ブリッジ回路( Bridge Circuit) ブリッジ回路: Bridge Circuits 1 原理:抵抗(R) ,コンデンサ(C) ,インダクタンス(L)の組合電気素子からなる4組の電気構成部品からなり, 直流又は交流で バイアス駆動し,バランス点を有し,これにより既知の3組の電気素子の値から未知の他の1組の電気素子の値を計測する。 1 原理、目的、駆動電源等 2 各種のブリッジ回路 3 Wheatstone Bridge(DC)=Resistance Bridge(AC)=Kohlrausch Bridge(AC) 4 Kelvin Double Bridge 5 Schering Bridge 6 Maxwell Bridge= Maxwell-Wien Bridge 7 Modified Maxwell Bridge= Modified Maxwell-Wien Bridge 8 De Sauty Bridge 9 Serial Capacitance Bridge 10 Owen Bridge 11 Parallel Capacitance Bridge 12 Wine Bridge = Wine-Robinson Bridge 13 Hay Bridge 14 Anderson Bridge 15 Twin-T Bridge 16 MITAMUSEN Universal Bridge 17 Photo Conductive Detector(光伝導型検知器)の信号取出回路の抵抗値 注)R、C、Lの組合構成部品とは以下の組み合わせを指す ・Rのみ ・Cのみ、又は、CとRの直列組み合わせ、又は、CとRの並列組み合わせ ・Lのみ、又は、LとRの直列組み合わせ、又は、LとRの並列組み合わせ 注)LとCの組合等はブリッジ回路では考えない 2 目的 ・ 未知のRx,Cx,Lx等を求める ・ フィルタ素子となる 3 駆動電源 (1)直流駆動:Rからなる電気構成部品だけからなるブリッジ回路(例:Wheatstone Bridge) (2)交流駆動:Rだけでなく,C,Lの電気素子を含むブリッジ回路 ・ バランス点がAC駆動周波数によらない回路→未知のRx,Cx,Lxを求める回路に使用される。 (例:多くの回路有り) ・ バランス点がAC駆動周波数により変化する回路→フィルタとなり、発振素子になる。 (例:Wien Bridge , Twin-T Bridge) 4 その他 (株)北川統合技術研究所 [KUTELA Corporation] Rの構成で、直流を駆動電源とし、その大きな直流電圧成分をバランスによりキャンセルし、バランスよりずれた微少な 抵抗変化成分のみを拡大計測する。 (例:ストレインゲージ、光伝導型検知器等) 2000A1890 Copyright (c) KUTELA Corporation 2009. All Rights Reserved 1 各種のブリッジ回路(1) 名称 2 各種のブリッジ回路(2) 測定量 特徴 名称 測定量 Normal Bridge(駆動電源の電圧、周波数、位相によらない) Anderson Bridge Kelvin Double Bridge De Sauty Bridge De-Sauty Bridge Desauty Bridge Desaulty Bridge Capacitance Serial Capacitance Bridge Capacitance with Serial Loss Maxwell Bridge Maxwell-Wien Bridge Inductance with Serial Loss Capacitance with Parallel Loss Modified Maxwell Bridge Modified Maxwell-Wien Bridge Inductance with Parallel Loss Capacitance with Serial Loss Inductance with Serial Loss Capacitance with Serial Loss Capacitance with Serial Loss Capacitance with Parallel Loss Owen Bridge Schering Bridge Parallel Capacitance Bridge Capacitance with Parallel Loss Wheatstone Bridge(DC) Resistance Bridge(AC) Kohlrausch Bridge (コールラウシュブリッジ) Resistance Resistance 特徴 解析複雑Bridge Inductance Low Resistance 回路複雑 労多くして益無し Frequency Bridge (Frequency Depend Balance) MITAMUSEN Low Loss C MITAMUSEN Q<10 High Loss L MITAMUSEN Q>10 Low Loss L Hay Bridge Inductance with Serial Loss Capacitance with Serial Loss Wien Bridge Wien-Robinson Bridge Frequency Q>10 Mutual Inductance Bridge (Frequency Depend Balance) (各Inductanceは簡易に測定可。しかしながら、相互Inductance、 相互Resistanceは困難) Heaviside Bridge Carey-Foster Bridge Carey Foster Bridge Campbell Bridge Heidweiller Bridge Heydweiller Bridge Wide Range Inductance Moderate Low Loss C MITAMUSEN High Loss C MITAMUSEN Any R 交流Bridge 電解質、接地抵抗 相互インダクタンス計測 相互インダクタンス計測 Frequency 相互インダクタンス計測 Small Mutual Resistance 相互インダクタンス計測 参考:Filter(各々CR-FilterとLR-Filterがある) 3 Wheatstone Bridge(DC)=Resistance Bridge(AC)=Kohlrausch Bridge(AC) :Resistance Wien Bridge Filter Twin-T Filter Phase Shift Filter 4 Kelvin Double Bridge:・Low Resistance 現在では労多くして益無し , ω[ 1 Ω] Z = R[ R 1 sec ] 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] R 4 R 3 4 R 3 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] 2 R Voltmeter Z= Voltmeter R DC or Oscillator sec 1 R 1 R 1 2 R Z= ] 2 R Z = R[ , ω[ 1 Ω] R DC or Oscillator Balance Equation Re:R1 R3 = R2 R4 Balance Equation:No Answer 5 6 1 Maxwell Bridge= Maxwell-Wien Bridge :・Inductance with Serial Loss (Q<10;High Loss L) ・Capacitance with Parallel Loss Schering Bridge:・Capacitance with Serial Loss ・Capacitance with Parallel Loss Oscillator RMS-Voltmeter ] Z = R[ , ω[ 1 Ω] R 1 C 1 Z= sec 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] R 2 Z= L1 R 1 , ω[ 1 Ω] Z = R[ C 2 Oscillator R R 3 RMS-Voltmeter sec ] 1 R R 3 C 3 4 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] C 3 4 ( R1 + jωL1 )( ⇓ Balance Equation R1C2 = R4C3 and R3C2 = R4C1 R 1 L1 Z= Oscillator , ω[ 1 Ω] Z = R[ sec ] Z= C 2 1 Oscillator R jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] RMS-Voltmeter sec ] 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] 4 R 3 RMS-Voltmeter 8 De Sauty Bridge :・ Capacitance , ω[ 1 Ω] Z = R[ R 2 ⇓ R1R3 = R2 R4 and L1 = R2 R4C3 7 Modified Maxwell Bridge= Modified Maxwell-Wien Bridge :・Inductance with Parallel Loss (Q>10;Low Loss L) ・Capacitance with Serial Loss 1 + jωC3 ) −1 = R2 R4 R3 R 3 Balance Equation 1 1 1 × R4 ) × ( + jωC3 ) −1 = jωC1 R3 jωC2 C 1 ( R1 + R C 3 4 ( Balance Equation ⇓ R1R3 = R2 R4 and L1 = R2 R4C3 9 C 1 Serial Capacitance Bridge :・ Capacitance with Serial Loss (Low Loss C) , ω[ 1 Ω] Z = R[ C 2 Z= R 1 R 2 Oscillator RMS-Voltmeter 1 1 ) R3 = ( ) R4 jωC1 jωC2 ⇓ Im : R3C2 = R4C1 10 Owen Bridge : Wide Range Inductance ・Inductance with Serial Loss ・Capacitance with Serial Loss sec ] Z = R [Ω] , ω[ 1 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] R 1 Balance Equation 1 1 −1 1 + ) × ( R3 + ) = R2 R4 R1 jωL1 j ωC 3 Oscillator RMS-Voltmeter sec ] 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] 4 C4 C 3 R R 3 Z= R 2 L1 ( R 4 ( R1 + Balance Equation 1 1 ) R3 = ( R2 + ) R4 jωC1 jωC2 ( R1 + jωL1 )( ⇓ Balance Equation R1 R3 = R2 R4 and R3C2 = R4C1 or R1 R3 = R2 R4 and R1C1 = R2C2 11 1 1 ) = R2 ( R4 + ) jωC3 jωC4 ⇓ L1 = R2 R4C3 and R1C4 = R2C3 12 2 Parallel Capacitance Bridge: ・High Loss Capacitance ・Capacitance with Parallel Loss jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] RMS-Voltmeter 14 Anderson Bridge:・Inductance sec Z = R [ , ω[ 1 Ω] ] 1 R 1 RMS -Voltmeter C RMS-Voltmeter R R Z= sec ] 1 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] R 3 4 R 3 Z = R [Ω] , ω[ 1 2 R L1 R1 C2 R4 + = and ω 2 R1 R2C1C2 = 1 R2 C1 R3 13 jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] Oscillator 1 1 ) R3 = ( + jωC2 ) −1 R4 jωC1 R2 Balance Equation ⇓ Z= R 2 ] jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] L1 Hay Bridge :・ Inductance with Serial Loss (Q>10) ・ Capacitance with Serial Loss sec 1 R 3 R 3 ( R1 + or R1 R3 = R2 R4 and R1C1 = R2C2 R 1 RMS-Voltmeter 4 4 1 1 + jωC1 ) −1 × R3 = ( + jωC 2 ) −1 × R4 R1 R2 ⇓ R1 R3 = R2 R4 and R3C2 = R4C1 Balance Equation Z= Oscillator R R ( Z = R [Ω] , ω[ 1 C 2 2 R 2 R R 1 ] 1 Z= Oscillator sec R 1 Z = R [Ω] , ω[ 1 C1 C 1 C 2 Wine Bridge = Wine-Robinson Bridge:・Frequency R C 3 4 Oscillator ( R1 + jωL1 )( R3 + Balance Equation 1 ) = R2 R4 jωC3 ⇓ L R2 R4 − R1R3 = 1 and R1 = ω 2 R3C3 L1 C3 Balance Equation R1 R3 = R2 R4 and L1 R3 = CR2 ( RR3 + RR4 + R3 R4 ) 15 16 Twin-T Bridge:・Frequency Z = R [Ω] , ω[ 1 R 2C R jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] R / C C ] 2 RMS -Voltmeter Z= sec 1 MITAMUSEN Universal Bridge(R,C,L) Oscillator Balance Equation:No Answer 17 18 3 Serial Capacitance Bridge :・ Capacitance with Serial Loss (Low Loss C) R x R s jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] Rs:×1(200Ω+10Ω) ×10( 2kΩ+10Ω) Oscillator RMS-Voltmeter 4 4 R 3 R 1 1 ) R3 = ( RS + ) R4 ; C2 = 1µ F or 10 µ F jω C X jω C2 ( ⇓ Balance Equation RX R3 = RS R4 and R3C2 = R4C X or RX R3 = RS R4 and RX C X = RS C2 ⇓ 1 1 R3 C , DP ≡ tan(δ ) ≡ , RX = 2 RS = C2 R4 ω C X RX ω RS C2 CX CX = R s R s C 3 ∆V E R3 ( 1 1 −1 1 + ) × ( RS + ) = R2 R4 ; C3 = 1µ F or 10 µ F RX jω LX jωC3 QP ≡ 21 光:Φ(W) =Φb+ΔΦs , RX = LX RS C3 22 R5 E(V) R3 前提条件 ・暗抵抗(Rd0)の検知器にΔΦsの信号光が入射し、 ΔRだけ抵抗が変化し電気信号ΔVが出力する。 (但し、無信号光時はバランスが取れているとする。) ・R3はバランス抵抗、R5は電圧計の入力抵抗とする。 ・z = R3/Rd0 , t = R3/R5 とする。 ∆R z 正確な式 ∆V Rd 0 = E (1+ z)(1+ t ) + t ∆R (1+ z)(1+ z + 2t) 1+ (1+ z)(1+ z + 2t ) Rd 0 2次近似式 ∆R (1+ z)(1+ t) + t ∆R z ≅ 1− (1+ z)(1+ z + 2t ) Rd 0 (1+ z)(1+ z + 2t ) Rd 0 t=R3/R5=20 Where z = R3 Rd 0 , t = R3 R5 係数(A)が大きい:出力電圧が大きい 係数(B)が小さい:線形範囲が広い 23 縦軸:ΔV/E 横軸:ΔR/Rd0 1 ω RS C3 ΔV R3 Rd0 = R3/Rd0 , t = R3/R5 とする。 t=R3/R5=1 = Rd0+ΔR (但し、無信号光時はバランスが取れているとする。) ・R3はバランス抵抗、R5は電圧計の入力抵抗とする。 ・z RX ω LX Photo Conductive Detector(光伝導型検知器)の信号取出回路の抵抗値(2) 前提条件 ・暗抵抗(Rd0)の検知器にΔΦsの信号光が入射し、 ΔRだけ抵抗が変化し電気信号ΔVが出力する。 ∆ R z Rd0 正確な式 = (1 + z ) (1 + t ) + t ∆ R (1 + z ) (1 + z + 2 t ) 1 + (1 + z ) (1 + z + 2 t ) R d 0 t=R3/R5=0.05 x 4 4 R5 E(V) Rs:×1(200Ω+10Ω) ×10( 2kΩ+10Ω) ⇓ Photo Conductive Detector(光伝導型検知器)の信号取出回路の抵抗値(1) ΔV jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] Balance Equation RX RS = R2 R4 and LX = R2 R4C3 = RS RX C3 RX RS = R2 R4 and LX = R2 R4C3 R3 ] ⇓ ⇓ Rd0+ΔR RMS-Voltmeter sec 1 R R 1 ; C3 = 1µ F or 10 µ F + jωC3 )−1 = R2 R4 RS ⇓ ω LX L = ω RS C3 , R X = X RX RS C3 Rd0 Oscillator Multiplier QS ≡ 光:Φ(W) =Φb+ΔΦs Z= jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] Rs:×1(200Ω+10Ω) ×10( 2kΩ+10Ω) ( RX + jω LX )( Z = R [Ω] , ω[ 1 Balance R 2 C 3 Lx RMS-Voltmeter ] 1 Z= Oscillator sec 20 Modified Maxwell Bridge= Modified Maxwell-Wien Bridge :・Inductance with Parallel Loss (Q>10) ・Capacitance with Serial Loss Lx x R Z = R [Ω] , ω[ 1 Balance 1 1 ; C2 = 1µ F or 10µ F + jω C X ) −1 × R3 = ( + jω C2 ) −1 × R4 RX RS RX R3 = RS R4 and R3C2 = R4 C X or RX R3 = RS R4 and RX C X = RS C2 19 Maxwell Bridge= Maxwell-Wien Bridge :・Inductance with Serial Loss (Q<10) ・Capacitance with Parallel Loss Balance Equation jω × C[sec ] Ω Z = jω × L[Ω ⋅ sec] Balance R R C , DS ≡ tan(δ ) ≡ ω C X RX = ω C2 RS , RX = 2 RS C X = 3 C2 R4 CX Multiplier ] ⇓ Balance Equation ⇓ R 2 sec 1 Balance Multiplier ( RX + Z= 2 R R 3 Z = R [Ω] , ω[ 1 ] C RMS-Voltmeter sec 1 Z= Oscillator Multiplier Z = R [Ω] , ω[ 1 R x Rs:×1(200Ω+10Ω) ×10( 2kΩ+10Ω) R s C x C x C 2 Parallel Capacitance Bridge: ・High Loss Capacitance ・Capacitance with Parallel Loss 常にRd0≦R3≪R5の条件が必要 多くの条件が有る 1 係数Aが大きく係数Bが小さいためには、 t(=R3/R5)≪1即ちR3≪R5が必要 ∆V E z ∆R 1 ∆ R ≅ 1 − (1 + z )2 Rd 0 (1 + z ) Rd 0 2 z (=R3/Rd0)≧1の条件も必要 (1)線形範囲は狭いが出力電圧を必要とする時 z=1即ちRd03=R3とする ∆V E ≅ 1 ∆R 1 ∆ R 1 − 4 Rd 0 2 Rd 0 (2)出力電圧が低くても線形範囲を広く必要とする時 z≫1即ちRd0≪R3とする ∆V E 1 ∆R ≅ z Rd 0 1 ∆R 1 − z Rd 0 24 4 END 25 5
© Copyright 2024 ExpyDoc