探索感度
600
s= 14 TeV
ATLAS Simulation Preliminary
3000 fb-1 exclusion, µ = 140
300 fb-1 exclusion, µ = 60
8 TeV, 20.7 fb-1 exclusion
1
mχ∼0 [GeV]
C1N2→WhN1N1→3-lepton+MET
500
400
300
3-lepton channel
∼± χ
∼0 → W± χ
∼0 Z χ
∼0
χ
1 2
1
1
m∼χ± = m∼χ0
1
2
200
100
0
200
300
400
500
600
700
800
900
1000 1100 1200
m∼χ± , m∼ 0 [GeV]
1
χ
2
25
Extending 3-lepton search
๏ まだ感度を改善しないといけないのはcompressed
spectrumの場合:
m(N2,C1)~m(N1)
(例のごとく)“ISR + multi soft leptons”
!
Endpoint
corresponding
to
! mass difference
!
fraction
0.20
0.25
0.25
150-130
150-100
WZ bkgd
!
0.15
!
0.10
0.05
!
0.00
!
!
0.25
0.25
150-130
150-100
WZ bkgd
0.20
0.20
0.15
0.15
fraction
fraction
0.25
Variables related to ISR
(pronounced in squeezed spectra)
0.10
0.10
0.05
0.05
20
40
60
minHmSFOSLHGeVL
80
0.00
0.00
150-130
150-130
150-100
150-100
WZbkgd
bkgd
WZ
0.20
0.20
fraction
fraction
‣
0.15
0.15
0.10
0.10
0.05
0.05
20
0.5
40
60
1.0
1.5
mSFOSHZLHGeVL
METêp
T H j1 L
802.0
0.00
0.00
0.0
0.0
0.5
0.51.0
pDfH
,METL
T H{1j1Lêp
T H j1 L
1.51.0 2.0
1.5
2.5
3.0
!Distribution
miss ) spectrum.
4. pT (`Left:
) spectrum.
The otherThe
details
of details
the plots
Figure 3. Right: ETmiss /pT (jFigure
other
of are
1 )/pT (j1(j
1 ) spectrum.
1 , ET
Figure 2.
for the two variables min(mSFOS) (left) and mSFOS(Z) (right)
the plots are as for Fig. 1.
presented
in
the
text.
min(mSFOS)
has
a
clear edge at around . The baseline cut on
๏ あとLSP massを決めることは非常に重要
0
M = mW/Z
` = mW/Z /2. Since m( NLSP ) > mW/Z for the pa
min(mSFOS) is relaxed to min(mSFOS) > 2 GeV for illustrative purposes.
The and
otherEdetails
‣ are
interest,
expect that,
a given pT and
(j1 ), thus
the leptons
from the isback
解析感度の改善、signal
yieldと併せてmass
bution from the spectrum,
second
termgaugino構成の決定(モデルの検証)
ofweeq.(3.1)
is alsoforimportant,
the correlation
of the plots
as for Fig. 1.
miss
larger
boost.
weaker.
To
effectively
encode
this
feature,
we
introduce
a
ratio
variable
E
/pT (j1 )
T
難しいですが個人的にアイディア検証してるとこです。また機会があれば(ものになれば)。。
This observation
leads
us tofor
consider
a ratioscenarios
variable and
between
in our edge
analysis.
for this
variable
two signal
for th
min(mSFOS)3 . The min(mSFOS) has a clearer
at The
thandistributions
mSFOS(Z)
(see
Fig.
2
pT (`1 )
the
lepton
p
(see
note26that
the
background
are
shown
in
the
Fig.4 for
3. the
As distribution).
expected fromWe
eq.(3.1),
T :left
(jpanel
1)
for comparison). This is because, for signal events, the correct pair invariantpTmass
is ofFig.
‣
-1
14TeV ~100fb あればwino mass 400~500GeVまでの感度
‣
LSP massも決められる
1
!
IBL(新しい最内層pixel layer)を利用できる
‣
τ~0.2n
Decay radius >~130mmまで拡張(現在は~300mm)
10-1
VBF processも探索
数10%くらい信号が増えるはず。S/Nも良い。
-
1
1000
ATLAS Preliminary
2D efficiency map
TRT
0.8
Efficiency
‣
Discovery, 20 fb-1
Exclusion, 20 fb-1
Discovery, 100 fb-1
Exclusion, 100 fb-1
s = 14 TeV
最大限探索感度を上げる:
Radius [mm]
๏
±
1
๏
[ns]
Wino LSP search
100 150 200 250 300 350 400 450 500
m ± [GeV]
1
IBL
800
0.6
600
SCT
0.4
400
200
0
0.2
Pixel
-2
-1
0
1
0
2
この大きなgapでdecayするcharginoを救う
η
27
Inclus
3rd gen.
g˜ med.
GMSB (ℓ˜ NLSP)
GGM (bino NLSP)
GGM (wino NLSP)
GGM (higgsino-bino NLSP)
GGM (higgsino NLSP)
Gravitino LSP
0
g˜ →bb¯ χ˜ 1
0
g˜ →tt¯χ˜ 1
0
g˜ →tt¯χ˜ 1
+
χ
˜
g˜ →bt¯ 1
3rd gen. squarks
direct production
0
b˜ 1 b˜ 1 , b˜ 1 →bχ˜ 1
˜b1 b˜ 1 , b˜ 1 →tχ˜ ±1
±
t˜1 t˜1 (light), t˜1 →bχ˜ 1
0
t˜1 t˜1 (light), t˜1 →Wbχ˜ 1
0
t˜1 t˜1 (medium), t˜1 →tχ˜ 1
˜t1 t˜1 (medium), t˜1 →bχ˜ ±1
0
t˜1 t˜1 (heavy), t˜1 →tχ˜ 1
0
Status:
Moriond
t˜1 t˜1 (heavy),
t˜1 →tχ˜ 12014
0
χ
˜
t˜1 t˜1 , t˜1 →c 1
t˜1 t˜1Model
(natural GMSB)
t˜2 t˜2 , t˜2 →t˜1 + Z
0
0-2 jets
1b
0-3 jets
mono-jet
Yes
Yes
Yes
Yes
Yes
Yes
20.7
20.3
4.8
4.8
5.8
10.5
F1/2 scale
0
0
0-1 e, µ
0-1 e, µ
3b
7-10 jets
3b
3b
Yes
Yes
Yes
Yes
20.1
20.3
20.1
20.1
g˜
g˜
g˜
g˜
1-2 τ
2γ
1 e, µ + γ
γ
2 e, µ (Z )
g˜
g˜
g˜
g˜
g˜
まとめ
900 GeV
690 GeV
645 GeV
110-167 GeV
130-210 GeV
215-530 GeV
150-580 GeV
200-610 GeV
320-660 GeV
3rd RPV
gen.
g˜ med.
Long-lived
EW
Inclusive Searches
particles
direct
2-60jets
Yes
3-60jets
Yes
7-10- jets
Yes
2-60jets
Yes
2-60jets
Yes
3-62 jets
Yes
b
0-3 jets
1 jet
Yes
2-4
jets
Yes
1-5
Yes
0-2 jets
jets
Yes
-Yes
-Yes
Yes
1b
Yes
0-3 -jets
Yes
τ
τ
mono-jet
0
Gravitino
LSP
Yes
1 e, µ + τ
LFV pp→˜ντ + X, ν˜ τ →e(µ) + τ
0
1
e,
µ
7
jets
Yes
0
3b
Yes
gBilinear
˜ →bb¯ χ˜ RPV CMSSM
- jets
χ˜ +1 χ˜ −1¯χ,˜ 0χ˜1+1 →W χ˜ 01 , χ˜ 01 →ee˜νµ , eµ˜νe
4 e,
µ
Yes
7-10
0
Yes
g˜ →t
t
+χ
− 10χ
+
0 0
30-1
e, µe,+µτ
χ
Yes
,˜ 1˜ 1 →W χ˜ 1 , χ˜ 1 →ττ˜νe , eτ˜ντ
1 ˜ 1t¯χ
3-b
Yes
g˜˜ →t
+
gg˜˜ →qqq
6-73 jets
0-10e, µ
b
Yes
→bt¯χ˜ 1
2 e, µ (SS)
g˜ →t˜1 t, t˜1 →bs
0-3 b
Yes
0
0
2b
Yes
b˜ 1 b˜ 1 , b˜ 1 →bχ˜ 1
±
40-3
jets
˜ 1 b˜ 1 , b˜ 1gluon
2 e, µ0(SS)
b
Yes
bScalar
→tχ˜ 1pair, sgluon→qq¯
± sgluon→tt¯
Scalar
gluon
pair,
2
e,
µ
(SS)
2
b
Yes
1-2 e, µ
1-2 b
Yes
t˜1 t˜1 (light), t˜1 →bχ˜ 1
WIMP
interaction
mono-jet
0µ
Yes
2 e,
˜ 01 Dirac χ)
0-2 jets
Yes
t˜1 t˜1 (light),
t˜1 →Wbχ(D5,
2√
jets
√t˜1 →tχ˜ 01
√ 2 e, µ
Yes
t˜1 t˜1 (medium),
±
= 7χ˜TeV
s = 8 0TeV
s = 8 TeV
Yes
2
b
t˜1 t˜1 (medium), ts˜1 →b
1
0
partial1 data
full
data
e,
µ
Yes
1
b
t˜1 t˜1 (heavy), t˜1full
→tχ˜data
1
0
0
Yes
2b
t˜1 t˜1 (heavy), t˜1 →tχ˜ 1
*Only ˜a˜selection
of the available mass
limits
on new states
0
mono-jet/c-tag Yes
0
t1 t1 , t˜1 →cχ˜ 1
2 e, µ (Z )
t˜1 t˜1 (natural GMSB)
1b
Yes
3 e, µ (Z )
t˜2 t˜2 , t˜2 →t˜1 + Z
1b
Yes
20.3
20.3
20.3
20.7
20.3
20.3
20.3
20.3
20.3
4.7
22.9
20.7
15.9
20.3
4.7
4.8
20.3
4.8
5.8
4.6
10.5
4.6
˜ g˜
ℓq,
g˜ ±
χ
1
g˜ ±
χ
1
q˜ ± , χ˜ 0
χ
1
2
g˜ ± , χ˜ 0
χ
1
2
g˜ ± , χ˜ 0
χ
1
2
g˜
±
χ
g˜˜ 1
g
g˜˜
0
χ
g˜˜ 1
0
χ
g˜˜ 1
qg˜˜
ν˜g˜τ
1/2
˜ τ scale
νF
qg˜˜ , g˜
4.7
20.1
±
χ
20.7
g˜˜ 1
20.3
±
˜
χ
20.7
g˜ 1
20.1
g
˜
20.3
g˜
20.1
g˜
20.7
20.1
b˜ 1
sgluon
4.6
20.7
b˜ 1
sgluon
14.3
t˜1
4.7
M*
10.5
t˜1 scale
20.3
t˜1
20.3
t˜1
20.1
t˜1
20.7
t˜1
20.5
or20.3
phenomena
is
t˜1
t˜1
20.3
t˜2
20.3
3rd gen. squarks
Other
direct production
EW
direct
Long-lived
particles
150-580 GeV
290-600 GeV
1.7 TeV
90-325 GeV
140-465 GeV
180-330 GeV
1.2 TeV
1.1 TeV
m(χ˜ 1 )<90 GeV
±
0
m(χ˜ 1 )=2 m(χ˜ 1 )
0
m(χ˜ 1 )=55 GeV
0
±
m(χ˜ 1 ) =m(t˜1 )-m(W )-50 GeV, m(t˜1 )<<m(χ˜ 1 )
0
χ
˜
m( 1 )=1 GeV
0
±
0
m(χ˜ 1 )<200 GeV, m(χ˜ 1 )-m(χ˜ 1 )=5 GeV
0
m(χ˜ 1 )=0 GeV
0
−1
m(χ˜ 1 )=0 GeV
0
˜
m(t1 )-m(χ˜ 1 )<85 GeV
0
m(χ˜ 1 )>150 GeV
0
m(χ˜ 1 )<200 GeV
0
1308.2631
ATLAS-CONF-2013-007
1208.4305, 1209.2102
1403.4853
1403.4853
1308.2631
ATLAS-CONF-2013-037
ATLAS-CONF-2013-024
ATLAS-CONF-2013-068
1403.5222
1403.5222
0
m(
q˜ )=m(
g˜ )
m(χ
1 )=0 GeV
0
any
q˜ )GeV, m(ℓ,
˜ ν˜ )=0.5(m(χ˜ ±1 )+m(χ˜ 01 ))
m(χ˜ 1m(
)=0
0m(q
±
0
any
˜
)
χ
˜
m( )=0 GeV, m(τ˜ , ν˜ )=0.5(m(χ˜ )+m(χ˜ ))
ATLAS-CONF-2013-047
1403.5294
ATLAS-CONF-2013-062
1403.5294
1308.1841
ATLAS-CONF-2013-028
ATLAS-CONF-2013-047
1402.7029
ATLAS-CONF-2013-047
1403.5294, 1402.7029
ATLAS-CONF-2013-062
ATLAS-CONF-2013-093
ATLAS-CONF-2013-089
ATLAS-CONF-2013-069
1208.4688
ATLAS-CONF-2013-057
ATLAS-CONF-2013-026
ATLAS-CONF-2013-058
ATLAS-CONF-2014-001
1304.6310
ATLAS-CONF-2012-144
ATLAS-CONF-2013-092
1211.1167
ATLAS√
L dt = (4.6 - 22.9) fb
1
0 0
1
±
1
0
˜ 1m(
˜ ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 1 ))
χ˜ 2χ),
)=0χ˜ 1GeV
m(χ˜ 1 )=m(m(
)=0, m(ℓ,
0
1.3 TeV
χ˜ 02 ), m(χ˜ 01 )=0, sleptons decoupled
m(χ˜ ±11 )=0
GeV
420 GeV
m(
)=m(
0
χ˜ ± )=0.5(m(
χ˜ 01decoupled
1.18 TeV
˜ 01 )=0,
m(χ˜ ±11 ))=m(
<200χ˜ 02GeV,
m(
)+m(g˜ ))
285 GeV
m(
), m(χ
sleptons
0
1.12 TeV
m(χ˜ 1±)=0 GeV
0
±
270 GeV
m(
tanχ˜β<
15 χ˜ 1 )=160 MeV, τ(χ˜ 1 )=0.2 ns
1 )-m(
1.24 TeV
0
χ
˜
832 GeV
m(
tanβ1 )=100
>18 GeV, 10 µs<τ(˜g)<1000 s
1.4 TeV
0tanβ<50
10<
475 GeV
1.28 TeV
m(χ˜ 1 )>50
GeV
0 χ
˜ 01 )<2 ns
230 GeV
0.4χ˜<τ(
619 GeV
m(
GeV
1 )>50
0
0
TeV
1.5
156 mm, BR(µ)=1, m(χ˜ 1 )=108 GeV
9001.0
GeV
m(χ˜<cτ<
1 )>220 GeV
˜ )>200 GeV
m(
690 GeV
λ′311H=0.10,
λ132 =0.05
1.61 TeV
′ g
m(
˜ )=0.10,
>10−4 λeV
645 GeV
λ
1(2)33 =0.05
±
740GeV
GeV
700
1.1 TeV
1.2 TeV
TeV
1.2
0
311
0
m(q˜ )=m(
g˜ ), cτLS P <1 mm
m(χ˜ 10 )<600 GeV
˜χ˜ 01 )>300 GeV, λ121 >0
χ
m(
m( 10 ) <350 GeV
χ˜ 0 >80 GeV, λ133 >0
m(
m(χ˜ 11 ))<
400 GeV
BR(t0)=BR(b)=BR(c)=0%
m(χ˜ 1 )<300 GeV
760 GeV 1.1 TeV
350 GeV
1.34 TeV
916 GeV 1.3 TeV
880 GeV
100-620 GeV
100-287 GeV
275-430 GeV
350-800 GeV
110-167 GeV
704 GeV
130-210 GeV
๏ 重たいSUSYシナリオ(heavy
0
m(χ˜ 1 )<90 GeV
±
incl.
from
χ˜ 01 )1110.2693
m(χ˜ 1limit
)=2 m(
0
m(χ˜ 1 )=55 GeV
m(χ
)0<80 GeV, limit of<687 GeV for D8 ±
m(χ˜ 1 ) =m(t˜1 )-m(W )-50 GeV, m(t˜1 )<<m(χ˜ 1 )
0
χ
˜
m( 1 )=1 GeV
0
±
0
m(χ˜ 1 )<200 GeV, m(χ˜ 1 )-m(χ˜ 1 )=5 GeV
0
m(χ˜ 1 )=0 GeV
0
m(χ˜ 1 )=0 GeV
signal
cross
0 section uncertainty.
m(t˜1 )-m(χ˜ 1 )<85 GeV
0
m(χ˜ 1 )>150 GeV
0
m(χ˜ 1 )<200 GeV
Preliminary
s = 7, 8 TeV
Reference
ATLAS-CONF-2012-152
1212.1272
ATLAS-CONF-2012-147
1212.1272
ATLAS-CONF-2012-140
ATLAS-CONF-2013-061
ATLAS-CONF-2013-036
1308.1841
ATLAS-CONF-2013-036
ATLAS-CONF-2013-061
ATLAS-CONF-2013-091
ATLAS-CONF-2013-061
ATLAS-CONF-2013-007
1308.2631
1210.4826
ATLAS-CONF-2013-007
ATLAS-CONF-2013-051
1208.4305, 1209.2102
ATLAS-CONF-2012-147
1403.4853
scalers)の立場に立ってみれば
1
10
Mass scale [TeV]
electroweak gauginosに対する制限はまだまだ。統計不足。
215-530 GeV
150-580 GeV
200-610 GeV
320-660 GeV
−1
shown. All
limits quoted are observed minus 1σ theoretical
90-200 GeV
150-580 GeV
290-600 GeV
1403.4853
1308.2631
ATLAS-CONF-2013-037
ATLAS-CONF-2013-024
ATLAS-CONF-2013-068
1403.5222
1403.5222
‣
Bino LSP:<100GeV excluded for m(C1)~m(N2)<400GeV
‣
Wino LSP: <260GeV excluded
˜ χ˜ 01
ℓ˜L,R ℓ˜L,R , ℓ→ℓ
˜ ν)
χ˜ +1 χ˜ −1 , χ˜ +1 →ℓν(ℓ˜
χ˜ +1 χ˜ −1 , χ˜ +1 →˜τν(τ˜ν)
χ˜ ±1 χ˜ 02 →ℓ˜L νℓ˜L ℓ(˜νν), ℓ˜νℓ˜L ℓ(˜νν)
χ˜ ±1 χ˜ 02 →W χ˜ 01 Z χ˜ 01
χ˜ ±1 χ˜ 02 →W χ˜ 01 h χ˜ 01
2 e, µ
2 e, µ
2τ
3 e, µ
2-3 e, µ
1 e, µ
0
0
0
0
2b
+ −
±
Disapp. trk
1 jet
Direct χ˜ 1 χ˜ 1 prod., long-lived χ˜ 1
Stable, stopped g˜ R-hadron
1-5 jets
0
0
GMSB, stable τ˜ , χ˜ 1 →˜τ(˜e, µ)
˜ +τ(e, µ) 1-2 µ
0
0
2γ
GMSB, χ˜ 1 →γG˜ , long-lived χ˜ 1
0
1 µ, displ. vtx
q˜ q˜ , χ˜ 1 →qqµ (RPV)
20.3
20.3
20.7
20.3
20.3
20.3
ℓ˜
χ˜ ±1
χ˜ ±1
χ˜ ±1 , χ˜ 02
χ˜ ±1 , χ˜ 02
χ˜ ± , χ˜ 0
90-325 GeV
140-465 GeV
180-330 GeV
Yes
Yes
Yes
-
20.3
22.9
15.9
4.7
20.3
χ˜ ±1
270 GeV
Yes
Yes
Yes
-
4.6
4.6
4.7
20.7
20.7
20.3
ν˜ τ
ν˜ τ
q˜ , g˜
χ˜ ±1
χ˜ ±1
g˜
Yes
Yes
Yes
Yes
Yes
Yes
1
g˜
χ˜ 01
χ˜ 01
q˜
2
๏ 何か出るとしたら14(13)TeV
RPV
ATLAS-CONF-2013-061
1308.1841
ATLAS-CONF-2013-061
ATLAS-CONF-2013-061
!
90-200 GeV
Mass limit
0
m(χ˜ 1 )<600 GeV
0
m(χ˜ 1 ) <350 GeV
0
m(χ˜ 1 )<400 GeV
0
χ
˜
m( 1 )<300 GeV
1.2 TeV
1.1 TeV
1.34 TeV
1.3 TeV
100-620 GeV
275-430 GeV
ATLAS SUSY Searches* - 95% CL Lower Limits
ATLAS-CONF-2013-026
ATLAS-CONF-2014-001
ATLAS-CONF-2012-144
1211.1167
ATLAS-CONF-2012-152
ATLAS-CONF-2012-147
0
m(χ˜ 1 )>50 GeV
0
m(χ˜ 1 )>50 GeV
0
m(χ˜ 1 )>220 GeV
m(H˜ )>200 GeV
m(g˜ )>10−4 eV
619 GeV
0
20.1
b˜ 1
2b
Yes
2 e, µ (SS)
20.7
b˜ 1
0-3 b
Yes
1-2 e, µ
t˜1
1-2 b
Yes
4.7
2 e, µ
0-2 jets
t˜1
Yes
20.3
2 e, µ
2 jets
t˜1
Yes
20.3
t˜1
0
Yes
20.1
2b
1 e, µ
t˜1
Yes
20.7
1b
t˜1
0
Yes
20.5
2b
mono-jet/
c
-tag
t˜1
0
Yes ! 20.3
miss
−1t˜
e, µτ,
(Z )γ Jets
20.3
1b
Yes
e,2 µ,
ET
L dt[fb ]1
3 e, µ (Z )
t˜2
20.3
1b
Yes
0µ
˜L,R ℓ˜L,R , ℓ→ℓ
˜ χ˜ 01
2 e,
ℓMSUGRA/CMSSM
+
−
+
1 e, µ
MSUGRA/CMSSM
˜ ν)
χ
˜ 1 χ˜ 1 , χ˜ 1 →ℓν(ℓ˜
2
MSUGRA/CMSSM
χ
˜ +1 χ˜ −1 , χ˜ +1 →˜τν(τ˜ν)
20τ
0
0˜
χ
˜
0µ
˜
˜
˜
3
e,
χ
q˜ q±1˜ ,χ˜q→q
1 ℓL ℓ(˜
νν), ℓ˜νℓL ℓ(˜νν)
2 →ℓL ν
00
0
2-30e, µ
χ
g˜ g±1˜ ,χ˜g˜02→q
→Wq¯ χ˜ 1±1 Z χ˜ 1
0
1 e, µ
χ˜˜ 01 h→qqW
g˜ g±1˜ ,χ˜g˜02→qq
χ
˜ 01 ± χ˜ 1
→W χ
1 χ
0
2 e, µ
χ
˜
g˜ g˜ , g˜ →qq(ℓℓ/ℓν/νν)
1
+ −
˜ ±1 Disapp.
Direct
1 prod., long-lived χ
2 e, µ trk
GMSBχ˜(1ℓ˜χ˜NLSP)
Stable, (stopped
0τ
GMSB
ℓ˜ NLSP)g˜ R-hadron
1-2
0
GMSB,
stable
τ˜ , χ˜ 1 →˜τ(˜e, µ)
˜ +τ(e, µ) 1-2
2 γµ
GGM
(bino
NLSP)
0
χ˜ 01 →γ
GMSB,
G˜ , long-lived χ˜ 1
1 e,2µγ+ γ
GGM (wino
NLSP)
0
1 µ, displ.
γ vtx
qGGM
˜ q˜ , χ˜ 1 →qqµ
(RPV) NLSP)
(higgsino-bino
GGM
(higgsino
NLSP)
2
e,
µ µ(Z )
2 e,
LFV pp→˜ν + X, ν˜ →e + µ
tanβ >18
1.4 TeV
1.28 TeV
LFV pp→˜ντ + X, ν˜ τ →e + µ
LFV pp→˜ντ + X, ν˜ τ →e(µ) + τ
Bilinear RPV CMSSM
χ˜ +1 χ˜ −1 , χ˜ +1 →W χ˜ 01 , χ˜ 01 →ee˜νµ , eµ˜νe
χ˜ +1 χ˜ −1 , χ˜ +1 →W χ˜ 01 , χ˜ 01 →ττ˜νe , eτ˜ντ
g˜ →qqq
2 e, µ
1 e, µ + τ
1 e, µ
4 e, µ
3 e, µ + τ
0
7 jets
6-7 jets
0
m(χ˜ 1 )=0 GeV
0
˜ ν˜ )=0.5(m(χ˜ ±1 )+m(χ˜ 01 ))
m(χ˜ 1 )=0 GeV, m(ℓ,
0
±
0
m(χ˜ 1 )=0 GeV, m(τ˜ , ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 1 ))
±
0
0
±
˜ ν˜ )=0.5(m(χ˜ 1 )+m(χ˜ 01 ))
m(χ˜ 1 )=m(χ˜ 2 ), m(χ˜ 1 )=0, m(ℓ,
±
0
0
χ
˜
χ
˜
χ
˜
m( 1 )=m( 2 ), m( 1 )=0, sleptons decoupled
±
0
0
χ
˜
χ
˜
χ
˜
m( 1 )=m( 2 ), m( 1 )=0, sleptons decoupled
700 GeV
420 GeV
285 GeV
±
832 GeV
runから。
0
475 GeV
1.0 TeV
1.61 TeV
1.1 TeV
1.2 TeV
760 GeV
916 GeV
ATLAS-CONF-2013-093
0.4<τ(χ˜ 1 )<2 ns
0
1.5 <cτ<156 mm, BR(µ)=1, m(χ˜ 1 )=108 GeV
ATLAS-CONF-2013-069
ATLAS-CONF-2013-057
ATLAS-CONF-2013-058
1304.6310
ATLAS-CONF-2013-092
λ′311 =0.10, λ132 =0.05
λ′311 =0.10, λ1(2)33 =0.05
m(q˜ )=m(g˜ ), cτLS P <1 mm
0
m(χ˜ 1 )>300 GeV, λ121 >0
0
χ
˜
m( 1 )>80 GeV, λ133 >0
BR(t)=BR(b)=BR(c)=0%
1212.1272
1212.1272
ATLAS-CONF-2012-140
ATLAS-CONF-2013-036
ATLAS-CONF-2013-036
ATLAS-CONF-2013-091
0
230 GeV
350 GeV
±
m(χ˜ 1 )-m(χ˜ 1 )=160 MeV, τ(χ˜ 1 )=0.2 ns
0
m(χ˜ 1 )=100 GeV, 10 µs<τ(˜g)<1000 s
10<tanβ<50
1403.5294
1403.5294
ATLAS-CONF-2013-028
1402.7029
1403.5294, 1402.7029
28