. 東証一部上場全銘柄ペアに対する ペア・トレードの大規模実証実験. 室田 光晶, 井上 純一 . 北海道大学 大学院情報科学研究科 第 2 回金融ネットワーク研究会@NEC 芝倶楽部 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 1 / 26 Nikkei stock average The Nikkei stock average around the Tohoku earthquake (March 2011) 11500 11000 10500 10000 9500 9000 8500 8000 2010/03/01 2010/07/01 2010/11/01 2011/03/01 2011/07/01 We visualized the collective behavior of stocks during the crisis through ‘correlations’ (Ibuki et. al. (2012)) 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 2 / 26 Stocks during the crisis 1800 450 2501 2502 2503 2531 2533 2801 1600 1801 1802 1803 1812 400 1400 1200 350 1000 qk qk 300 800 600 250 400 200 200 0 2011/01 2011/03 2011/06 2011/09 2011/12 150 2011/01 2011/03 2011/06 2011/09 2011/12 2501: Sapporo Breweries, 2502: Asahi Breweries, 2503: Kirin Holdings, 2531: Takara Holdings, 2533: Oenon Holdings, 2801: Kikkoman Corporation, 1801: Taisei Corporation, 1802: Obayashi Corporation, 1803: Shimizu Corporation, 1812: Kajima Corporation. Quantify the pair-wise correlation by ∆ri (t )∆rj (t ) − (∆ri (t ))(∆rj (t )) ρij (t ) = √ [(∆ri (t ))2 室田 光晶, 井上 純一 (北海道大学) − (∆ri (t ))2 ][(∆rj (t ))2 − (∆rj ペア・トレードの大規模実証実験 , ∆ri : return in log-scale (t ))2 ] 2014 年 6 月 6 日 3 / 26 Collective behavior: before crisis From correlation to distance: √ dij (t ) = 2011/03/10 室田 光晶, 井上 純一 (北海道大学) 1 − ρij (t ) 2 (0 ≤ dij (t ) ≤ 1, −1 ≤ ρij (t ) ≤ 1) 2011/03/11 ペア・トレードの大規模実証実験 2014 年 6 月 6 日 4 / 26 Collective behavior: after crisis 2011/03/14 2011/03/15 References: T. Ibuki, S. Higano, S. Suzuki and J. Inoue, ASE Human Journal 1, Issue 2, pp.74-87 (2012). T. Ibuki, S. Higano, S. Suzuki, J. Inoue and A. Chakraborti, Journal of Physics: Conference Series 473, 012008 (16pages) (2013). 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 5 / 26 Pairs trading A use of ‘correlations’ for trading with a small risk (600 yen) Selling (a short posi.on) price (550 yen) (400 yen) Stock 1 Stock 2 Buying (a long posi.on) (200 yen) Arbitrage= (600-‐200)-‐(550-‐400)=400-‐150=250 yen (profit) .me The pairs trading is based on a simple assumption that the spread between strongly correlated two stocks might shrink eventually even if the two prices of the stocks temporally exhibit ‘mis-pricing’ leading up to a large spread 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 6 / 26 Aim of this study Constructing a very simple platform to make a pairs trading automatically To do this, we are trying to answer the following questions How does one choose suitable pairs of stocks for trading? How many parameters are needed?, and which of them are actually relevant? Robustness of the choice of parameters Several distinctions of our study are Pairs trading as a mixture of first-passage processes Large-scale empirical study which has never been done so far 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 7 / 26 Spread and first-passage times The stock price normalized by the value itself at τ-times before as γi (t ) ≡ pi (t ) − pi (t − τ + 1) pi (t ) = − 1, i = 1, 2 pi (t − τ + 1) pi (t − τ + 1) pi (t ): a price of the stock i at time t The spread: dij (t ) ≡ |γi (t ) − γj (t )| The first-passage times: (ij ) t< = min{t > 0 | dij (t ) ≥ θ} (starting) (ij ) t> (ij ) t∗ = min{t > t< | θ < dij (t ) ≤ ε} (profit-taking) (ij ) (ij ) (ij ) = min{t> > t > t< | dij (t ) > Ω} (stop-loss) The profit (gain) and loss: (ij ) (ij ) (ij ) (ij ) gij = dij (t< ) − dij (t> ), lij = dij (t∗ ) − dij (t< ) 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 8 / 26 Profit-taking case Price Sell Buy star4ng profit-‐taking stock1 stock2 Sell Buy Time (ij ) (ij ) profit: gij = dij (t< ) − dij (t> ) (ij ) t< = min{t > 0 | dij (t ) ≥ θ} (starting) (ij ) t> = min{t > t< | θ < dij (t ) ≤ ε} (profit-taking) 室田 光晶, 井上 純一 (北海道大学) (ij ) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 9 / 26 Stop-loss case Price Sell Buy star4ng stop-‐loss stock1 Buy stock2 Sell Time (ij ) (ij ) loss: lij = dij (t∗ ) − dij (t< ) (ij ) t< = min{t > 0 | dij (t ) ≥ θ} (starting) (ij ) t∗ = min{t> > t > t< | dij (t ) > Ω} (stop-loss) 室田 光晶, 井上 純一 (北海道大学) (ij ) (ij ) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 10 / 26 Small risk We can get profit even if the both stocks are dropping Price stock1 Sell stock2 Buy star4ng profit-‐taking Buy Sell Small risk Time A well-known historical pair is Coca Cola and Pepsi Cola 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 11 / 26 Market neutral portfolio Let us consider the return of the two stocks i and j which are described as ∆γi (t ) = ∆γj (t ) = βi ∆γm (t ) + qi (t ) βj ∆γm (t ) + qj (t ) ∆γm (t ): the return of stock average, βi , βj : ‘market betas’ for the stocks i , j given by ∆γm (t )∆γj (t ) ∆γm (t )∆γi (t ) βi = √ , βj = √ (∆γm (t ))2 (∆γm (t ))2 Then, let us assume that we take a short position (‘selling’ in future) of the stock j by volume r and a long position (‘buying’ in future) of the stock i . For this action, we have the return of the portfolio as ∆γij (t ) = ∆γi (t ) − r ∆γj (t ) = (βi − r βj )∆γm (t ) + qi (t ) − rqj (t ) = dij (t + 1) − dij (t ) which is market neutral for r = βi /βj 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 12 / 26 From Arbitrage Pricing Theory (APT) In the arbitrage pricing theory (APT) , the condition for searching suitable pairs is the linear combination of ‘non-stationary’ time series γi (t ) and γj (t ), namely, say γi (t ) − r γj (t ) becomes co-integration, namely, it becomes ‘stationary’. Then, the quantity possesses a long-time equilibrium value µ and we can write γi (t ) − r γj (t ) = γi (t + l ) − r γj (t + l ) = µ+ω µ−ω with a small deviation ω(> 0) from the mean µ. Therefore, we easily find γi (t ) − r γj (t ) − {γi (t + l ) − r γj (t + l )} ' dij (t ) − dij (t + l ) = 2ω namely, we obtain the profit with very small risk References: R.F. Engle and C.W. Granger, Co-integration and Error-Correction: Representation, Estimation and Testing, Econometrica 55, No.2, pp. 251-276 (1987). E.G. Gatev, W.N. Goetzmann and K.G. Rouwenhorst, Pairs Trading: Performance of a Relative Value Arbitrage Rule, NBER Working Papers 7032, National Bureau of Economic Research Inc. (1999). G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis, Wiley Finance (2004). 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 13 / 26 A constraint for the thresholds We define Ω−θ ≡ α, namely, θ−ε Ω − θ = α(θ − ε) |{z} ‘typical’ loss 0 For positive constants δ, δ , the gap of the spreads (profit) is written as (ij ) (ij ) 0 0 dij (t< ) − dij (t> ) = θ + δ − (ε − δ ) = θ − ε + (δ + δ ) ≥ θ−ε |{z} minimum of profit We set α = 1 as ‘neutral strategy’ , which gives Ω = 2θ + ε Under the constraint, we sweep the thresholds θ, ε as 0.01 ≤ θ ≤ 0.09, 0.0 ≤ ε ≤ θ (d θ = 0.01) and 0.1 ≤ θ ≤ 1.0, 0.0 ≤ ε ≤ θ (d θ = 0.1) in our numerical calculations 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 14 / 26 Correlation coefficient and volatility Correlation coefficent: ∑t ρij (t ) = √ − ∆γi (t ))(∆γj (t ) − ∆γj (t )) ∑t ∑t 2 2 ∆t =t −τ+1 (∆γi (t ) − ∆γi (t )) ∆t =t −τ+1 (∆γj (t ) − ∆γj (t )) ∆t =t −τ+1 (∆γi (t ) Volatility: v u t σi (t ) = t ∑ (γi (l ) − γi (t ))2 l =t −τ+1 under the definition: A= 室田 光晶, 井上 純一 (北海道大学) 1 τ t ∑ A (l ) l =1−τ+1 ペア・トレードの大規模実証実験 2014 年 6 月 6 日 15 / 26 Observables The number of ‘active’ pairs: N (θ, ε) = ∑∑ (ij ) (ij ) (ij ) Θ(ρij (t< ) − ρ0 ){Θ(σi (t< ) − σmin ) − Θ(σi (t< ) − σmax )} j <i i The wining probability: ∑ ∑ pw (θ, ε) = = i j <i (ij ) (ij ) (ij ) (ij ) Θ(dij (t< ) − dij (ˆt (ij ) ))Θ(ρij (t< ) − ρ0 ){Θ(σi (t< ) − σmin ) − Θ(σi (t< ) − σmax )} ∑ ∑ (ij ) (ij ) (ij ) i j <i Θ(ρij (t< ) − ρ0 ){Θ(σi (t< ) − σmin ) − Θ(σi (t< ) − σmax )} (ij ) Θ(dij (t< ) − dij (ˆt (ij ) )) = Nw (θ, ε) Nl (θ, ε) =1− N (θ, ε) N (θ, ε) where we defined ∑ ∑ · · · ≡ (ij ) j <i (· · · )Θ(ρij (t< ) i ∑∑ i j <i (ij ) (ij ) − ρ0 ){Θ(σi (t< ) − σmin ) − Θ(σi (t< ) − σmax )} (ij ) (ij ) (ij ) Θ(ρij (t< ) − ρ0 ){Θ(σi (t< ) − σmin ) − Θ(σi (t< ) − σmax )} Hence, the profit rate is given by (ij ) η(θ, ε) = dij (t< ) − dij (ˆt (ij ) ) 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 16 / 26 Algorithm of ‘game’ An algorithm of pairs trading to repeat 1 2 We collect a pair of stocks (i , j ) from daily data for the past one year. Do the following procedures from t = 0 to t = τ: the number of daily data for one year. (1) Calculate ρij (t ) and σi (t ), σj (t ) to determine whether the pair (i , j ) satisfies the start condition. Start condition: If σmin < σi (t ), σj (t ) < σmax and ρij (t ) > ρ0 , go to (3). If not, go to (2). (2) t ← t + 1 and back to (1). (3) t ← t + 1 and go to the termination condition. Termination condition: (ij ) . (ij ) If dij (t> ) < ε, or dij (t∗ ) > Ω, go to the next pairs (k , l ) , (i , j ). If not, go back to (3). We choose τ = 250 [days], ρ0 = 0.6, σmin = 0.05, σmax = 0.2 The algorithm is applied to about 1, 784 stocks listed on the first section of the Tokyo Stock Exchange leading up to totally 1,784 C2 = 1, 590, 436 pairs 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 17 / 26 Preliminary: Correlation coefficient and volatility Distributions of {ρij (t )} (left) and {σi (t )} (right) for the past four years (2009-2012) 0.018 0.08 2009 2010 2011 0.016 2009 2010 2011 0.07 2012 2012 0.014 0.06 0.012 0.05 P(ρ) P(σ) 0.01 0.04 0.008 0.03 0.006 0.02 0.004 0.01 0.002 0 -1 -0.8 -0.6 -0.4 -0.2 室田 光晶, 井上 純一 (北海道大学) 0 ρ 0.2 0.4 0.6 0.8 1 0 0 0.05 0.1 0.15 0.2 0.25 σ ペア・トレードの大規模実証実験 2014 年 6 月 6 日 18 / 26 Preliminary: First-passage times It should be noted that we observe the duration t as a first passage time from the point t< in time axis, hence, the distributions of the duration t are given for P (t ) = P (t> − t< ) (for win), P (t ) = P (t∗ − t< ) (for lose), respectively 2010 P(t*-t<) P(t>-t<) 2010 0 50 100 150 200 250 0 t>-t< 室田 光晶, 井上 純一 (北海道大学) 50 100 150 200 250 t*-t< ペア・トレードの大規模実証実験 2014 年 6 月 6 日 19 / 26 Winning prob. (2012-2010 : from top most to bottom) 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 20 / 26 Profit rate (2012-2010: clock-wise) Assume that the pairs (i , j ) and (k , l ) lose and the pair (m, n) wins for a specific choice of thresholds (θ+ , ε+ ). Then, the wining probability is pw = 1/3, but (mn) η(θ+ , ε+ ) = dmn (t> (mn) ) − dmn (t> (ij ) (ij ) (kl ) (kl ) ) − {dij (t> ) − dij (t∗ )} − {dkl (t> ) − dkl (t∗ )} > 0 could hold 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 21 / 26 Profit rate for winner pairs versus volatilities 200 ε=0.1θ 180 160 140 η 120 100 80 60 40 20 0 0.05 0.055 0.06 0.065 σ 0.07 0.075 0.08 The lower bound for the profit rate η should be estimated for 0.1 ≤ θ ≤ 0.3 as η ≥ ηmin = 0.9 θ = 0.9 × 0.1 = 0.09. 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 22 / 26 Examples of winner pairs Here we list only three pairs as examples, each of which includes SANYO SPECIAL STEEL Co. Ltd. (ID: 5481) and the corresponding partners are HITACHI METALS. Ltd. (ID: 5486), MITSUI MINING & SMELTING Co. Ltd. (ID: 5706) and PACIFIC METALS Co. Ltd. (ID: 5541). Namely, the following three pairs (5481,5486), (5481,5706),(5481,5541) actually won in our empirical analysis of the game. These are all the same type of industry (the steel industry) 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 23 / 26 Summary We proposed a very simple and effective algorithm to make the pairs trading and applied our algorithm to daily data of stocks in the first section of the Tokyo Stock Exchange Numerical evaluations of the algorithm were carried out for all possible pairs by changing the starting (θ), profit-taking (ε) and stop-loss (Ω) conditions to look for the best possible combination of the conditions (θ, ε, Ω) We found that for most of the combinations (θ, ε) under the constraint Ω = 2θ + ε, one can obtain the positive profit rate η > 0, which means that our algorithm actually achieves almost risk-free asset management at least for the past three years (2010-2012) and it might be a justification of the usefulness of pairs trading Finally, we showed several examples of active pairs to win the game We should conclude that the fact η > 0 in most cases of thresholds (θ, ε) implies that automatic pairs trading system could be constructed by applying our algorithm for all possible (θ, ε) in parallel way 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 24 / 26 Damage spreading? H=− ∑ (k ) Jij Si (k ) Sj (k ) , Si = ±1, k = A , B , {Jij }: interactions ij ‘Damage’ (S.A. Kauffman 1969) : ∆(t ) = 1 ∑ (A ) (B ) Si (t ) − Si (t ) 2N i Start from ∆(0) and observe if the damage spreads (as ‘chaos’) or it is frozen 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 25 / 26 Thank you for your attention 室田 光晶, 井上 純一 (北海道大学) ペア・トレードの大規模実証実験 2014 年 6 月 6 日 26 / 26
© Copyright 2025 ExpyDoc