Journal Meeting-2014-01-24

Journal Meeting@ Jiang Group, Jan. 24, 2014
Conjugated Microporous Polymers
(CMPs) in 2013
Yanhong XU
Institute for Molecular Science
2014年1月26日日曜日
1
Education
09/2001-7/2005: Bachelor's Degree
!
Department of Chemistry, Harbin Normal University, China
09/2006-7/2009: Master's Degree
Physical Chemistry, Northeast Normal University, China
Supervisor: Professor Zhongmin Su
10/2009-9/2012: Doctor's Degree,
Structural Molecules Science, Physical Sciences, Department of Chemistry,
The Graduate University for Advanced Studies, Japan
Supervisor: Associate Professor Donglin Jiang
10/2012-3/2014: Postdoctoral Position
Institute for Molecular Science National Institutes of Natural Sciences, Japan
Supervisor: Associate Professor Donglin Jiang
2014年1月26日日曜日
2
Conjugated Microporous
Polymers (CMPs)
Conjugated Polymers with 3D
Networks and Inherent Micropores
Usually,
Conjugated polymers are nonporous
Porous materials are not π-conjugated
2014年1月26日日曜日
3
The Chemistry of CMPs
Crosslinked Network
Amorphous Solid
Inherent Pores
Diversity of Chemical Reactions
Availability of Building Blocks
Variety of Synthetic Methods
A. I. Copper, Angew. Chem. Int. Ed., 2007, 46, 8574–8578.
2014年1月26日日曜日
4
Diversity of Chemical Reactions
Suzuki Coupling Reaction
+
Phenazine Ring Fusion Reaction
+
Sonogashira-Hagiwara Reaction
Cyclotrimerization Reaction
+
Yamamoto Reaction
+
Oxidative Coupling Reaction
+
Alkyne Metathesis Reaction
Me + Me
Schiff-base Reaction
+
2014年1月26日日曜日
5
Availability of Building Blocks
C2 + C3
C2 + C4
C2 + C6
2014年1月26日日曜日
C3 + C4
C3 + C6
C4 + C6
C2 + C2 + C2
C3 + C3
C4 + C4
6
Function Exploration
(Skeletons and Pores)
Gas Adsorption (H2, CO2, CH4)
Encapsulation of Dyes, Solvents and
Other Chemicals
Heterogeneous Catalyst
Electric Energy Storage
Chemical Sensing
Light-Harvesting Antenna Materials
Light-Emitting Functions
2014年1月26日日曜日
7
Gas adsorption
Macrocycle Ancillary
Built-in Metal Sites
Stability
MCTF@300
MCTF@400
MCTF@500
0.496
CO2 uptake
298 K / 273 K
(mg/g)
62/ 99
24.6-21.1
1060
1.303
69/104
25.4-21.3
1510
2.674
99/139
26.3-20.5
SBET
Vtotal
(m2/g)
(cm3/g)
MCTF@300
640
MCTF@400
MCTF@500
Qst
(KJ/mol)
X. M. Liu, et al. Polym. Chem., 2013, 4, 2445–2448.
2014年1月26日日曜日
8
Gas adsorption
Graphene
Electronic Properties
High-Surface Area
CO2
SBET
Vtotal uptake
(m2/g) (cm3/g) 195 K
(wt%)
CO2
uptake
273 K,
30atm
(wt%)
H2 uptake
77 K,
1atm
(wt%)
H2
uptake
77 K,
20atm
(wt%)
PGF-1
825
0.74
112
42
1.2
1.9
PGF-2
770
--
60
30
1.0
1.8
N. R. Rao, Chem. Commun., 2013, DOI: 10.1039/C3CC46907G.
2014年1月26日日曜日
9
Gas adsorption
Cheap and Readily
Available Materials
Easy Synthesis
High Surface Area
SBET
Vtotal
(m2/g)
(cm3/g)
CO2
293 K /273 K
(cm3/g)
H2
77 K,1atm
(wt%)
CH4
293 K /273 K
(cm3/g)
PCTF-1
2235
1.56
44.9/73
1.86
15.2/23.6
PCTF-2
784
0.76
24.2/41.5
0.9
8.0/15.1
C. Janiak, Chem. Commun. 2013, 49, 3961–3963.
2014年1月26日日曜日
10
Gas adsorption
Nitrogen-Incorporated
DMSO, 180 oC
overnight
H2N
CHO
One-step Procedure
pyrolysis
+
N
OHC
Catalyst-free
NH2
600-800 oC
ILP
NC-600
NC-700
NC-800
Table . Yield, Elemental Analysis and Textural Properties of ILP and NCs.
pore size
distribution yield
(nm)a
SBET
Smicro
Vtotal
(m2/g)
(m2/g)
(cm3/g)
ILP
744
553
0.62
0.86
NC-600
366
259
0.43
0.81
NC-700
284
167
0.39
NC-800
263
155
0.38
polymer
content content
N (wt%) C (wt%)
CO2 uptake
298 K,1 bar
(mmol / g)
CO2 uptake
273 K,1 bar
(mmol / g)
10.21
66.75
1.05
1.97
50.1
8.74
82.76
1.65
2.33
0.81
48.5
6.28
84.51
1.80
2.42
0.81
47.8
5.58
86.42
1.95
2.65
a Maxima of the pore size distribution calculated by the QSDFT method.
S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160–3167.
2014年1月26日日曜日
11
Gas adsorption
Nitrogen-Incorporated
DMSO, 180 oC
overnight
H2N
CHO
High Surface Area
KOH
+
N
OHC
NH2
Polyimine
pore size
content
distribution yield
N (wt%)
(nm)a
600-750 oC
NPC-600
NPC-650
NPC-700
NPC-750
content
C (wt%)
CO2 uptake
298 K,1 bar
(mmol / g)
CO2 uptake
273 K,1 bar
(mmol / g)
10.21
66.75
1.05
1.97
61
5.05
71.58
3.04
4.77
0.8
25
4.11
75.74
3.10
5.26
0.94
0.8, 1.3
21
3.77
80.17
2.46
4.29
1.58
0.8, 1.9
16
1.52
83.43
2.15
4.25
SBET
Smicro
Vtotal
(m2/g)
(m2/g)
(cm3/g)
Polyimine
744
553
0.62
0.9
NPC-600
1033
940
0.51
1.0
NPC-650
1561
1433
0.75
NPC-700
1876
1692
NPC-750
3195
2962
polymer
High Pore Volume
a Maxima of the pore size distribution calculated by the QSDFT method.
S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951–10961.
2014年1月26日日曜日
12
Gas adsorption
NH2
N
DMSO / 180
+
oC
CHO
OHC
N
H2N
N
A-B1
NH2
B1
A
NH2
N
CHO
+
DMSO / 180 oC
N
N
A-B2
CHO
H2N
Catalyst-free
Polycondensation
High CO2/N2
Selectivity
NH2
B2
A
NH2
N
DMSO / 180 oC
+
OHC
CHO
N
H2N
N
A-B3
B3
NH2
A
CO2 uptake
273 K, 0.15 bar
(cm3 / g)
26.93
CO2 uptake
273 K, 1 bar
(cm3 / g)
--
selectivity
CO2/N2
0.11
pore size
distribution
(nm)a
0.86
0.32
0.18
0.81
22.78
60.7
56
0.36
0.16
0.81
20.73
--
65
SBET
Vtotal
VMICRO
(m2/g)
(cm3/g)
(cm3/g)
A-B1
378
0.18
A-B2
614
A-B3
589
sample
68
N. Hedin, J. Mater. Chem. A, 2013, 1, 3406–3414.
2014年1月26日日曜日
13
Gas adsorption
Br
Br
Sonogashira
coupling
+
Br
Br
PAF-19
Br
Br
Sonogashira
coupling
+
Br
Br
PAF-20
SBET
(m2/g)
CO2
273K, 1bar
(cm3/g)
QstCO2 (KJ / mol)
H2
77K,1bar
(wt%)
QstH2 (KJ / mol)
PAF-19
250
0.90
28.5
0.55
6.99
PAF-20
702
1.16
30.3
0.89
8.07
G. S. Zhu, Microporous and Mesoporous Materials, 2013, 173, 92–98.
2014年1月26日日曜日
14
Gas adsorption
Amine Functionalized POP
Post-Synthetic Modification
Mild Synthetic Conditions
Enhanced CO2 Sorption
Si
Si
Si
Sonogashira
coupling
NH2
+
Br
Br
O
NH2
85 oC, 72h
N
O
NH2
1
polymer SBET
(m2/g)
Vtotal
(cm3/g)
2
CO2 298K, 0.15 / 1
bar (mmol/g)
Qst (KJ / mol)
aCO
2,
selectivity
298 K, 1bar
1
630
0.54
0.15 / 0.27
33
14
2
485
0.39
0.78 / 0.95
50
155
a CO
2
/ N2 = 10 / 90
M. Eddaoudi, Chem. Commun., 2013, doi: c3cc48228f.
2014年1月26日日曜日
15
Encapsulation of dyes, solvents and other chemicals
Porphyrin Represents Large Conjugated Macrocycles
Strong Hydrophobicity
Large Surface Area
PCPF-1
SBET = 1333 m2/g
Vtotal = 0.86 cm3/g
Vapor-phase adsorptive capacity
Liquid-phase adsorptive capacity
(mg/g) at 298 K
(g/g) at 298 K
n-pentane
n-hexane
456
623
14.7
16.7
n-heptane
752
22.5
n-octane
737
25.9
cyclopentane
909
15.4
cyclohexane
1030
25.1
S. Q. Ma, Chem. Commun., 2013, 49, 1533–1535.
2014年1月26日日曜日
16
Encapsulation of dyes, solvents and other chemicals
SBET
Vtotal
Pore Size
(m2/g)
(cm3/g)
(nm)
ZnP1-CMP
1140
1.49
0.8–2.0
CuP1-CMP
1247
1.49
0.8–2.0
CoP1-CMP
1080
1.16
0.8–2.0
D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235.
2014年1月26日日曜日
17
Experimental capacity for amine vapors
n-propy
n-buty
n-hexy
dibuty-
lamine
lamine
lamine
lamine
diisobutylamine
(gamine/gCMP)
(gamine/gCMP)
(gamine/gCMP) (gamine/gCMP) (gamine/gCMP)
pyridine
aniline
(gamine/gCMP)
(gamine/gCMP)
ZnP1-CMP
1.7
2.2
2.7
1.6
2.3
3.5
1.6
CuP1-CMP
2.4
2.5
3.8
1.9
2.0
3.6
1.2
CoP1-CMP
1.5
1.8
3.1
1.9
1.2
3.9
1.3
Experimental capacity for amine liquids
n-propy
n-buty
n-hexy
dibuty-
lamine
lamine
lamine
lamine
diisobutylamine
(gamine/gCMP)
(gamine/gCMP)
(gamine/gCMP) (gamine/gCMP) (gamine/gCMP)
pyridine
aniline
(gamine/gCMP)
(gamine/gCMP)
ZnP1-CMP
5.2
5.4
6.2
5.3
5.5
5.7
5.4
CuP1-CMP
3.3
3.9
5.4
4.9
5.2
5.4
5.6
CoP1-CMP
2.8
3.0
3.2
2.4
2.7
4.5
2.7
0
D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235.
2014年1月26日日曜日
18
Encapsulation of dyes, solvents and other chemicals
Low Band-Gap
Broad Light
Absorption
Fluorescence
Quenched
A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590.
2014年1月26日日曜日
19
Table. Gas sorption data for polymers, including pore properties
SBET
Vtotal
(m2/g)
(cm3/g)
BCMP-1
231
0.15
BCMP-2
158
0.11
BCMP-3
184
0.46
BCMP-4
12
0.02
BCMP-5
148
0.31
BCMP-5-C
50
0.10
BCMP-6
50
10.18
After the addition of C60, the photoluminescence of
BCMP-5 is significantly quenched by 80%, suggesting
efficient charge transfer from the CMP network to C60.
A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590.
2014年1月26日日曜日
20
Heterogeneous Catalyst
SBET (m2/g) Vtotal (cm3/g)
Pore Size(nm)
nitrogen content
cobalt content
CoP-CMP
1158
0.36
3.87
10.5%
6.0 wt%
CoP-CMP600
508
--
5.3
8.9%
6.0 wt%
CoP-CMP800
480
--
5.4
7.5%
6.0 wt%
CoP-CMP1000
229
--
4.4
3.5%
6.0 wt%
The resulting materials show excellent catalytic activity and stability in
both alkaline and acidic media.
K. Müllen, Adv. Mater., 2013, DOI: 10.1002/adma.201304147.
2014年1月26日日曜日
21
Heterogeneous Catalyst
Benzothiadiazole monomers have proven great stability towards
oxidation in photovoltaic applications.
Weak electron donor, such as phenyl groups
SBET (m2/g)
Vtotal (cm3/g)
Pore Size (nm)
CMP-0
270
0.288
1.4
CMP-6.25
CMP-12.5
283
307
0.438
0.452
1.6
1.5
CMP-25
358
0.644
1.3
CMP-55
548
0.831
1.5
CMP-60
660
0.951
1.5
F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436.
2014年1月26日日曜日
22
O
O
CMP-X
+
hv 420nm
O
O
Table. Conversion and productivity of α-terpinene oxidation using different CMPs.
Conversion (%)a
Conversion (%)b
CMP-0
26
17
CMP-6.25
81
47
CMP-12.5
78
50
CMP-25
73
46
CMP-55
71
48
CMP-60
96
64
Flow of oxygen (2 eq): a 5 mL/min, b flow 10 mL/min, flow of α-terpinene solution: 2 mL/min. LED
lamp: 420 nm, 12 W light output, 3.8 mL reactor at 25 °C, 0.1 M α-terpinene in CDCl3.
F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436.
2014年1月26日日曜日
23
Heterogeneous Catalyst
N
O
N
S
O
HO
N
S
HO
N
N
SH
AIBN, DMF, 90oC
N
S
N
S
N
S
N
S
N
N
S
N
water compatible CMPs
(WCMPs)
WCMP
O2
O
OH
O
HO
O
O
water
420 nm
conversion of 90%
F. Vilela, Chem. Commun., 2013, 49, 2353–2355.
2014年1月26日日曜日
24
Heterogeneous Catalyst
O
x
R
O
B
O
R
R
B
O
R
R
Electron donor and acceptor
R
FL, R = hexyl
R
B-FL3
x:y =3:1, z = 0
O
y
N
S
N
B
O
O
N
S
N
Efficient Photosensitizing
Pd(0)
O
B
R
80
oC,
overnight
R
R
BT
R
R
B-BT-FL2
x:y:z = 2:1:1
S
N
z
Br
Br
R
Vtotal
(m2/g)
(cm3/g)
pore size
(nm)
B-FL3
38
0.045
2.8
B-BT-FL2
31
0.063
2.6
B-BT2-FL
44
0.051
2.6
polymer
N
Br
SBET
R
B
N
S N
B-BT2-FL
x:y:z = 1:2:1
O
O
+
CMP-X
polymer
hv 420nm
O
O
B-BT-FL2 and B-BT2-FL showed full
conversion from a-terpinene to ascaridole!
F. Vilela, Chem. Commun., 2013, 49, 11158–11160.
2014年1月26日日曜日
25
Heterogeneous Catalyst
OH
HO
Sonogashira
coupling
I
+
I
OH
OH
Benzodifuran
Intramaolecular
cyclization
Inner structure
rearrangement
O
Intramolecular
Cyclization Reaction
Benzodifuran-containing
microporous organic networks
(BDF-MON)
O
Photocatalytic oxidative conversion of amines into imines by BDF-MON
NH2
+
R
BDF-MON
O
R
MeO
R = H, Cl, Me, OMe,
R
MeO
NH2
N
O
BDF-MON
R
MeO
OMe
N
+
OMe
H2N
OMe
+
S
OMe
BDF-MON
O
S
OMe
N
S
S
conversion 62-98%
S. U. Son, Angew. Chem. Int. Ed., 2013, 52, 6228–6232.
2014年1月26日日曜日
26
Heterogeneous Catalyst
Metal-functionalized CMPs with Salen-Co/Al Complexes
Capturing and Converting CO2 at R.T and Atmospheric Pressure
The Cost-Effective Reduction of CO2
N
N
Co(OAc)2
Br
OH HO
But
Br
N
Co
O OAcO
Br
But
But
Br
But
[Pd(PPh3)4] /
CuI
[Pd(PPh3)4] /
CuI
N
N
CH3COOH
N
N
Al(OEt)3
OH HO
M-CMP
M = Co, Al
But
But
But
But
N
M
O OAcO
M = Co, Al
CMP
SBET (m2/g) Smicro (m2/g) Vtotal (cm3/g) Vmicro (cm3/g)
CO2 uptake (mg/g) 298K
CMP
772
283
1.21
0.117
71
Co-CMP
965
293
2.81
0.419
79.3
Al-CMP
798
315
1.41
0.298
76.5
W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960.
2014年1月26日日曜日
27
+
CO2
Co / Al-CMP, TBAB
O
O
O
25 oC, 0.1 MPa or 100 oC, 3.0 MPa
entry
catakys
(mg)
TBTA
(mmol)
1
Salen-Co-OAc, 81
1.8
CO2
Pressure
(MPa)
0.1
2
Co-CMP, 100
0
3
Co-CMP, 0
4
temperature
time
(h)
yield
(%)
TON
25
48
77
158
0.1
25
48
6.7
14
1.8
0.1
25
48
20.4
3
Co-CMP, 100
1.8
0.1
25
48
81.5
167
5
Al-CMP, 95.2
1.8
0.1
25
48
78.2
160
6
Salen-Co-OAc, 81
1.8
3.0
100
1
84.6
173
7
Co-CMP, 0
1.8
3.0
100
1
31
4
8
Co-CMP, 100
1.8
3.0
100
1
98.1
201
9a
Co-CMP, 100(O2)
1.8
3.0
100
1
96
197
10b
Co-CMP, 100(H2O)
1.8
3.0
100
1
94.1
193
11
Al-CMP, 95.2
1.8
3.0
100
1
91.2
187
a Not
excluding the air inside the reaction system. b 0.2 ml of H2O was added to the reaction system.
W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960.
2014年1月26日日曜日
28
Heterogeneous Catalyst
Porous Polymers with Acid and Basic Sites
Bifunctional Catalyst
I
I
I
I
SO3H
HSO3Cl
Pd(0)
CHCl3, reflux
+
(HO)2B
PPAF
PPAF-SO3H
B(OH)2
HNO3
NH2
SO3H
TFA, rt
NO2
SnCl2.H2O
SO3H
THF, 90 oC
H2N
NH2
PPAF-SO3H-NH2
polymer
PPAF
PPAF-SO3H
PPAF-NH2
PPAF-SO3H-NH2
a Estimated
SBET (m2/g)
580
409
416
310
Vtotal (cm3/g)
0.42
0.14
0.38
0.17
O2N
NO2
PPAF-SO3H-NO2
pore diameter (nm)a
2.9
4.8
8.6
7.1
using The BJH method
A. Corma, Chem. Mater., 2013, 25, 981–988.
2014年1月26日日曜日
29
Heterogeneous Catalyst
OMe
O
OMe
PPAF-SO3H
H
PPAF-NH2
CN
CN
4
5
NC
CN
6
entry
catalyst
conversion (%)
4
yield (%)
5
yield (%)
6
1
PPAF-SO3H-NH2
100
0
100
2
PPAF-SO3H +PPAF-NH2
100
9
91
3
PPAF
4
PPAF-SO3H
99
74
25
5
PPAF-NH2
6
PPAF-SO3H + aniline
100
50
50
7
PPAF-NH2 + PTSA
100
75
25
A. Corma, Chem. Mater., 2013, 25, 981–988.
2014年1月26日日曜日
30
Heterogeneous Catalyst
Organic dyes, such as, Rose Bengal dye
Cl
Cl
+
Cl
Cl
Cl
COONa
I
I
NaO
O
Pd / CuI
Cl
Cl
Cl
COONa
NaO
O
O
DMF / Et3N
O
I
RB-CMP1
I
1
3
Cl
Cl
Cl
Cl
Cl
COONa
I
Pd / CuI
+
I
NaO
O
I
2
polymer
SBET (m2/g)
RB-CMP1
833
RB-CMP2
801
a Estimated using The NL-DFT
NaO
Cl
Cl
Cl
COONa
O
O
DMF / Et3N
O
RB-CMP2
I
3
Vtotal (cm3/g)
-
pore size distribution (nm)a
0.9-1.7
0.9-1.7
A. I .Cooper, Macromolecules, 2013, 46, 8779–8783.
2014年1月26日日曜日
31
Screening Conditions for the Aza-Henry Reaction
RM-CMP1 (x mol%)
N
+
N
MeNO2
O2N
entry
catalyst (x mol%)
light source
air
time (h)
conversion (%)b
1
RB-CMP1 (1)
60 W bulb
yes
12
97
2
RB-CMP1 (2)
60 W bulb
yes
12
99
3
RB-CMP1 (5)
60 W bulb
yes
12
100
4
RB-CMP1 (10)
60 W bulb
yes
10
100
5
RB-CMP1 (20)
60 W bulb
yes
10
100
6
RB-CMP1 (2)
natural light
yes
15
30
7
RB-CMP1 (2)
dark
yes
15
0
8
RB-CMP1 (2)
60 W bulb
Ar
15
53
9
RB-CMP2 (2)
60 W bulb
yes
15
90
b Conversion
determined by NMR.
RM-CMP1 (2 mol%)
N
Ar
+
R1
NO2
60 W bulb light, rt, air
N
O2N
conversion = 80-97%
(1) Ar = Ph, 4-F-C6H4, 4-Br-C6H4, 4-NO2-C6H4, 4-CN-C6H4, 4-OMe-C6H4, 4-Me-C6H4,
4-C(O)C6H5-C6H4, 3-CN-C6H4, 3-CF3-C6H4, 3-MeO-C6H4, 3-Me-C6H4, 2-Me-C6H4,
3,5-Me2-C6H3, 1-naphthyl
R1 = H
(2) Ar = Ph, 4-Br-C6H4, 4-OMe-C6H4, 4-Me-C6H4,
R1 = Me, Et
conversion = 91-97%
A. I .Cooper, Macromolecules, 2013, 46, 8779–8783.
2014年1月26日日曜日
32
Heterogeneous Catalyst
Metallosalen-based Microporous Organic Polymer
The Skeleton Itself Serves as The Solid Catalyst
MsMOP-1
O
Pd N
O
N
Sonogashira
coupling
+
Br
N
N
Pd
O
O
N
N
Pd
O
O
Br
O
N
MsMOP-1
Pd O
N
SBET (m2/g)
554
Vtotal (cm3/g)
0.547
pore
diameter
(nm)
0.65-2.18
The Suzuki–Miyaura coupling reaction of various aryl halides with phenylboronic acid in the presence of MsMOP-1
R
B(OH)2 +
X
R
MSMOP-1
conversion = 75-99%
Heck coupling reaction of various aryl halides with olefins in the pres- ence of MsMOP-1
X
R
+
R'
MSMOP-1
R'
R
conversion = 25-99%
X. M. Liu, J. Mater. Chem. A, 2013, 1, 14108–14114.
2014年1月26日日曜日
33
Electric Energy Storage
2D Sheet Structures
Graphene oxide sheet
(GO)
Graphene
RGO
SBET
(m2/g)
RGBr
Br
S
N
Br
GMP-S
(cm3/g)
at 0.1 Ag -1
(F/g)
Br
Br
GMP-S
888
0.49
--
S
N
GMP-N
591
0.46
--
Br
Br
GMP-NS
818
0.68
--
GMC-S
618
0.58
268
GMC-N
560
0.38
244
GMC-NS
681
0.45
304
GMP-N
GMP-X
X = S, N, NS
Vtotal
capacitance
pyrolysis
800 oC, Ar, 2h
GMP-NS
GMC-X
X = S, N, NS
X. L. Feng, Angew. Chem. Int. Ed., 2013, 52, 9668–9672.
2014年1月26日日曜日
34
Chemical Sensing
Template-Mediated Approach
Nanoscale CMPs (NCMPs)
Detection and Quantitation of Gaseous SO2
SO2
N
homocoupling
N
in toluene-in-water
miniemulsion
Zn
N
SO2 bubbling
dispersion in
CHCl3
N
HN
(pyrrolidine)
.
Pyrrolidine Zn-Por NCMP
visual detection of SO2
=
N
N Zn N
N
SO2 bubbling
N
N
N Zn N
N
N
N
N Zn N
N
HN
(pyrrolidine)
.
Pyrrolidine Zn-Por NCMP
+ SO2
rt
.
Pyrrolidine SO2 + Zn-Por NCMP
< 1min
polymer
SBET (m2/g)
Smicro (m2/g)
Vtotal (cm3/g)
pore size distribution
(nm)a
Zn-Por-NCMP
590
516
0.313
0.6-2.5
a Pore size distribution calculated by the Nl-DFT method.
J. Guo, Chem. Commun., DOI: 10.1039/c3cc47234e.
2014年1月26日日曜日
35
Chemical Sensing
Direct Detection of RDX Vapor
Mes N
N Mes
Ph
Cl
Ru
Cl
PCy3
TPV film-72h
TPV film-48h
TPV film-24h
CH2Cl2 / 45 oC
TPV polymer network
The films exhibited increased quenching response as a function of their reaction time.
The 72 h films showed 51 ± 15% quenching when exposed to 25 pg of RDX and
saturated at 71 ± 9% at larger doses.
In contrast, the 48 h films showed 24 ± 6% when exposed to 25 pg of RDX and
saturated at 53 ± 10%, while the 24 h films showed only 9 ± 4% when exposed to 25 pg
of RDX and saturated at 14 ± 9%. (1,3,5-Trinitroperhydro-1,3,5-triazine (RDX))
W. R. Dichetel, J Am. Chem. Soc., 2013, 135, 8375–8362.
2014年1月26日日曜日
36
Chemical Sensing
TNT Vapor Detection
Synthetic and Processing Parameters Impact Polymer’s
Sensing Performance
O
O
Br
+
O
1
O
Sonogashira
coupling
Br
DMF-L
DMF-E
PhMe-L
PhMe-E
Br
O
2
O
O
O
polymer
SBET (m2/g)
relative fluorescence quantum yield
DMF-L
259
1
DMF-E
PhMe-L
0.13
53
PhMe-E
0.45
0.41
W. R. Dichetel, ACS Macro Lett., 2013, 2, 423–426.
2014年1月26日日曜日
37
Chemical Sensing
N
Br
Br
B
Sonogashira
coupling
Boron-π-nitrogenbased CMPs
+
N
B
N
BN-ph-ae
Br
N
N
Br
O
Br
B
B
O
Pd(0)
+
B
O
Br
polymer
SBET (m2/g)
B
O
BN-ph
N
N
B
O
O
Smicro (m2/g)
High Surface Areas
Rich Optoelectronic
Properties
N
Vtotal (cm3/g)
Vmicro(cm3/g)
pore size
distribution (nm)
a
BN-ph
1279
884
0.81
0.54
1.54
BN-ph-ae
634
498
0.30
0.23
1.61
a Pore size distribution calculated by the Nl-DFT method.
Two CMPs showed fluorescence sensing and collection of fluoride anions!
X. L. Feng, J. Mater. Chem. A, 2013, 1, 13878–13884.
2014年1月26日日曜日
38
Chemical Sensing
Chiral CMPs as Novel Chiral Fluorescence Sensors for Amino Alcohols
OH
OH
Br
Br
OAc
Sonogashira
coupling
+
OAc
2M aqueous
NaOH solution
Br
Br
OH
OH
HO
HO
CMP4
NH2
HO
OH
2-amino-1-propanol
polymer
OH
NH2
2-amino-3-methyl-1-butanol
SBET (m2/g)
Smicro (m2/g)
NH2
2-amino-2-phenylethanol
Vtotal (cm3/g)
Vmicro(cm3/g)
pore size
distribution (nm)
a
BN-ph
582
287
0.41
0.13
0.8-1.3
a Pore size distribution calculated by the HK method.
R. X. Li, Macromol. Chem. Phys., 2013, 214, 2232−2238.
2014年1月26日日曜日
39
ng rise to an reaction of BDBA with tetrakis(4-bromophenyl)ethene (TBTPE).
contrast to In order to prepare the PP-CMP and TPE-CMP cores (PPC-CMP,
tendency to TPEC-CMP), we used an excess amount of BDBA at the first stage,
e dissipation which endcapped the exterior surface of the core CMPs with
utility as a Core–Shell Strategy for Exploring Light-emitting CMPs
Light-Emitting Functions
lications but
ion to their
ect on light
is saturated
with another
to acceptor
ucing a new
luminescent
mains to be
ght-emitting
ile retaining
cience,
@ims.ac.jp;
Scheme 1 Schematic representation of the synthesis of conjugated polymers with
and (b) PPS-TPEC-CMPs. At the first stage, the
architecture: (a)
TPES-PP
D. L. Jiang,core–shell
Chem. Commun.,
2013,
49,
1591–1593.
C-CMPs
core CMPs were endcapped with phenyl boronic acid groups, which were used to grow
mental details,
2014年1月26日日曜日
shell CMPs at the second stage. The elementary porous network structures are shown.
40
linear
Fig. 3 Photos of CMPs under a hand-held UV light. (a) CMPs dispersed in THF;
D. L. Jiang, Chem. Commun., 2013, 49, 1591–1593.
(b) CMPs dispersed in different solvents; (c) solid samples of the CMPs.
2014年1月26日日曜日
singl
for T
4.4respe
the p
cence
In
desig
color
lumin
p-con
excite
state.
TPE-C
variet
effici
Th
41
Light-Emitting Functions
Triarylboron-based CMPs
I
I
Pd(PPh3)2Cl2 / CuI
B
B
B
THF / Et3N
I
BCMP-1
I
Sonogashira
coupling
+
I
N
B
B
N
BCMP-2
I
polymer
SBET (m2/g)
Vtotal (cm3/g)
pore size
distribution (nm)a
adsorption
band (nm)
emission band (nm)
BCMP-1
815
0.578
1.25
400
483
BCMP-2
911
0.611
1.03
430
558
a Pore size distribution calculated by the SF method.
X. M. Liu, RSC Adv., 2013, 3, 21267–21270.
2014年1月26日日曜日
42
Light-Emitting Functions
I
I
Heck Coupling
Reactions
I
LMOP-1
I
N
I
N
I
Pd(PPh3)4 / K2CO3
LMOP-2
X
X
X
X
X = I, Br
LMOP-3
polymer
SBET (m2/g)
Vtotal (cm3/g)
pore size
distribution (nm)a
adsorption
band (nm)
emission band (nm)
LMOP-1
411
0.249
0.68
377
475
LMOP-2
391
0.252
0.68
380
515
LMOP-3
791
0.450
0.66
--
458
a Pore size distribution calculated by the HK method.
Z. Liang, Polym. Chem., 2013, 4, 1932–1938.
2014年1月26日日曜日
43
Light-Emitting Functions
Br
Br
Ni(0)
Br
Br
CMP
Br
Br
O
+
+
O
B B
O
Br
Br
Br
O
(a)
n
(b)
Py(5) Dendrimer
Br
m
Br
SCMP1
Br
Pd(0)
+
Br
Br
O
B
O
B
O
O
1,3-linear polymer
ECMP
polymer
absorption absorption fluorescence fluorescence
(nm)
(ev)
(nm)
(eV)
1,3-linear polymer
370
3.4
479
2.6
Py(5) dendrimer
397
3.1
501
2.5
SCMP
--
--
526
2.4
ECMP
430
2.9
530
2.3
CMP
417
3.0
618
2.0
A. I. Cooper, Macromolecules, 2013, 46, 7696–7704.
2014年1月26日日曜日
44
Perspectives and Challenges
1. How to Design of Pores for Gas Adsorption and Storage?
(a) Increase Surface Area and Pore Volume
(b) Increase Selectivity by Introducing Functional Groups
(c) Adjusting Pore Width
2. How to Utilize the Conjugated Structures?
Photoelectric: Increase Fluorescence Qutum Yield
Increase Conjugation
2014年1月26日日曜日
45
Perspectives and Challenges
3. How to Combine the Conjugated and Porous Characters
for Function Design?
(a) Catalysis: Enhance Regio- and Enantio-selectivity
Increase Application Scope
Recyclability
(b) Supercapacity: Enhance Capacitances, Decrease R
2014年1月26日日曜日
46
Perspectives and Challenges
4. Exploration of Green and New Synthetic Method
(a) Exploration of Reactions
(b) Methods for Structural Control
(c) Design of Pores and Skeletons
(d) Fabricate Functional Films by technology such
as, in situ,post-tratement...
5. Unical Function by Introducing Special Building
Block.
2014年1月26日日曜日
47
References
A. I. Copper, Angew. Chem. Int. Ed., 2007, 46, 8574–8578.
X. M. Liu, et al. Polym. Chem., 2013, 4, 2445–2448.
N. R. Rao, Chem. Commun., 2013, DOI: 10.1039/C3CC46907G.
C. Janiak, Chem. Commun. 2013, 49, 3961–3963.
S. Kaskel, ACS Appl. Mater. Interfaces 2013, 5, 3160–3167.
S. Kaskel, J. Mater. Chem. A, 2013, 1, 10951–10961.
N. Hedin, J. Mater. Chem. A, 2013, 1, 3406–3414.
G. S. Zhu, Microporous and Mesoporous Materials, 2013, 173, 92–98.
M. Eddaoudi, Chem. Commun., 2013, doi: c3cc48228f.
S. Q. Ma, Chem. Commun., 2013, 49, 1533–1535.
D. L. Jiang, Chem. Commun., 2013, 49, 3233–3235.
A. I. Cooper, Polym. Chem., 2013, 4, 5585–5590.
K. Müllen, Adv. Mater., 2013, DOI: 10.1002/adma.201304147.
F. Vilela, Angew. Chem. Int. Ed., 2013, 52, 1432–1436.
F. Vilela, Chem. Commun., 2013, 49, 2353–2355.
F. Vilela, Chem. Commun., 2013, 49, 11158–11160.
S. U. Son, Angew. Chem. Int. Ed., 2013, 52, 6228–6232.
2014年1月26日日曜日
48
References
W. Q. Deng, Nature Commun., DOI: 10.1038/ncomms2960.
A. Corma, Chem. Mater., 2013, 25, 981–988.
A. I .Cooper, Macromolecules, 2013, 46, 8779–8783.
X. M. Liu, J. Mater. Chem. A, 2013, 1, 14108–14114.
A. Li, RSC Adv., 2013, 3, 18022–18027.
X. L. Feng, Angew. Chem. Int. Ed., 2013, 52, 9668–9672.
J. Guo, Chem. Commun., DOI: 10.1039/c3cc47234e.
W. R. Dichetel, J Am. Chem. Soc., 2013, 135, 8375–8362.
W. R. Dichetel, ACS Macro Lett., 2013, 2, 423–426.
X. L. Feng, J. Mater. Chem. A, 2013, 1, 13878–13884.
R. X. Li, Macromol. Chem. Phys., 2013, 214, 2232–2238.
D. L. Jiang, Chem. Commun., 2013, 49, 1591–1593.
X. M. Liu, RSC Adv., 2013, 3, 21267–21270.
Z. Liang, Polym. Chem., 2013, 4, 1932–1938.
A. I. Cooper, Macromolecules, 2013, 46, 7696–7704.
A review on CMPs
Yanhong Xu, Shangbin Jin, Hong Xu, Atsushi Nagai, and Donglin Jiang,
Conjugated Microporous Polymers: Design, Synthesis and Application,
Chem. Soc. Rev. 2013, 42, 8012-8031 (Cover Page).
2014年1月26日日曜日
49