Journal Meeting@ Jiang Group, Jan. 24, 2014 Conjugated Microporous Polymers (CMPs) in 2013 Yanhong XU Institute for Molecular Science 2014年1月26日日曜日 1 Education 09/2001-7/2005: Bachelor's Degree ! Department of Chemistry, Harbin Normal University, China 09/2006-7/2009: Master's Degree Physical Chemistry, Northeast Normal University, China Supervisor: Professor Zhongmin Su 10/2009-9/2012: Doctor's Degree, Structural Molecules Science, Physical Sciences, Department of Chemistry, The Graduate University for Advanced Studies, Japan Supervisor: Associate Professor Donglin Jiang 10/2012-3/2014: Postdoctoral Position Institute for Molecular Science National Institutes of Natural Sciences, Japan Supervisor: Associate Professor Donglin Jiang 2014年1月26日日曜日 2 Conjugated Microporous Polymers (CMPs) Conjugated Polymers with 3D Networks and Inherent Micropores Usually, Conjugated polymers are nonporous Porous materials are not π-conjugated 2014年1月26日日曜日 3 The Chemistry of CMPs Crosslinked Network Amorphous Solid Inherent Pores Diversity of Chemical Reactions Availability of Building Blocks Variety of Synthetic Methods A. I. Copper, Angew. Chem. Int. Ed., 2007, 46, 8574–8578. 2014年1月26日日曜日 4 Diversity of Chemical Reactions Suzuki Coupling Reaction + Phenazine Ring Fusion Reaction + Sonogashira-Hagiwara Reaction Cyclotrimerization Reaction + Yamamoto Reaction + Oxidative Coupling Reaction + Alkyne Metathesis Reaction Me + Me Schiff-base Reaction + 2014年1月26日日曜日 5 Availability of Building Blocks C2 + C3 C2 + C4 C2 + C6 2014年1月26日日曜日 C3 + C4 C3 + C6 C4 + C6 C2 + C2 + C2 C3 + C3 C4 + C4 6 Function Exploration (Skeletons and Pores) Gas Adsorption (H2, CO2, CH4) Encapsulation of Dyes, Solvents and Other Chemicals Heterogeneous Catalyst Electric Energy Storage Chemical Sensing Light-Harvesting Antenna Materials Light-Emitting Functions 2014年1月26日日曜日 7 Gas adsorption Macrocycle Ancillary Built-in Metal Sites Stability MCTF@300 MCTF@400 MCTF@500 0.496 CO2 uptake 298 K / 273 K (mg/g) 62/ 99 24.6-21.1 1060 1.303 69/104 25.4-21.3 1510 2.674 99/139 26.3-20.5 SBET Vtotal (m2/g) (cm3/g) MCTF@300 640 MCTF@400 MCTF@500 Qst (KJ/mol) X. M. Liu, et al. Polym. Chem., 2013, 4, 2445–2448. 2014年1月26日日曜日 8 Gas adsorption Graphene Electronic Properties High-Surface Area CO2 SBET Vtotal uptake (m2/g) (cm3/g) 195 K (wt%) CO2 uptake 273 K, 30atm (wt%) H2 uptake 77 K, 1atm (wt%) H2 uptake 77 K, 20atm (wt%) PGF-1 825 0.74 112 42 1.2 1.9 PGF-2 770 -- 60 30 1.0 1.8 N. R. Rao, Chem. Commun., 2013, DOI: 10.1039/C3CC46907G. 2014年1月26日日曜日 9 Gas adsorption Cheap and Readily Available Materials Easy Synthesis High Surface Area SBET Vtotal (m2/g) (cm3/g) CO2 293 K /273 K (cm3/g) H2 77 K,1atm (wt%) CH4 293 K /273 K (cm3/g) PCTF-1 2235 1.56 44.9/73 1.86 15.2/23.6 PCTF-2 784 0.76 24.2/41.5 0.9 8.0/15.1 C. Janiak, Chem. Commun. 2013, 49, 3961–3963. 2014年1月26日日曜日 10 Gas adsorption Nitrogen-Incorporated DMSO, 180 oC overnight H2N CHO One-step Procedure pyrolysis + N OHC Catalyst-free NH2 600-800 oC ILP NC-600 NC-700 NC-800 Table . Yield, Elemental Analysis and Textural Properties of ILP and NCs. pore size distribution yield (nm)a SBET Smicro Vtotal (m2/g) (m2/g) (cm3/g) ILP 744 553 0.62 0.86 NC-600 366 259 0.43 0.81 NC-700 284 167 0.39 NC-800 263 155 0.38 polymer content content N (wt%) C (wt%) CO2 uptake 298 K,1 bar (mmol / g) CO2 uptake 273 K,1 bar (mmol / g) 10.21 66.75 1.05 1.97 50.1 8.74 82.76 1.65 2.33 0.81 48.5 6.28 84.51 1.80 2.42 0.81 47.8 5.58 86.42 1.95 2.65 a Maxima of the pore size distribution calculated by the QSDFT method. S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160–3167. 2014年1月26日日曜日 11 Gas adsorption Nitrogen-Incorporated DMSO, 180 oC overnight H2N CHO High Surface Area KOH + N OHC NH2 Polyimine pore size content distribution yield N (wt%) (nm)a 600-750 oC NPC-600 NPC-650 NPC-700 NPC-750 content C (wt%) CO2 uptake 298 K,1 bar (mmol / g) CO2 uptake 273 K,1 bar (mmol / g) 10.21 66.75 1.05 1.97 61 5.05 71.58 3.04 4.77 0.8 25 4.11 75.74 3.10 5.26 0.94 0.8, 1.3 21 3.77 80.17 2.46 4.29 1.58 0.8, 1.9 16 1.52 83.43 2.15 4.25 SBET Smicro Vtotal (m2/g) (m2/g) (cm3/g) Polyimine 744 553 0.62 0.9 NPC-600 1033 940 0.51 1.0 NPC-650 1561 1433 0.75 NPC-700 1876 1692 NPC-750 3195 2962 polymer High Pore Volume a Maxima of the pore size distribution calculated by the QSDFT method. S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951–10961. 2014年1月26日日曜日 12 Gas adsorption NH2 N DMSO / 180 + oC CHO OHC N H2N N A-B1 NH2 B1 A NH2 N CHO + DMSO / 180 oC N N A-B2 CHO H2N Catalyst-free Polycondensation High CO2/N2 Selectivity NH2 B2 A NH2 N DMSO / 180 oC + OHC CHO N H2N N A-B3 B3 NH2 A CO2 uptake 273 K, 0.15 bar (cm3 / g) 26.93 CO2 uptake 273 K, 1 bar (cm3 / g) -- selectivity CO2/N2 0.11 pore size distribution (nm)a 0.86 0.32 0.18 0.81 22.78 60.7 56 0.36 0.16 0.81 20.73 -- 65 SBET Vtotal VMICRO (m2/g) (cm3/g) (cm3/g) A-B1 378 0.18 A-B2 614 A-B3 589 sample 68 N. Hedin, J. Mater. Chem. A, 2013, 1, 3406–3414. 2014年1月26日日曜日 13 Gas adsorption Br Br Sonogashira coupling + Br Br PAF-19 Br Br Sonogashira coupling + Br Br PAF-20 SBET (m2/g) CO2 273K, 1bar (cm3/g) QstCO2 (KJ / mol) H2 77K,1bar (wt%) QstH2 (KJ / mol) PAF-19 250 0.90 28.5 0.55 6.99 PAF-20 702 1.16 30.3 0.89 8.07 G. S. Zhu, Microporous and Mesoporous Materials, 2013, 173, 92–98. 2014年1月26日日曜日 14 Gas adsorption Amine Functionalized POP Post-Synthetic Modification Mild Synthetic Conditions Enhanced CO2 Sorption Si Si Si Sonogashira coupling NH2 + Br Br O NH2 85 oC, 72h N O NH2 1 polymer SBET (m2/g) Vtotal (cm3/g) 2 CO2 298K, 0.15 / 1 bar (mmol/g) Qst (KJ / mol) aCO 2, selectivity 298 K, 1bar 1 630 0.54 0.15 / 0.27 33 14 2 485 0.39 0.78 / 0.95 50 155 a CO 2 / N2 = 10 / 90 M. Eddaoudi, Chem. Commun., 2013, doi: c3cc48228f. 2014年1月26日日曜日 15 Encapsulation of dyes, solvents and other chemicals Porphyrin Represents Large Conjugated Macrocycles Strong Hydrophobicity Large Surface Area PCPF-1 SBET = 1333 m2/g Vtotal = 0.86 cm3/g Vapor-phase adsorptive capacity Liquid-phase adsorptive capacity (mg/g) at 298 K (g/g) at 298 K n-pentane n-hexane 456 623 14.7 16.7 n-heptane 752 22.5 n-octane 737 25.9 cyclopentane 909 15.4 cyclohexane 1030 25.1 S. Q. Ma, Chem. Commun., 2013, 49, 1533–1535. 2014年1月26日日曜日 16 Encapsulation of dyes, solvents and other chemicals SBET Vtotal Pore Size (m2/g) (cm3/g) (nm) ZnP1-CMP 1140 1.49 0.8–2.0 CuP1-CMP 1247 1.49 0.8–2.0 CoP1-CMP 1080 1.16 0.8–2.0 D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235. 2014年1月26日日曜日 17 Experimental capacity for amine vapors n-propy n-buty n-hexy dibuty- lamine lamine lamine lamine diisobutylamine (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) pyridine aniline (gamine/gCMP) (gamine/gCMP) ZnP1-CMP 1.7 2.2 2.7 1.6 2.3 3.5 1.6 CuP1-CMP 2.4 2.5 3.8 1.9 2.0 3.6 1.2 CoP1-CMP 1.5 1.8 3.1 1.9 1.2 3.9 1.3 Experimental capacity for amine liquids n-propy n-buty n-hexy dibuty- lamine lamine lamine lamine diisobutylamine (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) (gamine/gCMP) pyridine aniline (gamine/gCMP) (gamine/gCMP) ZnP1-CMP 5.2 5.4 6.2 5.3 5.5 5.7 5.4 CuP1-CMP 3.3 3.9 5.4 4.9 5.2 5.4 5.6 CoP1-CMP 2.8 3.0 3.2 2.4 2.7 4.5 2.7 0 D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235. 2014年1月26日日曜日 18 Encapsulation of dyes, solvents and other chemicals Low Band-Gap Broad Light Absorption Fluorescence Quenched A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590. 2014年1月26日日曜日 19 Table. Gas sorption data for polymers, including pore properties SBET Vtotal (m2/g) (cm3/g) BCMP-1 231 0.15 BCMP-2 158 0.11 BCMP-3 184 0.46 BCMP-4 12 0.02 BCMP-5 148 0.31 BCMP-5-C 50 0.10 BCMP-6 50 10.18 After the addition of C60, the photoluminescence of BCMP-5 is significantly quenched by 80%, suggesting efficient charge transfer from the CMP network to C60. A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590. 2014年1月26日日曜日 20 Heterogeneous Catalyst SBET (m2/g) Vtotal (cm3/g) Pore Size(nm) nitrogen content cobalt content CoP-CMP 1158 0.36 3.87 10.5% 6.0 wt% CoP-CMP600 508 -- 5.3 8.9% 6.0 wt% CoP-CMP800 480 -- 5.4 7.5% 6.0 wt% CoP-CMP1000 229 -- 4.4 3.5% 6.0 wt% The resulting materials show excellent catalytic activity and stability in both alkaline and acidic media. K. Müllen, Adv. Mater., 2013, DOI: 10.1002/adma.201304147. 2014年1月26日日曜日 21 Heterogeneous Catalyst Benzothiadiazole monomers have proven great stability towards oxidation in photovoltaic applications. Weak electron donor, such as phenyl groups SBET (m2/g) Vtotal (cm3/g) Pore Size (nm) CMP-0 270 0.288 1.4 CMP-6.25 CMP-12.5 283 307 0.438 0.452 1.6 1.5 CMP-25 358 0.644 1.3 CMP-55 548 0.831 1.5 CMP-60 660 0.951 1.5 F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436. 2014年1月26日日曜日 22 O O CMP-X + hv 420nm O O Table. Conversion and productivity of α-terpinene oxidation using different CMPs. Conversion (%)a Conversion (%)b CMP-0 26 17 CMP-6.25 81 47 CMP-12.5 78 50 CMP-25 73 46 CMP-55 71 48 CMP-60 96 64 Flow of oxygen (2 eq): a 5 mL/min, b flow 10 mL/min, flow of α-terpinene solution: 2 mL/min. LED lamp: 420 nm, 12 W light output, 3.8 mL reactor at 25 °C, 0.1 M α-terpinene in CDCl3. F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436. 2014年1月26日日曜日 23 Heterogeneous Catalyst N O N S O HO N S HO N N SH AIBN, DMF, 90oC N S N S N S N S N N S N water compatible CMPs (WCMPs) WCMP O2 O OH O HO O O water 420 nm conversion of 90% F. Vilela, Chem. Commun., 2013, 49, 2353–2355. 2014年1月26日日曜日 24 Heterogeneous Catalyst O x R O B O R R B O R R Electron donor and acceptor R FL, R = hexyl R B-FL3 x:y =3:1, z = 0 O y N S N B O O N S N Efficient Photosensitizing Pd(0) O B R 80 oC, overnight R R BT R R B-BT-FL2 x:y:z = 2:1:1 S N z Br Br R Vtotal (m2/g) (cm3/g) pore size (nm) B-FL3 38 0.045 2.8 B-BT-FL2 31 0.063 2.6 B-BT2-FL 44 0.051 2.6 polymer N Br SBET R B N S N B-BT2-FL x:y:z = 1:2:1 O O + CMP-X polymer hv 420nm O O B-BT-FL2 and B-BT2-FL showed full conversion from a-terpinene to ascaridole! F. Vilela, Chem. Commun., 2013, 49, 11158–11160. 2014年1月26日日曜日 25 Heterogeneous Catalyst OH HO Sonogashira coupling I + I OH OH Benzodifuran Intramaolecular cyclization Inner structure rearrangement O Intramolecular Cyclization Reaction Benzodifuran-containing microporous organic networks (BDF-MON) O Photocatalytic oxidative conversion of amines into imines by BDF-MON NH2 + R BDF-MON O R MeO R = H, Cl, Me, OMe, R MeO NH2 N O BDF-MON R MeO OMe N + OMe H2N OMe + S OMe BDF-MON O S OMe N S S conversion 62-98% S. U. Son, Angew. Chem. Int. Ed., 2013, 52, 6228–6232. 2014年1月26日日曜日 26 Heterogeneous Catalyst Metal-functionalized CMPs with Salen-Co/Al Complexes Capturing and Converting CO2 at R.T and Atmospheric Pressure The Cost-Effective Reduction of CO2 N N Co(OAc)2 Br OH HO But Br N Co O OAcO Br But But Br But [Pd(PPh3)4] / CuI [Pd(PPh3)4] / CuI N N CH3COOH N N Al(OEt)3 OH HO M-CMP M = Co, Al But But But But N M O OAcO M = Co, Al CMP SBET (m2/g) Smicro (m2/g) Vtotal (cm3/g) Vmicro (cm3/g) CO2 uptake (mg/g) 298K CMP 772 283 1.21 0.117 71 Co-CMP 965 293 2.81 0.419 79.3 Al-CMP 798 315 1.41 0.298 76.5 W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960. 2014年1月26日日曜日 27 + CO2 Co / Al-CMP, TBAB O O O 25 oC, 0.1 MPa or 100 oC, 3.0 MPa entry catakys (mg) TBTA (mmol) 1 Salen-Co-OAc, 81 1.8 CO2 Pressure (MPa) 0.1 2 Co-CMP, 100 0 3 Co-CMP, 0 4 temperature time (h) yield (%) TON 25 48 77 158 0.1 25 48 6.7 14 1.8 0.1 25 48 20.4 3 Co-CMP, 100 1.8 0.1 25 48 81.5 167 5 Al-CMP, 95.2 1.8 0.1 25 48 78.2 160 6 Salen-Co-OAc, 81 1.8 3.0 100 1 84.6 173 7 Co-CMP, 0 1.8 3.0 100 1 31 4 8 Co-CMP, 100 1.8 3.0 100 1 98.1 201 9a Co-CMP, 100(O2) 1.8 3.0 100 1 96 197 10b Co-CMP, 100(H2O) 1.8 3.0 100 1 94.1 193 11 Al-CMP, 95.2 1.8 3.0 100 1 91.2 187 a Not excluding the air inside the reaction system. b 0.2 ml of H2O was added to the reaction system. W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960. 2014年1月26日日曜日 28 Heterogeneous Catalyst Porous Polymers with Acid and Basic Sites Bifunctional Catalyst I I I I SO3H HSO3Cl Pd(0) CHCl3, reflux + (HO)2B PPAF PPAF-SO3H B(OH)2 HNO3 NH2 SO3H TFA, rt NO2 SnCl2.H2O SO3H THF, 90 oC H2N NH2 PPAF-SO3H-NH2 polymer PPAF PPAF-SO3H PPAF-NH2 PPAF-SO3H-NH2 a Estimated SBET (m2/g) 580 409 416 310 Vtotal (cm3/g) 0.42 0.14 0.38 0.17 O2N NO2 PPAF-SO3H-NO2 pore diameter (nm)a 2.9 4.8 8.6 7.1 using The BJH method A. Corma, Chem. Mater., 2013, 25, 981–988. 2014年1月26日日曜日 29 Heterogeneous Catalyst OMe O OMe PPAF-SO3H H PPAF-NH2 CN CN 4 5 NC CN 6 entry catalyst conversion (%) 4 yield (%) 5 yield (%) 6 1 PPAF-SO3H-NH2 100 0 100 2 PPAF-SO3H +PPAF-NH2 100 9 91 3 PPAF 4 PPAF-SO3H 99 74 25 5 PPAF-NH2 6 PPAF-SO3H + aniline 100 50 50 7 PPAF-NH2 + PTSA 100 75 25 A. Corma, Chem. Mater., 2013, 25, 981–988. 2014年1月26日日曜日 30 Heterogeneous Catalyst Organic dyes, such as, Rose Bengal dye Cl Cl + Cl Cl Cl COONa I I NaO O Pd / CuI Cl Cl Cl COONa NaO O O DMF / Et3N O I RB-CMP1 I 1 3 Cl Cl Cl Cl Cl COONa I Pd / CuI + I NaO O I 2 polymer SBET (m2/g) RB-CMP1 833 RB-CMP2 801 a Estimated using The NL-DFT NaO Cl Cl Cl COONa O O DMF / Et3N O RB-CMP2 I 3 Vtotal (cm3/g) - pore size distribution (nm)a 0.9-1.7 0.9-1.7 A. I .Cooper, Macromolecules, 2013, 46, 8779–8783. 2014年1月26日日曜日 31 Screening Conditions for the Aza-Henry Reaction RM-CMP1 (x mol%) N + N MeNO2 O2N entry catalyst (x mol%) light source air time (h) conversion (%)b 1 RB-CMP1 (1) 60 W bulb yes 12 97 2 RB-CMP1 (2) 60 W bulb yes 12 99 3 RB-CMP1 (5) 60 W bulb yes 12 100 4 RB-CMP1 (10) 60 W bulb yes 10 100 5 RB-CMP1 (20) 60 W bulb yes 10 100 6 RB-CMP1 (2) natural light yes 15 30 7 RB-CMP1 (2) dark yes 15 0 8 RB-CMP1 (2) 60 W bulb Ar 15 53 9 RB-CMP2 (2) 60 W bulb yes 15 90 b Conversion determined by NMR. RM-CMP1 (2 mol%) N Ar + R1 NO2 60 W bulb light, rt, air N O2N conversion = 80-97% (1) Ar = Ph, 4-F-C6H4, 4-Br-C6H4, 4-NO2-C6H4, 4-CN-C6H4, 4-OMe-C6H4, 4-Me-C6H4, 4-C(O)C6H5-C6H4, 3-CN-C6H4, 3-CF3-C6H4, 3-MeO-C6H4, 3-Me-C6H4, 2-Me-C6H4, 3,5-Me2-C6H3, 1-naphthyl R1 = H (2) Ar = Ph, 4-Br-C6H4, 4-OMe-C6H4, 4-Me-C6H4, R1 = Me, Et conversion = 91-97% A. I .Cooper, Macromolecules, 2013, 46, 8779–8783. 2014年1月26日日曜日 32 Heterogeneous Catalyst Metallosalen-based Microporous Organic Polymer The Skeleton Itself Serves as The Solid Catalyst MsMOP-1 O Pd N O N Sonogashira coupling + Br N N Pd O O N N Pd O O Br O N MsMOP-1 Pd O N SBET (m2/g) 554 Vtotal (cm3/g) 0.547 pore diameter (nm) 0.65-2.18 The Suzuki–Miyaura coupling reaction of various aryl halides with phenylboronic acid in the presence of MsMOP-1 R B(OH)2 + X R MSMOP-1 conversion = 75-99% Heck coupling reaction of various aryl halides with olefins in the pres- ence of MsMOP-1 X R + R' MSMOP-1 R' R conversion = 25-99% X. M. Liu, J. Mater. Chem. A, 2013, 1, 14108–14114. 2014年1月26日日曜日 33 Electric Energy Storage 2D Sheet Structures Graphene oxide sheet (GO) Graphene RGO SBET (m2/g) RGBr Br S N Br GMP-S (cm3/g) at 0.1 Ag -1 (F/g) Br Br GMP-S 888 0.49 -- S N GMP-N 591 0.46 -- Br Br GMP-NS 818 0.68 -- GMC-S 618 0.58 268 GMC-N 560 0.38 244 GMC-NS 681 0.45 304 GMP-N GMP-X X = S, N, NS Vtotal capacitance pyrolysis 800 oC, Ar, 2h GMP-NS GMC-X X = S, N, NS X. L. Feng, Angew. Chem. Int. Ed., 2013, 52, 9668–9672. 2014年1月26日日曜日 34 Chemical Sensing Template-Mediated Approach Nanoscale CMPs (NCMPs) Detection and Quantitation of Gaseous SO2 SO2 N homocoupling N in toluene-in-water miniemulsion Zn N SO2 bubbling dispersion in CHCl3 N HN (pyrrolidine) . Pyrrolidine Zn-Por NCMP visual detection of SO2 = N N Zn N N SO2 bubbling N N N Zn N N N N N Zn N N HN (pyrrolidine) . Pyrrolidine Zn-Por NCMP + SO2 rt . Pyrrolidine SO2 + Zn-Por NCMP < 1min polymer SBET (m2/g) Smicro (m2/g) Vtotal (cm3/g) pore size distribution (nm)a Zn-Por-NCMP 590 516 0.313 0.6-2.5 a Pore size distribution calculated by the Nl-DFT method. J. Guo, Chem. Commun., DOI: 10.1039/c3cc47234e. 2014年1月26日日曜日 35 Chemical Sensing Direct Detection of RDX Vapor Mes N N Mes Ph Cl Ru Cl PCy3 TPV film-72h TPV film-48h TPV film-24h CH2Cl2 / 45 oC TPV polymer network The films exhibited increased quenching response as a function of their reaction time. The 72 h films showed 51 ± 15% quenching when exposed to 25 pg of RDX and saturated at 71 ± 9% at larger doses. In contrast, the 48 h films showed 24 ± 6% when exposed to 25 pg of RDX and saturated at 53 ± 10%, while the 24 h films showed only 9 ± 4% when exposed to 25 pg of RDX and saturated at 14 ± 9%. (1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)) W. R. Dichetel, J Am. Chem. Soc., 2013, 135, 8375–8362. 2014年1月26日日曜日 36 Chemical Sensing TNT Vapor Detection Synthetic and Processing Parameters Impact Polymer’s Sensing Performance O O Br + O 1 O Sonogashira coupling Br DMF-L DMF-E PhMe-L PhMe-E Br O 2 O O O polymer SBET (m2/g) relative fluorescence quantum yield DMF-L 259 1 DMF-E PhMe-L 0.13 53 PhMe-E 0.45 0.41 W. R. Dichetel, ACS Macro Lett., 2013, 2, 423–426. 2014年1月26日日曜日 37 Chemical Sensing N Br Br B Sonogashira coupling Boron-π-nitrogenbased CMPs + N B N BN-ph-ae Br N N Br O Br B B O Pd(0) + B O Br polymer SBET (m2/g) B O BN-ph N N B O O Smicro (m2/g) High Surface Areas Rich Optoelectronic Properties N Vtotal (cm3/g) Vmicro(cm3/g) pore size distribution (nm) a BN-ph 1279 884 0.81 0.54 1.54 BN-ph-ae 634 498 0.30 0.23 1.61 a Pore size distribution calculated by the Nl-DFT method. Two CMPs showed fluorescence sensing and collection of fluoride anions! X. L. Feng, J. Mater. Chem. A, 2013, 1, 13878–13884. 2014年1月26日日曜日 38 Chemical Sensing Chiral CMPs as Novel Chiral Fluorescence Sensors for Amino Alcohols OH OH Br Br OAc Sonogashira coupling + OAc 2M aqueous NaOH solution Br Br OH OH HO HO CMP4 NH2 HO OH 2-amino-1-propanol polymer OH NH2 2-amino-3-methyl-1-butanol SBET (m2/g) Smicro (m2/g) NH2 2-amino-2-phenylethanol Vtotal (cm3/g) Vmicro(cm3/g) pore size distribution (nm) a BN-ph 582 287 0.41 0.13 0.8-1.3 a Pore size distribution calculated by the HK method. R. X. Li, Macromol. Chem. Phys., 2013, 214, 2232−2238. 2014年1月26日日曜日 39 ng rise to an reaction of BDBA with tetrakis(4-bromophenyl)ethene (TBTPE). contrast to In order to prepare the PP-CMP and TPE-CMP cores (PPC-CMP, tendency to TPEC-CMP), we used an excess amount of BDBA at the first stage, e dissipation which endcapped the exterior surface of the core CMPs with utility as a Core–Shell Strategy for Exploring Light-emitting CMPs Light-Emitting Functions lications but ion to their ect on light is saturated with another to acceptor ucing a new luminescent mains to be ght-emitting ile retaining cience, @ims.ac.jp; Scheme 1 Schematic representation of the synthesis of conjugated polymers with and (b) PPS-TPEC-CMPs. At the first stage, the architecture: (a) TPES-PP D. L. Jiang,core–shell Chem. Commun., 2013, 49, 1591–1593. C-CMPs core CMPs were endcapped with phenyl boronic acid groups, which were used to grow mental details, 2014年1月26日日曜日 shell CMPs at the second stage. The elementary porous network structures are shown. 40 linear Fig. 3 Photos of CMPs under a hand-held UV light. (a) CMPs dispersed in THF; D. L. Jiang, Chem. Commun., 2013, 49, 1591–1593. (b) CMPs dispersed in different solvents; (c) solid samples of the CMPs. 2014年1月26日日曜日 singl for T 4.4respe the p cence In desig color lumin p-con excite state. TPE-C variet effici Th 41 Light-Emitting Functions Triarylboron-based CMPs I I Pd(PPh3)2Cl2 / CuI B B B THF / Et3N I BCMP-1 I Sonogashira coupling + I N B B N BCMP-2 I polymer SBET (m2/g) Vtotal (cm3/g) pore size distribution (nm)a adsorption band (nm) emission band (nm) BCMP-1 815 0.578 1.25 400 483 BCMP-2 911 0.611 1.03 430 558 a Pore size distribution calculated by the SF method. X. M. Liu, RSC Adv., 2013, 3, 21267–21270. 2014年1月26日日曜日 42 Light-Emitting Functions I I Heck Coupling Reactions I LMOP-1 I N I N I Pd(PPh3)4 / K2CO3 LMOP-2 X X X X X = I, Br LMOP-3 polymer SBET (m2/g) Vtotal (cm3/g) pore size distribution (nm)a adsorption band (nm) emission band (nm) LMOP-1 411 0.249 0.68 377 475 LMOP-2 391 0.252 0.68 380 515 LMOP-3 791 0.450 0.66 -- 458 a Pore size distribution calculated by the HK method. Z. Liang, Polym. Chem., 2013, 4, 1932–1938. 2014年1月26日日曜日 43 Light-Emitting Functions Br Br Ni(0) Br Br CMP Br Br O + + O B B O Br Br Br O (a) n (b) Py(5) Dendrimer Br m Br SCMP1 Br Pd(0) + Br Br O B O B O O 1,3-linear polymer ECMP polymer absorption absorption fluorescence fluorescence (nm) (ev) (nm) (eV) 1,3-linear polymer 370 3.4 479 2.6 Py(5) dendrimer 397 3.1 501 2.5 SCMP -- -- 526 2.4 ECMP 430 2.9 530 2.3 CMP 417 3.0 618 2.0 A. I. Cooper, Macromolecules, 2013, 46, 7696–7704. 2014年1月26日日曜日 44 Perspectives and Challenges 1. How to Design of Pores for Gas Adsorption and Storage? (a) Increase Surface Area and Pore Volume (b) Increase Selectivity by Introducing Functional Groups (c) Adjusting Pore Width 2. How to Utilize the Conjugated Structures? Photoelectric: Increase Fluorescence Qutum Yield Increase Conjugation 2014年1月26日日曜日 45 Perspectives and Challenges 3. How to Combine the Conjugated and Porous Characters for Function Design? (a) Catalysis: Enhance Regio- and Enantio-selectivity Increase Application Scope Recyclability (b) Supercapacity: Enhance Capacitances, Decrease R 2014年1月26日日曜日 46 Perspectives and Challenges 4. Exploration of Green and New Synthetic Method (a) Exploration of Reactions (b) Methods for Structural Control (c) Design of Pores and Skeletons (d) Fabricate Functional Films by technology such as, in situ,post-tratement... 5. Unical Function by Introducing Special Building Block. 2014年1月26日日曜日 47 References A. I. Copper, Angew. Chem. Int. Ed., 2007, 46, 8574–8578. X. M. Liu, et al. Polym. Chem., 2013, 4, 2445–2448. N. R. Rao, Chem. Commun., 2013, DOI: 10.1039/C3CC46907G. C. Janiak, Chem. Commun. 2013, 49, 3961–3963. S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160–3167. S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951–10961. N. Hedin, J. Mater. Chem. A, 2013, 1, 3406–3414. G. S. Zhu, Microporous and Mesoporous Materials, 2013, 173, 92–98. M. Eddaoudi, Chem. Commun., 2013, doi: c3cc48228f. S. Q. Ma, Chem. Commun., 2013, 49, 1533–1535. D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235. A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590. K. Müllen, Adv. Mater., 2013, DOI: 10.1002/adma.201304147. F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436. F. Vilela, Chem. Commun., 2013, 49, 2353–2355. F. Vilela, Chem. Commun., 2013, 49, 11158–11160. S. U. Son, Angew. Chem. Int. Ed., 2013, 52, 6228–6232. 2014年1月26日日曜日 48 References W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960. A. Corma, Chem. Mater., 2013, 25, 981–988. A. I .Cooper, Macromolecules, 2013, 46, 8779–8783. X. M. Liu, J. Mater. Chem. A, 2013, 1, 14108–14114. A. Li, RSC Adv., 2013, 3, 18022–18027. X. L. Feng, Angew. Chem. Int. Ed., 2013, 52, 9668–9672. J. Guo, Chem. Commun., DOI: 10.1039/c3cc47234e. W. R. Dichetel, J Am. Chem. Soc., 2013, 135, 8375–8362. W. R. Dichetel, ACS Macro Lett., 2013, 2, 423–426. X. L. Feng, J. Mater. Chem. A, 2013, 1, 13878–13884. R. X. Li, Macromol. Chem. Phys., 2013, 214, 2232–2238. D. L. Jiang, Chem. Commun., 2013, 49, 1591–1593. X. M. Liu, RSC Adv., 2013, 3, 21267–21270. Z. Liang, Polym. Chem., 2013, 4, 1932–1938. A. I. Cooper, Macromolecules, 2013, 46, 7696–7704. A review on CMPs Yanhong Xu, Shangbin Jin, Hong Xu, Atsushi Nagai, and Donglin Jiang, Conjugated Microporous Polymers: Design, Synthesis and Application, Chem. Soc. Rev. 2013, 42, 8012-8031 (Cover Page). 2014年1月26日日曜日 49
© Copyright 2024 ExpyDoc