Diode Bolometer䈱․ᕈ 䋺Characteristic of Diode Bolometer 䋱䇭ℂᗐDiode(Ideal Diode) 䋱䇭ℂᗐDiode䋨Ideal Diode) 䇭 䊶䌉䋭䌖․ᕈ䈫 䇭䇭䊶ᓸಽଥᢙ 䇭䇭䊶ㄭૃᑼ 䇭䇭䊶േὐ 䇭䇭䊶ᶖ⾌㔚ജ 䇭䇭䊶䌎⋥․ᕈ 䇭䇭䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䋲䇭ታDiode(Real or Actual Diode) 䋳䇭Bolometer䈱ᕈ⢻Ყセ 䋴䇭Heat Model of Uncooled FPA IR Detector 䇭䇭(FPA IR䋺Focal Plane Array Infra Red) 䋨ᩣ䋩ർᎹ⛔วᛛⴚ⎇ⓥᚲ [KUTELA Corporation] Copyright (c) KUTELA Corporation 2009. All Rights Reserved 䋱䇭ℂᗐDiode䋨Ideal Diode) 䇭 䊶䌉䋭䌖․ᕈ䈫 䇭䇭䊶ᓸಽଥᢙ 䇭䇭䊶ㄭૃᑼ 䇭䇭䊶േὐ 䇭䇭䊶ᶖ⾌㔚ജ 䇭䇭䊶䌎⋥․ᕈ 䇭䇭䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 2000A1890 1 2 i 䌉䋭䌖․ᕈ䈫 䋱䇭ℂᗐDiode(Ideal Diode) 䌉䋭䌖․ᕈ䈫 䌔䋫㰱䌔䋾䋰 i 䌔 䌖 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䌖 䌔 䌔䋫㰱䌔䋾䋰 ExactExpession 㘻㔚ᵹ䋨Saturation Current䋩 i[ A] = i0 S [ A m2 ]S[ m 2 ]exp(− iS ≡ i0 [ A]exp( − qVG qV qV ) exp( ) − 1 = iS [ A] exp( ) − 1 where V ≤ VG kT kT kT qVG ) where i0 = i0 S S kT kT i ln( + 1) V= q iS i0䈲ធว㕙Ⓧ䋨䌓䋩䈮Ყ i0S䋽䋱䋰䌞䋶䌾䋱䋰䌞䋱䋰[A/m^2] Si,Ge╬䈱᧚ᢱ䇮CarrierỚᐲ䇮ਇ⚐‛䇮 ㅧᛛⴚ╬䈪䉁䉎䇯 q = 1.6 ×10−19 [C ], k = 1.38 ×10−23[ J ], K VG ( Si) = 1.12[V ], VG (Ge) = 0.66[V ],VG (GaAs) = 1.42[V ] at 300 K 3 䌉䋭䌖․ᕈ䈫 電圧正大領域:V kT qV ⇔ 1 q kT 28mV at 330K kT ≈ 26mV at 300K q q 1 1 1.12 0.66 [ ] where 300 K , exp(− ) ≈ 2 ×10−19 , exp(− ) ≈ 9.5 ×10−12 = 0.026 0.026 kT 0.026 V 䌉䋭䌖․ᕈ䈫 4 電圧ゼロ領域:V ≈ 0 ⇔ V ≤ 2.6mV 㸠10^-9 23mV at 270K I 0 S = 107 [ A / m2 ] η = 2 : Ideality Factor I 0 S = 107 [ A / m 2 ] S = 10−6 [m 2 ] VG = 1.12[V ] : Si VG = 1.12[V ]: Si Green䋺300K I 0 = 10[ A] Blue䋺270K I S ≈ 4 ×10−9 [ A] at 300 K I 0 = 10[ A] Red䋺330K S = 10−6 [m2 ] Red䋺330K 㔚ᵹ䋨䌁䋩 㔚ᵹ䋨䌁䋩 η = 2 : Ideality Factor Green䋺300K Blue䋺270K I S ≈ 4 × 10 −9 [ A] at 300 K Diode䈱᷷ᐲ䈏㜞䈇䈾䈬 ᷷ᐲ䈮ᢅᗵ 㔚䋨䌖䋩 5 㔚䋨䌖䋩 6 1 䌉䋭䌖․ᕈ䈫 電圧負大領域:V − kT qV ⇔ −1 q kT − kT -23mV at 270K ≈ q -26mV at 300K -28mV at 330K 㸠10^-8 Blue䋺270K Green䋺300K I 0 S = 107 [ A / m 2 ] η = 2 : Ideality Factor S = 10−6 [ m 2 ] VG = 1.12[V ]: Si 㔚ᵹ䋨䌁䋩 䋱䇭ℂᗐDiode(Ideal Diode) Red䋺330K ᓸಽଥᢙ Diode䈱᷷ᐲ䈏㜞䈇䈾䈬 ᷷ᐲ䈮ᢅᗵ I 0 = 10[ A] I S ≈ 4 ×10−9 [ A] at 300 K 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 7 㔚䋨䌖䋩 8 ᓸಽଥᢙ ExactSolution 1 V = 0 ⇒ i = 0 qV qV iS q qV ∂i i q ≥ 0 where V ≥ 0 2 = S VG (exp( ) − 1) − V exp( ) = (VG − V ) exp( ) − VG kT kT T kT kT ∂T T kT ≤ 0 where V ≤ 0 q qV q qV ∂i exp( ) = (i + iS ) ≥ 0 where iS ≡ i0 exp(− G ) = iS kT kT kT kT ∂V ∂i 1 qV diS iS qVG ∂V T ∂ ) , = −(VG − V ) + VG exp(− = − = ∂i T kT dT T kT ∂T ∂V 1 kT ∂V ∂i −1 kT qV kT q(VG − V ) kT 1 qV 3 R ≡ exp(− )= exp( )= ) =( ) = = 1 − exp(− ∂i ∂V iS q kT i0 q kT q (i + iS ) i q kT 1 dR 1 q(VG − V ) dR k q(VG − V ) q(VG − V ) ) =− ( − 1) exp( ⇒ = 1 − kT dT V = const i0 q kT kT R dT V = const T 䋱䇭ℂᗐDiode(Ideal Diode) ㄭૃᑼ qV dR 1k qV qV 1 dR 1 kT ) exp(− ) = ⇒ = 1− 1 − (1 + dT i = const i q kT kT R dT i = const T exp( qV ) − 1 kT 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ q = 1.6 ×10 −19 [C ], k = 1.38 ×10−23 [ J ], K 300 K VG ( Si) = 1.12[V ], VG (Ge) = 0.66[V ], VG (GaAs ) = 1.42[V ] at 1 1 q = [ ] where 300 K kT 0.026 V ㄭૃᑼ䋱 i = i0 exp(− 電圧正大領域:V kT qV ⇔ 1 ⇔ V 26mV (300K ) ⇔ V ≥ 0.26V (300K ) q kT qVG qV qV qV ) exp( ) − 1 ≈ iS exp( ) where V ≤ VG , iS ≡ i0 exp(− G ) kT kT kT kT ∂i iS q qV = (VG − V ) exp( ) − VG ∂T T kT kT i q qV T ∂i q(VG − V ) i ≈ S ≈ = − ln( ) ≥ 0 (VG − V ) exp( ) ⇒ T kT kT i ∂T kT i0 ∂i q qV kT qV = iS exp( ) , R = exp(− ) ∂V kT kT iS q kT qV k i T ∂V V −V 1 ∂V 1 ) − 1) ≈ − (VG − V ) ≈ ln( ) ⇒ = V + VG (exp(− ≈− G kT T q i0 V ∂T V ∂T T T dR 1 dR 1 q(VG − V ) q(VG − V ) = 1 − ⇒ ≈ 1 − ≤0 R dT V =const T kT R dT V = const kT qV Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩 1 T dR 1 dR 1 kT = 1 − ⇒ ≈1≥ 0 ≈ R dT i =const T exp( qV ) − 1 T R dT i = const kT Bias㔚ജ⽶Ꮻㆶലᨐ䋨᷷ᐲ㸢㜞ᛶ᛫䋩 V 10 9 kT qV qV qV ⇔ 1 , i ≈ iS exp( ) where V ≤ VG , iS ≡ i0 exp(− G ) q kT kT kT ∂i iS q qV T ∂i q (VG − V ) ∂i q qV ∂V T ∂V V −V 1 ≈ ≈ ≥ 0 ≈− G , = iS exp( ) , ≈ − (VG − V ) ⇒ (VG − V ) exp( ) ⇒ ∂T T kT ∂V ∂T kT i ∂T kT kT kT T V ∂T V11 ㄭૃᑼ䋲 電圧零近傍:V ≤ 0.1× kT ⇔ V ≤ 2.6mV (300K ) q (exp( x ) ≈ 1 + x where x 1) qVG qV qV qV qV ) exp( ) − 1 ≈ iS 1 + ( ) − 1 = iS where iS ≡ i0 exp( − G ) kT kT kT kT kT ∂i iS q qV qV iS q ) − VG = (VG − V ) exp( ) − VG ≈ (VG − V )(1 + kT kT ∂T T kT T kT i q qV iS qV qVG iS qV qVG T ∂i qVG VG ≈ − 1 ≈ ≈ ≈ S ⇒ −V + T kT kT i ∂T kT T kT kT T kT kT q qV q qV q ∂i exp( ) ≈ iS (1 + ) ≈ iS = iS kT kT kT kT kT ∂V qV V qV V qV T ∂V qV ∂V 1 ) − 1) ≈ − ( G − 1) ≈ − ( G ) ⇒ = V + VG (exp(− ≈ −( G ) ≤ 0 kT T kT T kT V ∂T kT ∂T T i = i0 exp(− T dR qV 1 dR 1 q(VG − V ) 1 qVG ⇒ ≈− G ≤0 = 1 − ≈− R dT V = const kT R dT V = const T kT T kT qV Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩 T dR 1 dR 1 kT = 1 − ⇒ ≈0 ≈ 0 R dT i =const T exp( qV ) − 1 R dT i =const kT qV qV where iS ≡ i0 exp(− G ) kT kT ∂i iS qV qVG T ∂i qVG ∂i q ∂V V qV T ∂V qV , ≈ iS , ≈ − ( G ) ⇒ ≈ ≈ ≈ −( G ) ≤ 0 ⇒ 12 ∂T T kT kT i ∂T kT ∂V kT ∂T T kT V ∂T kT , i ≈ iS V ≈ 0 2 ㄭૃᑼ䋳 電圧負大領域:V − kT qV ⇔ −1 ⇔ V −26 mV (300 K ) ⇔ V ≤ −0.26V (300 K ) q kT qVG qV qV ) exp( ) − 1 ≈ −iS where iS ≡ i0 exp(− G ) kT kT kT ∂i iS q qV iS qVG iS q = ≤0 ( −VG ) = − (VG − V ) exp( ) − VG ≈ ∂T T kT kT T kT T kT T ∂i qVG ⇒ ≈ ≥0 i ∂T kT ∂i q qV = iS exp( ) ≈ 0 (I−V特性で水平) ∂V kT kT ∂V 1 qV qV T ∂V VG qV 1 = V + VG (exp(− ) ⇒ exp(− ) ≈ ) − 1) ≈ VG exp(− ∂T T kT kT V ∂T V kT T 䋱䇭ℂᗐDiode(Ideal Diode) i = i0 exp(− േὐ 㕖Ᏹ䈮ᄢ䋺ਇቯ 1 dR 1 q(VG − V ) 1 q(VG − V ) T dR q(VG − V ) 1− = ⇒ ≈ − ≈ −T ≤0 R dT V =const T kT kT R dT V =const kT qV Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩 1 qV T dR qV 1 dR 1 kT ≥0 = 1 − ⇒ ≈ ≈ R dT i = const T exp( qV ) − 1 T kT R dT i = const kT ਇቯ kT 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ kT qV qV , i ≈ −iS where iS ≡ i0 exp( − G ) ⇔ −1 q kT kT ∂i iS qVG T ∂i qVG ∂i q qV T ∂V VG qV , = iS exp( ) ≈ 0 , exp( − ) ≈− ≤ 0 ⇒ ≈ ≥ 0 ≈ ∂T T kT i ∂T kT ∂V kT kT V ∂T V kT 13 V − േὐ䋨V㻍0䋩 േὐ䋨৻⥸䋩 + 䌖1 i + V1/r i r 14 䌖1 䌔 䌖x V1 iX = iS ix 䌖 qVX kT dVX V =− X dT T 䌖 䌔 ⽶⩄⋥✢ 䌖x qV i X = iS exp( X ) − 1 kT V1 = riX + V X ⇒ iX = r䋺ᄢ V1 VX − r r VX qVG q (riS ) T kT kT qVG −1 diX iX kT = dT T q(riS ) + 1 kT i qVG ≈ X T kT qV q (ri ) Since G 1 S 1 kT kT 䌖x Diodeᦛ✢ ⽶⩄⋥✢ V1 = ri X + V X ⽶⩄⋥✢䈫䉻䉟䉥䊷䊄ᦛ✢䈱ὐ䈏േὐ䇭㸢䇭৻⥸⊛䈮䈲⸃ᨆ⸃䈲᳞䉁䉌䈭䈇 15 qVG −1 kT kT +1 q(riS ) ≈− ix r䋺ዊ 㔚ᵹ䋨䌁䋩 Diodeᦛ✢ V1 q(riS ) +1 kT 1 V iX = 1 r kT + 1 q (riS ) VX = ix r 16 㔚䋨䌖䋩 ᶖ⾌㔚ജ䋨ၮᧄᑼ䋩 ᶖ⾌㔚ജP(W)䈲㔚ᵹ䈮㔚䉕䈎䈔䉏䈳⦟䈇 䋱䇭ℂᗐDiode(Ideal Diode) ᶖ⾌㔚ജ ExactExpession 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ P[W ] = V [V ]i[ A] = V × i0 S [ A m 2 ]S[ m 2 ]exp(− qV = V × iS [ A] exp( ) − 1 where V ≤ VG kT qV iS ≡ i0 [ A]exp(− G ) where i0 = i0 S S kT i0S䋽䋱䋰䌞䋶䌾䋱䋰䌞䋱䋰[A/m^2] kT i Si,Ge╬䈱᧚ᢱ䇮CarrierỚᐲ䇮ਇ⚐‛䇮 ln( + 1) V = ㅧᛛⴚ╬䈪䉁䉎䇯 q iS ExactExpession P = Vi0 S S exp( − 17 qVG qV ) exp( ) − 1 kT kT RealDiode qVG qV ) exp( ) − 1 kT kT q(VG − V − VP ) ) P = Vi0 S S exp(− η kT 18 3 ᶖ⾌㔚ജ䋨䉫䊤䊐䋩䋺㗅Bias i ᶖ⾌㔚ജ䋨䉫䊤䊐䋩䋺ㅒBias 䌔䋫㰱䌔䋾䋰 i ቯ㔚㚟േDiode䈪ᾲᐔⴧ䈱ᤨ䋺 䇭䇭ᄖ⊛䈭ᾲ䉣䊈䊦䉩䉕ട䈋䉎䈫䇮Diode᷷ᐲ䈏䈚䇮 䌔 䈖䈱㕙Ⓧ䈏᷷ᐲ䌔䋫㰱䌔 䈪䈱ᶖ⾌㔚ജ ቯ㔚㚟േDiode䈪ᾲᐔⴧ䈱ᤨ䋺 䇭䇭ᄖ⊛䈭ᾲ䉣䊈䊦䉩䉕ട䈋䉎䈫䇮Diode᷷ᐲ䈏䈚䇮 䈖䈱㕙Ⓧ䈏᷷ᐲT 䈪䈱ᶖ⾌㔚ജ 䇭䇭 Diode䈪䈱ᶖ⾌㔚ജ䈏Ⴧട䈚䇮䈘䉌䈮᷷ᐲ䈏䈜䉎䇯 䌔䋫㰱䌔䋾䋰 䌔 䇭䇭 Diode䈪䈱ᶖ⾌㔚ജ䈏Ⴧട䈚䇮䈘䉌䈮᷷ᐲ䈏䈜䉎䇯 ቯ㔚Bias Bias㔚ജᱜᏫㆶലᨐ Bias㔚ജᱜᏫㆶലᨐ 䈖䈱㕙Ⓧ䈏᷷ᐲT䈪䈱ᶖ⾌㔚ജ 䌖 䌔 i 䌔䋫㰱䌔䋾䋰 䌔䋫㰱䌔䋾䋰 䌔 䈖䈱㕙Ⓧ䈏᷷ᐲ䌔䋫㰱䌔 䈪䈱ᶖ⾌㔚ജ 䌖 䌔 ቯ㔚Bias 䌔䋫㰱䌔䋾䋰 ቯ㔚ᵹ㚟േDiode䈪ᾲᐔⴧ䈱ᤨ䋺 䇭䇭ᄖ⊛䈭ᾲ䉣䊈䊦䉩䉕ട䈋䉎䈫䇮Diode᷷ᐲ䈏䈜䉎䈏䇮 䈖䈱㕙Ⓧ䈏᷷ᐲ䌔䋫㰱䌔 䈪䈱ᶖ⾌㔚ജ 䌔䋫㰱䌔䋾䋰 䌔 䇭䇭Diode䈪䈱ᶖ⾌㔚ജ䈏ᷫዋ䈚䇮᷷ᐲ䈲ដ䈾䈬䈚䈭䈇䇯 ቯ㔚ᵹBias i ቯ㔚ᵹ㚟േDiode䈪ᾲᐔⴧ䈱ᤨ䋺㕖Ᏹ䈮ਇቯ Bias㔚ജ⽶Ꮻㆶലᨐ 䈖䈱㕙Ⓧ䈏᷷ᐲT䈪䈱ᶖ⾌㔚ജ 䌖 䌔 䌖 䌔 䌔䋫㰱䌔䋾䋰 ቯ㔚ᵹBias 䌔䋫㰱䌔䋾䋰 䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䋨Diode᷷ᐲ䉶䊮䉰䋩 Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩䋺ቯ㔚Bias䈱ᤨ䇮Bais㔚ജ䈏Ⴧട䈚᷷ᐲᄌൻ䈮ᢅᗵ䈮䈭䉎䇯 19 Bias㔚ജ⽶Ꮻㆶലᨐ䋨᷷ᐲ㸢㜞ᛶ᛫䋩䋺ቯ㔚ᵹBias䈱ᤨ䇮Bais㔚ജ䈏ᷫዋ䈚᷷ᐲᄌൻ䈮㊰ᗵ䈮䈭䉎䇯 䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䋨Diode᷷ᐲ䉶䊮䉰䋩 Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩䋺ቯ㔚Bias䈱ᤨ䇮Bias㔚ജ䈏Ⴧട䈚᷷ᐲᄌൻ䈮ᢅᗵ䈮䈭䉎䇯 20 Bias㔚ജ⽶Ꮻㆶലᨐ䋨᷷ᐲ㸢㜞ᛶ᛫䋩䋺ቯ㔚ᵹBias䈱ᤨ䇮Bias㔚ജ䈏ᷫዋ䈚᷷ᐲᄌൻ䈮㊰ᗵ䈮䈭䉎䇯 ᶖ⾌㔚ജ䋨ᓸಽଥᢙㄭૃᑼ䋩䋺㔚৻ቯ 䇭䇭䇭䇭䇭ో䈩ᱜ୯㸢Bias㔚ജᱜᏫㆶലᨐ ᶖ⾌㔚ജ䋨ᓸಽଥᢙ䋩 dP ∂V ∂i i qV i q qV = i +V = V + VG (exp(− ) − 1) + V S (VG − V ) exp( ) − VG dT ∂T ∂T T kT T kT kT qV qV qV qV i0 S = 106 ∼ 108 [ A m 2 ] i = i0 S S exp(− G ) exp( ) − 1 = iS exp( ) − 1 where; iS ≡ i0 S S exp(− G ), kT kT kT kT dP ∂V qV i q qV ∂i i i +V = = V + VG (exp(− ) − 1) + V S (VG − V ) exp( ) − VG dT ∂T kT T kT kT ∂T T qV qV qV qV i0 S = 106 ∼ 108 [ A m 2 ] i = i0 S S exp(− G ) exp( ) − 1 = iS exp( ) − 1 where; iS ≡ i0 S S exp(− G ), kT kT kT kT 電圧正大領域:V ExactExpession 1 dP V iS q qV qV qVG Vi0 S q = ) (VG − V ) exp( ) − VG = (VG − V ) exp( ) − VG exp( − S dT V = CONST S T kT kT kT kT T kT Vi0 S q q(VG − V ) qVG = (VG − V ) exp(− ) − VG exp(− ) T kT kT kT = ᶖ⾌㔚ജ䋨ᓸಽଥᢙㄭૃᑼ䋩䋺㔚ᵹ৻ቯ 䇭䇭䇭䇭ో䈩⽶୯㸢Bias㔚ജ⽶Ꮻㆶലᨐ P S = Vi0S exp(− = kT qV ⇔ 1 ⇔ V 26mV (300K ) ⇔ V ≥ 0.26V (300 K ) q kT 1 dP S dT = I =CONST I = CONST 1 dP S dT =− I =CONST 1 (VG − V ) P T V S i ∂V V qV qV qV ∂V V qV ≈ − ( G )i0 S exp(− G ) ≈− ( G) ≤ 0, where, S ∂T T kT kT kT ∂T T kT 電圧負大領域:V − 1 dP S dT kT ⇔ V ≤ 2.6mV (300K ) q kT qV ⇔ −1 ⇔ V −26mV (300 K ) ⇔ V ≤ −0.26V (300 K ) q kT kT qV ⇔ −1 ⇔ V −26mV (300 K ) ⇔ V ≤ −0.26V (300 K ) q kT 1 dP V ∂i Vi qV qV ∂i i qV = ≈ − 0 S G exp(− G ) ≥ 0(∵V ≤ 0), where ≈− S G ≤0 S dT V =CONST S ∂T T kT kT ∂T T kT 䌎⋥․ᕈ i (V − V ) 1 i ∂V q(VG − V ) ∂V exp(− ) ≤ 0, where ≈ − 0S G ≈ − (VG − V ) S ∂T T kT T ∂T 電圧零近傍:V ≤ 0.1× V ∂i V i0 S q V q V G ∂i i qV q VG ≈ ≥ 0, w h ere ≈ S S ∂T T kT kT T k T k T ∂T 22 䋱䇭ℂᗐDiode(Ideal Diode) dP ∂V qV i q qV ∂i i i +V = = V + VG (exp(− ) − 1) + V S (VG − V ) exp( ) − VG dT ∂T kT T kT kT ∂T T qVG qV qV qVG i0 S = 106 ∼ 108 [ A m 2 ] i = i0 S S exp(− ) exp( ) − 1 = iS exp( ) − 1 where; iS ≡ i0 S S exp(− ), kT kT kT kT I =CONST = V =CONST 1 dP 1 q(VG − V ) P ≈ S dT V =CONST T kT S kT ⇔ V ≤ 2.6mV (300K ) q qVG qV ) exp( ) − 1 kT kT ExactExpession 電圧正大領域:V 電圧零近傍:V ≤ 0.1× 電圧負大領域:V − 21 kT qV ⇔ 1 ⇔ V 26mV (300K ) ⇔ V ≥ 0.26V (300 K ) q kT 1 dP V ∂i Vi0 S q(VG − V ) q(VG − V ) ∂i i0 S S q q(VG − V ) = ≈ ≈ exp(− ) ≥ 0, where ) (VG − V ) exp(− ∂T S dT V =CONST S ∂T T kT kT T kT kT 1 dP S dT 1 i qV ) −(VG − V ) + VG exp( − ST kT I =CONST qV q(VG − V ) qV i0 S ) exp(− ) − exp(− G ) = −(VG − V ) + VG exp(− T kT kT kT 1 dP S dT qVG qV ) exp( ) − 1 kT kT ExactExpession ExactExpession 1 dP S dT P S = Vi0S exp(− 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 㕖Ᏹ䈮ਇቯ i ∂V i V q(VG + V ) ∂V 1 qV = ≈ − 0 S G exp( − ) ≤ 0, where ≈ VG exp( − ) S ∂T T kT ∂T T kT 23 24 4 䌎⋥․ᕈ䋨䌉䋭䌖․ᕈ䋩 i 䋱 i 䌖S 䌎⋥․ᕈ䋨ᓸಽଥᢙ䋩 䋲 V䋺৻䈱䉻䉟䉥䊷䊄䈮䈎䈎䉎㔚 VS䋺ో㔚 VS を代入 n 䋱 ExactExpession m 2 1 VS = 0 ⇒ i = 0 䌖S 䋲 i[ A] = i0 S [ A 㘻㔚ᵹ䋨Saturation Current䋩 ]S[m 2 ]exp(− qVG q VS q VS ) exp( ) − 1 = iS [ A] exp( ) − 1 where VS ≤ nVG kT kT n kT n qV iS ≡ i0 [ A]exp( − G ) where i0 = i0 S S (i0 , iSは1個のdiodeの値) kT i0S䋽䋱䋰䌞䋶䌾䋱䋰䌞䋱䋰[A/m^2] VS kT i Si,Ge╬䈱᧚ᢱ䇮CarrierỚᐲ䇮ਇ⚐‛䇮 i0䈲ធว㕙Ⓧ䋨䌓䋩䈮Ყ ln( + 1) = ㅧᛛⴚ╬䈪䉁䉎䇯 n q iS q = 1.6 ×10 −19 [C ], k = 1.38 ×10−23[ J ], K VG ( Si ) = 1.12[V ],VG (Ge) = 0.66[V ],VG (GaAs ) = 1.42[V ] at 300 K 1個のDiodeの式のV の所に nkT q VS q VS qV ⇔ , i ≈ iS exp( ) where VS ≤ VG , iS ≡ i0 exp(− G ) 1 q kT n kT n kT V q(VG − S ) ∂i iS q ∂i VS q VS T ∂i q q VS n ≥ 0 ≈ V − ⇒ ≈ = i ( ) exp( ) , exp( ) S G ∂T T kT n kT n i ∂T kT ∂VS nkT kT n ∂VS n V T ∂VS ≈ − VG − S ⇒ ≈− ∂T T n VS ∂T VG − VS n 26 䋱䇭ℂᗐDiode(Ideal Diode) VS n 䌎ਗ․ᕈ q VS qV where iS ≡ i0 exp( − G ) kT n kT ∂i iS q VS qVG T ∂i qVG ∂i q ≈ ⇒ ≈ , ≈ iS ∂T T kT n kT i ∂T kT ∂VS nkT ∂ VS VS qVG T ∂VS qVG ≈− ( ≈ −( )⇒ )≤0 ∂T T kT VS ∂T kT VS ≈ 0 , i ≈ iS 㔚㔖ㄭற q = 1.6 ×10−19 [C ], k = 1.38 ×10−23 [ J ], K VG ( Si ) = 1.12[V ], VG (Ge) = 0.66[V ],VG (GaAs) = 1.42[V ] at 300 K VS を代入 n VS V ≤ 2.6mV (300K ) ∂i ∂V n V q VS ) − 1) S = − ∂T = S + VG (exp(− ∂i T n kT n ∂T ∂VS 25 䌎⋥․ᕈ䋨ᓸಽଥᢙㄭૃᑼ䋩 V ≥ 0.26V (300 K ) ∂i i q q VS V q VS iS q VS q VS ≥ 0 where VS ≥ 0 2 = S ) − 1) − ( S ) exp( ) = ) − VG VG (exp( (VG − ) exp( ∂T T kT kT n n kT n T kT n kT n ≤ 0 where VS ≤ 0 ∂i q q VS q qVG = iS ) exp( )= (i + iS ) ≥ 0 where iS ≡ i0 exp(− ∂VS nkT kT n nkT kT q 1 1 = [ ] where 300 K kT 0.026 V q 1 1 = [ ] where 300 K kT 0.026 V 㔚ᱜᄢ㗔ၞ VS を代入 n ExactSolution(VS = nV ) 䌖 1個のDiodeの式のV の所に 1個のDiodeの式のV の所に 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ nkT q VS qV ⇔ −1 , i ≈ −iS where iS ≡ i0 exp(− G ) q kT n kT ∂i iS qVG T ∂i qVG ∂i q q VS ≈− ≤ 0 ⇒ ≈ ≥ 0 , = iS exp( ) ≈ 0 T kT i ∂T kT nkT kT n ∂T ∂VS VS − 㔚⽶ᄢ㗔ၞ V ≤ −0.26V (300K ) T ∂VS nVG q VS ≈ exp(− ) VS ∂T VS kT n 27 䌎ਗ․ᕈ䋨䌉䋭䌖․ᕈ䋩 iP 䋲 䋱 28 䌎ਗ․ᕈ䋨ᓸಽଥᢙ䋩 iP 1 個 の Diodeの 式の iの所 に i 䌖 iP を代 入 n ExactSolution i䋺৻䈱䉻䉟䉥䊷䊄䈮ᵹ䉏䉎㔚ᵹ iP䋺ో㔚ᵹ 1 個 の Diodeの 式の iの所 に 1 V = 0 ⇒ iP = 0 䋲 ExactExpession 㘻㔚ᵹ䋨Saturation Current䋩 iP [ A] = ni0 S [ A m 2 ]S[ m2 ]exp( − iS ≡ i0 [ A]exp( − V= qVG qV qV ) exp( ) − 1 = niS [ A] exp( ) − 1 where V ≤ VG kT kT kT qVG ) where i0 = i0 S S (i0 , iS ,Sは1個のdiodeの値) kT kT i ln( P + 1) q niS −19 䌖 䋱 iP を代 入 n i0䈲ធว㕙Ⓧ䋨䌓䋩䈮Ყ i0S䋽䋱䋰䌞䋶䌾䋱䋰䌞䋱䋰[A/m^2] Si,Ge╬䈱᧚ᢱ䇮CarrierỚᐲ䇮ਇ⚐‛䇮 ㅧᛛⴚ╬䈪䉁䉎䇯 −23 q = 1.6 ×10 [C ], k = 1.38 × 10 [ J ], K VG ( Si) = 1.12[V ],VG (Ge) = 0.66[V ],VG (GaAs) = 1.42[V ] at 300 K q 1 1 = [ ] where Si and 300 K kT 0.026 V ∂i i q qV qV iS q qV ≥ 0 where V ≥ 0 2 P = n S VG (exp( ) − 1) − V exp( ) = n (VG − V )exp( ) − VG ≤ 0 where V ≤ 0 T kT kT kT T kT kT ∂T q qV q iP qV ∂i exp( ) = n ( + iS ) ≥ 0 where iS ≡ i0 exp(− G ) P = niS kT kT kT n kT ∂V ∂iP 1 qV ∂V ) − 1) = − ∂T = V + VG (exp(− ∂iP T kT ∂T ∂V q = 1.6 × 10−19 [C ], k = 1.38 ×10−23[ J ], K 300 K VG (Si ) = 1.12[V ], VG (Ge) = 0.66[V ],VG (GaAs ) = 1.42[V ] at 1 1 q = [ ] where Si and 300 K kT 0.026 V 29 30 5 䌎ਗ․ᕈ䋨ᓸಽଥᢙㄭૃᑼ䋩 V 㔚ᱜᄢ㗔ၞ V ≥ 0.26V (300 K ) 1 個 の Diodeの 式の iの所 に iP を代 入 n 䋱䇭ℂᗐDiode(Ideal Diode) qV kT qV qV ⇔ 1 , iP ≈ niS exp( ) where V ≤ VG , iS ≡ i0 exp( − G ) q kT kT kT ∂iP i q qV T ∂iP q(VG − V ) ∂i q qV ≈n S ≈ ≥ 0 , P = niS exp( ) (VG − V ) exp( ) ⇒ ∂T ∂V T kT kT iP ∂T kT kT kT ∂V T ∂V V −V 1 ≈ − (VG − V ) ⇒ ≈− G ∂T T V ∂T V 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䇭䇭䇭䇭䇭䇭䋨Diode䉕᷷ᐲ䉶䊮䉰䈫䈚䈩↪䈇䉎ᤨ䋩 qV qV where iS ≡ i0 exp( − G ) kT kT ∂i qV qVG T ∂iP qVG q ≈ , P ≈ niS ⇒ ∂V kT kT iP ∂T kT kT qV T ∂V qV ≈ −( G ) ≤ 0 ( G)⇒ kT V ∂T kT V ≈ 0 , iP ≈ niS 㔚㔖ㄭற V ≤ 2.6mV (300K ) ∂iP i ≈n S ∂T T ∂V V ≈− ∂T T 䊶䌉䋭䌖․ᕈ䈫 䊶ᓸಽଥᢙ 䊶ㄭૃᑼ 䊶േὐ 䊶ᶖ⾌㔚ജ 䊶䌎⋥․ᕈ 䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ kT qV qV ⇔ −1 , iP ≈ −niS where iS ≡ i0 exp( − G ) q kT kT ∂iP i qVG T ∂iP qVG ∂i q qV ≈ −n S ≤ 0 ⇒ ≈ ≥ 0 , P = niS exp( ) ≈ 0 ∂T T kT iP ∂T kT ∂V kT kT V − 㔚⽶ᄢ㗔ၞ V ≤ −0.26V (300K ) T ∂V VG qV ≈ exp( − ) V ∂T V kT 31 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ䋨䉫䊤䊐䋩 䇭䇭䇭䋨Diode䉕᷷ᐲ䉶䊮䉰䈫䈚䈩↪䈇䉎ᤨ䋩 i 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ䋨ᑼ䋺⋥䋩 䊶㗅ቯ㔚Bais䈪䈲ᗵᐲ䈲䋱䈫ห䈛 䊶⋥䈱ലᨐή䈚 䊶Bias㔚ജᱜᏫㆶലᨐ 䋱 i 32 䊶㗅ቯ㔚ᵹBias䈪䈲⋥䈱ᗧ䉍 䊶䋱䈱䌮ᗵᐲ 䊶Bias㔚ജ⽶Ꮻㆶലᨐ 䌖S 䋲 䊶ㅒቯ㔚Bias䈪䈲ਗ䈱ᗧ䉍 iP 䊶䋱䈱䌮ᗵᐲ 䊶Bias㔚ജᱜᏫㆶലᨐ ᵈ䋩White Noise䈱ૐᷫኻ╷ᔅⷐ 䋲 nkT T ∂i ⇒ ≈ q i ∂T q(VG − kT VS V ) VG − S T ∂VS n n ≈− , VS VS ∂T n ቯ㔚ᵹBias iP 㔚⽶ᄢ㗔ၞ VS − 䌖 䌖 䋱 䋲 ㅒቯ㔚ᵹBias䈲㕖Ᏹ䈮ਇቯ䇯 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ䋨ᑼ䋺ਗ䋩 ਗ 䇭䇭䇭䋨Diode䉕᷷ᐲ䉶䊮䉰䈫䈚䈩↪䈇䉎ᤨ䋩 ቯ㔚Bias 㔚ᱜᄢ㗔ၞ ਗ䈱ᗧ䈭䈚 T ∂iP qVG T ∂V qV ≈ ≈ −( G ) , iP ∂T kT V ∂T kT 㔚㔖ㄭற V ≈ 0 ⇒ 33 iP = ni PFCV ∂iP n q(VG − V ) ≈ i ∂T T kT kT T ∂i q(VG − V ) T ∂V V −V V , ⇒ P ≈ ≈− G q iP ∂T kT V ∂T V ⊒ᾲᄢ䋨No Good䋩 nkT T ∂i qVG T ∂VS nVG q VS ⇒ ≈ ≈ , exp(− ) No Good q i ∂T kT VS ∂T VS kT n ቯ㔚Bias 㕖Ᏹ䈮ᄢ䈐䈭୯㸢ਇቯ SFCC䋺Series Forward Constant Current ; OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current ; PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage 34 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ䋨䉁䈫䉄䋩 䇭䇭䇭䇭䋨Diode䉕᷷ᐲ䉶䊮䉰䈫䈚䈩↪䈇䉎ᤨ䋩 䋱䇭㗅ᣇะቯ㔚Bias䈪䈲䇮䌎⋥䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛ᗵᐲ䇯Bias㔚ജᱜᏫㆶലᨐ䇯䋺OFCV 䋲䇭㗅ᣇะቯ㔚Bias䈪䈲䇮䌎ਗ䈲ᗵᐲ䌎䇯Bias㔚ജᱜᏫㆶലᨐ䇯䋺PFCV 䋳䇭㗅ᣇะቯ㔚ᵹBias䈪䈲䇮䌎⋥䈲ᗵᐲ䌎䇮Bias㔚ജ⽶Ꮻㆶലᨐ䇯䋺SFCC 䋴䇭ㅒᣇะቯ㔚Bias䈪䈲䇮䌎ਗ䈲ᗵᐲ䌎䇮Bias㔚ജᱜᏫㆶലᨐ䇯䋺PRCV 䇭䇭䇭䈚䈎䈚䈭䈏䉌䇮White Noise䈱ૐᷫኻ╷ᔅⷐ䇯 One Diode䋫㗅ቯ㔚Bias 䋨䌏 䌆 䌃 䌖䋩 ⿒ᨒ䋺ቯ㔚Bias䈱ᤨ 䇭䇭䇭䊶ਗ䈱ലᨐ䉍䋨䌮䋩 䇭䇭䇭䊶Bias㔚ജᱜᏫㆶലᨐ䇭 kT T ∂i qV T ∂V VG qV ⇒ P ≈ G ≈ , exp(− ) 㔚⽶ᄢ㗔ၞ V − q iP ∂T kT V ∂T V kT ∂VS n qV ≈ − ( G )V ∂T T kT ⋥䈱ᗧ䈭䈚 ⋥䈱ᗧ䈭䈚 Bias䋺Good 㗔ၞ SSCC T ∂i qVG T ∂VS qV ⇒ ≈ ≈ −( G ) , 㔚㔖ㄭற VS ≈ 0 i ∂T kT VS ∂T kT 䋱 SFCC ∂VS n ≈ − (VG − V ) ∂T T ⋥䈱ᗧ䈭䈚 ቯ㔚Bias Bias䋺Good 㗔ၞ 䋱 㔚ᱜᄢ㗔ၞ VS VS = nV 㕍ᨒ䋺ቯ㔚ᵹBias䈱ᤨ 䇭䇭䇭䇭䊶⋥䈱ലᨐ䉍䋨䌮䋩 䇭䇭䇭䇭䊶Bias㔚ജ⽶Ꮻㆶലᨐ䇭 OFCV T ∂i q(VG − V ) ≈ i ∂T kT ⿒ᨒ䋺ቯ㔚Bias䈱ᤨ 䇭䇭䇭䊶⋥䈱ലᨐ䈭䈚䋨䋱䋩 䇭䇭䇭䊶Bias㔚ജᱜᏫㆶലᨐ䇭 䋲 䌖S ⋥ 䇭䇭䇭䇭䋨Diode䉕᷷ᐲ䉶䊮䉰䈫䈚䈩↪䈇䉎ᤨ䋩 ਗDiode䋨䌎䋩䋫ㅒቯ㔚Bias 䋨䌐 䌒 䌃 䌖䋩 iP 䋲 ਗDiode䋨䌎䋩䋫㗅ቯ㔚Bias 䋨䌐 䌆 䌃 䌖䋩 䋱 PRCV ∂iP n qVG ≈ i ∂T T kT 䌖 䋱 㕖Ᏹ䈮ᄢ䈐䈭୯㸢ਇቯ SFCC䋺Series Forward Constant Current ; OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current ; PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage ⋥Diode䋨䌎䋩䋫㗅ቯ㔚ᵹBias 䋨䌓 䌆 䌃 䌃䋩 䋲 35 SFCC䋺Series Forward Constant Current OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage Bias䋺Good 㗔ၞ ⸥䋴Case䉕ቯ㊂⊛䈮ᬌ⸛ᔅⷐ 36 6 ታDiode․ᕈ i iS ≅ exp(qV kT ) 䋲䇭ታDiode(Real or Actual Diode) 10 䋱䇭ℂᗐDiode䋨Ideal Diode) 䇭 䊶䌉䋭䌖․ᕈ䈫 䇭䇭䊶ᓸಽଥᢙ 䇭䇭䊶ㄭૃᑼ 䇭䇭䊶േὐ 䇭䇭䊶ᶖ⾌㔚ജ 䇭䇭䊶䌎⋥․ᕈ 䇭䇭䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䋲䇭ታDiode(Real or Actual Diode) 䋳䇭Bolometer䈱ᕈ⢻Ყセ 䋴䇭Heat Model of Uncooled FPA IR Detector (FPA IR䋺Focal Plane Array Infra Red) i iS ≅ exp( qV 2kT + 5.4) 㱓=1 (Real or Actual Diode) = exp( q(V + 0.28) 2kT ) 7 㱓=2 i iS ≅ exp(qV 2kT ) 㔚ᵹᲧ䋨i/iS䋩䈲ℂᗐ․ᕈ䉋䉍 䋲䌾䋳ᩴᄢ䈐䈇 ㅒᣇะ㔚ᵹ䈲ℂᗐ㘻㔚ᵹ䉋䉍 䋲䌾䋳ᩴᄢ䈐䈇 1 q V kT 0.26V 0.52V 0.78V at 300K 37 38 Ref)㔚ሶ‛ᕈṶ⠌䇮ችᎹᶑ䇮Ꮏቇ࿑ᦠ䋨ᩣ䋩䇮䌰䋲䋲䋲 ታDiode․ᕈ䋨䋱䋩 i 䌔䋫㰱䌔䋾䋰 (Real or Actual Diode) 䌔 䌖 䌔 䌔䋫㰱䌔䋾䋰 ExactExpession V= η kT q ln( qVG η kT i + 1) iS ታDiode․ᕈ䋨䋲䋩 i0䈲ធว㕙Ⓧ䋨䌓䋩䈮Ყ 䌔䋫㰱䌔䋾䋰 䌔 䌖 䌔 䌔䋫㰱䌔䋾䋰 qVG qV qV ) exp( ) − 1 = iS [ A] exp( ) − 1 where V ≤ VG η kT η kT η kT ) where i0 = i0 S S i (Real or Actual Diode) 䊶㱓䋺Diode Ideality Factor 䇭䇭䇭䋨ℂᗐ䉻䉟䉥䊷䊄࿃ሶ䋩 䇭䇭㱓=1䋺ℂᗐ䉻䉟䉥䊷䊄 䇭䇭㱓=1䌾2䋺Si,Ge 䇭䇭㱓=4䋺ᄥ㓁㔚ᳰ䋨Siએᄖ䋩 䊶k䈱ᚲ䈮㱓k䉕ઍ䈜䉏䈳⦟䈇 䊶Recombination Current by Defect, Surface Current Effect , Tunneling Current╬䋨ㅧᛛⴚ䋩䈮䉋䉎 䊶㱓䈱ઍ䉒䉍䈮n䉅ᘠ↪⊛↪ Empirical Expression 㘻㔚ᵹ䋨Saturation Current䋩 i[ A] = i0 S [ A m 2 ]S[m 2 ]exp( − iS ≡ i0 [ A]exp(− 䊶㱓䋺Diode Ideality Factor 䇭䇭䇭䋨ℂᗐ䉻䉟䉥䊷䊄࿃ሶ䋩 䇭䇭㱓=1䋺ℂᗐ䉻䉟䉥䊷䊄 䇭䇭㱓=1䌾2䋺Si,Ge 䇭䇭㱓=4䋺ᄥ㓁㔚ᳰ䋨Siએᄖ䋩 䊶k䈱ᚲ䈮㱓k䉕ઍ䈜䉏䈳⦟䈇 䊶Recombination Current by Defect, Surface Current Effect , Tunneling Current╬䋨ㅧᛛⴚ䋩䈮䉋䉎 䊶㱓䈱ઍ䉒䉍䈮n䉅ᘠ↪⊛↪ i = i0 S S exp( − qVG q(V + VP ) q(VG − V − VP ) ) = i0 S S exp(− ) η kT ) exp( η kT η kT q(V + VP ) qV qV = iS exp( ) where 10 ≤ ≤ 25 ;iS ≡ i0 S S exp(− G ) η kT η kT kT η kT i ln( ) − VP V= VP ≈ 0.2 ∼ 0.3V q iS i0S䋽䋱䋰䌞䋶䌾䋱䋰䌞䋱䋰[A/m^2] Si,Ge╬䈱᧚ᢱ䇮CarrierỚᐲ䇮ਇ⚐‛䇮 ㅧᛛⴚ╬䈪䉁䉎䇯 䋨ℂᗐ㘻㔚ᵹ䉋䉍䋲䌾䋳ᩴᄢ䈐䈒䈜䉏䈳⦟䈇䋩 V → V + VP q = 1.6 ×10−19 [C ], k = 1.38 ×10−23[ J ], K VG ( Si) = 1.12[V ], VG (Ge) = 0.66[V ],VG (GaAs) = 1.42[V ] at 300 K q = 1.6 ×10−19 [C ], k = 1.38 ×10−23[ J ], K VG ( Si) = 1.12[V ], VG (Ge) = 0.66[V ],VG (GaAs) = 1.42[V ] at 300 K q 1 1 1.12 0.66 [ ] where 300 K , exp(− ) ≈ 2 ×10−19 , exp(− ) ≈ 9.5 ×10−12 39 = kT 0.026 V 0.026 0.026 q 1 1 1.12 0.66 [ ] where 300 K , exp(− ) ≈ 2 ×10−19 , exp(− ) ≈ 9.5 ×10−12 40 = 0.026 0.026 kT 0.026 V Bolometer䈱ᕈ⢻Ყセ䋨Thermistor䈫⊕㊄ᛶ᛫᷹᷷䋩 䋳䇭Bolometer䈱ᕈ⢻Ყセ Thermistor Bolometer䋨Bias㔚ജᱜᏫㆶലᨐ䋩 dR dP ≤0⇔ ≥ 0:Bias電力正帰還効果 dT dT R (Ω ) 1 1 ) , B = 2000 ∼ 6000 K = exp B ( K ) ⋅ ( − R0 ( Ω ) T ( K ) T0 ( K ) B ∆T ∆R ∆T B ∆T , 2 1 ≅ − ⋅ W here ∆ R = R − R 0 , ∆ T = T − T0 and R0 T0 T0 T0 T0 䋱䇭ℂᗐDiode䋨Ideal Diode) 䇭 䊶䌉䋭䌖․ᕈ䈫 䇭䇭䊶ᓸಽଥᢙ 䇭䇭䊶ㄭૃᑼ 䇭䇭䊶േὐ 䇭䇭䊶ᶖ⾌㔚ജ 䇭䇭䊶䌎⋥․ᕈ 䇭䇭䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䋲䇭ታDiode(Real or Actual Diode) 䋳䇭Bolometer䈱ᕈ⢻Ყセ 䋴䇭Heat Model of Uncooled FPA IR Detector (FPA IR䋺Focal Plane Array Infra Red) ⇒ T0 ∆ R B ≅ − ≈ − 12 W hereB = 3500 K , T 0 = 300 K R 0 ∆T T0 ⽶䈱୯䈪⛘ኻ୯䈏ᄢ䈐䈇䈾䈬㜞ᗵᐲ䋨䌂୯䋨䋽᧚ᢱ䋩䈮䉋䉍䉁䉎䋩 dR dP ⊕㊄ᛶ᛫᷹᷷䋨Bias㔚ജ⽶Ꮻㆶലᨐ䋩 dT ≥ 0 ⇔ dT ≤ 0:Bias電力負帰還効果 ∆R R0 ⇒ 41 =α( 1 ∆T ) ⋅ ∆T ( K ) = α T0 K T0 T0 ∆ R ≈ α T0 = 1.1 where α ≅ 3850 ×10−6 (1/ K ), T0 = 300 K R0 ∆T 䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䋨Diode᷷ᐲ䉶䊮䉰䋩 Bias㔚ജᱜᏫㆶലᨐ䋨᷷ᐲ㸢ૐᛶ᛫䋩䋺ቯ㔚Bias䈱ᤨ䇮Bias㔚ജ䈏Ⴧട䈚᷷ᐲᄌൻ䈮ᢅᗵ䈮䈭䉎䇯 42 Bias㔚ജ⽶Ꮻㆶലᨐ䋨᷷ᐲ㸢㜞ᛶ᛫䋩䋺ቯ㔚ᵹBias䈱ᤨ䇮Bias㔚ജ䈏ᷫዋ䈚᷷ᐲᄌൻ䈮㊰ᗵ䈮䈭䉎䇯 7 Bolometer 䈱ᕈ⢻Ყセ䋨Si-Diode䈱Bias䈮䉋䉎:at300K䋩 T dR R dT 䋴䇭Heat Model of Uncooled FPA IR Detector FCV : Forward Constant Voltage FCC : Forward Constant Current T dR q (VG − V ) ≈ − − 1 ≈ −32 atV = 0.26V R dT V =const kT (V = 0.7V ⇒ −15) ≈ 1 atV = 0.26V i = const 䋱䇭ℂᗐDiode䋨Ideal Diode) 䇭 䊶䌉䋭䌖․ᕈ䈫 䇭䇭䊶ᓸಽଥᢙ 䇭䇭䊶ㄭૃᑼ 䇭䇭䊶േὐ 䇭䇭䊶ᶖ⾌㔚ജ 䇭䇭䊶䌎⋥․ᕈ 䇭䇭䊶䌎ਗ․ᕈ 䊶䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ 䋲䇭ታDiode(Real or Actual Diode) 䋳䇭Bolometer䈱ᕈ⢻Ყセ 䋴䇭Heat Model of Uncooled FPA IR Detector (FPA IR䋺Focal Plane Array Infra Red) ⽶䈱୯䈲Bias㔚ജᱜᏫㆶലᨐ RCV : Reverse Constant Voltage SCC : Small Constant Current T dR R dT T dR q (VG − V ) ≈ − ≈ −53 atV = −0.26V R dT V = const kT ৻ᗵᐲ⦟䈘䈠䈉䈪䈅䉎䈏㸢No Good (V = −10V ⇒ −430) ≈ 0 at V ≤ 2.6mV i = const ⚿⺰䋺Diode䈲Thermistor Bolometer䉋䉍䉅㜞ᗵᐲ䇯 䈚䈎䉅䇮Bias㔚䈮䉋䉍ᗵᐲ䈲ᄌൻ䈜䉎䇯 䌆䌃䌖䋨㗅ᣇะቯ㔚䋩䈫䌒䌃䌖䋨ㅒᣇะቯ㔚䋩Bias䈏㜞ᗵᐲ䈫䈭䉎 44 43 Heat Model of Uncooled FPA IR Detector(Model):Bias Current Coffee Break䋺First Order Solution of Bias Current for Real Diode k L [W mK ] q(VG − V ) dP 1 q(VG − V ) ), = S L [m2 ]∆TB [ K ] = PB [W ] where PB = Vi0 S S E exp(− P η kT lL [m] dT V =CONST T η kT ೋᦼ᧦ઙ䉕᳞䉄䉎䇯ో♽䈏᷷ᐲT0䈱ᤨ䇮Bias㔚ᵹ䉕ᵹ䈚䇮Element䈱᷷ᐲ䈏TE䈪ᾲᐔⴧ䈮䈭䈦䈢䇯 0= + ka [0]Φ[W ] :背景赤外線の吸収 Vacuum k L [W mK ] S L [m2 ]∆TB [ K ] :足からの熱伝導 lL [m] W −α G [ ]S [m 2 ]∆TB [ K ] :残留ガスの熱伝達 m2 K E −4εσ T 3[W 2 ]S E [m2 ]∆TB [ K ] :放射伝達 mK + PB [W ] :Bias電力 − Legs IR Light Heat Sink And Read Out Integrated Circuit Φ=0 Window Example 148[W mK ] 2 × 5[ µ m 2 ]∆TB [ K ] ≈ 50[µW ] 30[ µ m] ⇒ ∆TB ≈ 1K q (VG − V ) PB ≈ Vi0 S S E exp(− ) kT 1 q(VG − V ) kL SL − PB (TO , V ))∆TB = PB (TO , V ) lL TO η kTO 148 1 (1.12 − 0.75) 2 × 5µ m 2 − 55µW )∆TB = 55µW 30µ m 300 2 × 0.026 IR Light HC [ J ∆Φ Window Single Element Detector − 148 1 (1.12 − 0.8) 2 × 5µ m 2 − 150 µW )∆TB = 150µW 30 µ m 300 2 × 0.026 (4.9 ×10−5 − 3.1×10−6 )∆TB = 150 µW ⇒ ∆TB = 3.3K 1.12 − 0.75 1.12 − 0.8 ) = 1.53mW ) = 550µW PB = 0.8 × 109 × (30 × 30µ m 2 ) exp(− 2 × 0.026 2 × 0.026 148 1 (1.12 − 0.8) 148 1 (1.12 − 0.75) 2 × 5µ m 2 − 1.53mW )∆TB = 1.53mW 2 × 5µ m 2 − 550µW )∆TB = 550µW ( 30µ m 300 2 × 0.026 30µ m 300 2 × 0.026 (4.9 × 10−5 − 1.3 × 10−5 )∆TB = 550µW ⇒ ∆TB = 15K (4.9 × 10−5 − 3.1×10−5 )∆TB = 1.53mW ⇒ ∆TB = 85K 46 ᾲᐔⴧᤨ䈎䉌ᤨ㑆dt 㑆䈮䇮⿒ᄖశ㰱㱂䈏⚛ሶ䈮䈚䇮න⚛ሶ᷷ᐲ䈏㰱䌔䈜䉎 Legs k L [W mK ] S L [m2 ]∆TΦ [ K ]dt[sec] :足からの熱伝導 l L [ m] ]S [m 2 ]∆TΦ [ K ]dt[sec] :残留ガスの熱伝達 m2 K E 3 W −4εσ T [ ]S [m2 ]∆TΦ [ K ]dt[sec] :放射伝達 m2 K E dPB W + [ ]∆TΦ [ K ]dt[sec] :Bias電力(正、負)帰還効果 K dT ㈩⟎䌁 IR Light ∆Φ Heat Sink And Read Out Integrated Circuit Window Single Element Detector ㈩⟎䌂 㕙Ⓧ䋺SE H C [ J ]∆T [ K ] =:センサに蓄えられるエネルギ K + ka [0]∆Φ[W ]dt[sec] :赤外線の吸収 Vacuum ]∆TΦ [ K ] =:センサに蓄えられるエネルギ −α G [W න⚛ሶ (Top View) − නጀ ዊ䈘䈭Diode䉕⋥䇮ਗ䈮ਗ䈼䉎䋨SE=䌎䊶SD䋩䇭 k L [W mK ] SL [m 2 ]∆T [ K ]dt[sec] :足からの熱伝導 lL [m] −α G [W m2 K ]S [m 2 ]∆T [ K ]dt[sec] :放射伝達 m2 K E + PB [W ]dt[sec] :Bias電力 dP + B [W ]∆T [ K ]dt[sec] :Bias電力(正、負)帰還効果 K dT Where ∆T = ∆TB + ∆TΦ ㈩⟎䌁 㕍䋺න⚛ሶ㕙Ⓧ ⿒䋺Diodeធว㕙Ⓧ ]S E [m2 ]∆T [ K ]dt[sec] :残留ガスの熱伝達 −4εσ T 3[W ㈩⟎䌂 න⚛ሶ (Top View) 㕙Ⓧ䋺SE 㕙Ⓧ䋺SD න⚛ሶ (Side View) ( 1.12 − 0.8 ) = 150 µW 2 × 0.026 Heat Model of Uncooled FPA IR Detector(Model)䋺General K + ka [0]∆Φ[W ]dt[sec] :赤外線の吸収 Heat Sink And Read Out Integrated Circuit PB = 0.8 × 108 × (30 × 30 µ m 2 ) exp(− PB = 0.75 × 109 × (30 × 30µ m 2 ) exp(− ( ᾲᐔⴧᤨ䈎䉌ᤨ㑆dt 㑆䈮䇮⿒ᄖశ㰱㱂䈏⚛ሶ䈮䈚䇮න⚛ሶ᷷ᐲ䈏㰱䌔䈜䉎 Legs Bias㔚ജ䈏ᄢ䈐䈒䈭䉎䈫ᕆỗ䈮 ⚛ሶ᷷ᐲ䈲䈜䉎䇯 䋨Bias㔚ജᱜᏫㆶലᨐ䈱䈢䉄䋩 45 Heat Model of Uncooled FPA IR Detector(Model)䋺Infra Red Vacuum 1.12 − 0.75 ) = 55µW 2 × 0.026 (4.9 × 10−5 − 1.3 ×10−6 )∆TB = 55µW ⇒ ∆TB = 1.15K 㔖ᰴㄭૃ ⿷䈎䉌䈱ᾲવዉ䈱䉂䈏ല䈒ᤨ ( ( ᾲᐔⴧ䈱ᤨ䋺㱂=0䈫䈚䈩⦟䈇 k L [W mK ] S L [m 2 ]∆TB [ K ] ≈ PB [W ] lL [m] kL dP SL ∆TB = PB (TO + ∆TB , V ) ≈ PB (TO , V ) + B ∆TB lL dT PB = 0.75 ×108 × (30 × 30µ m2 ) exp(− where ∆TB = TE − TO Single Element Detector Given V , TO ⇒ ∆TB 㕍䋺න⚛ሶ㕙Ⓧ ⿒䋺Diodeធว㕙Ⓧ 㕙Ⓧ䋺SD න⚛ሶ (Side View) 䌎ጀ ᄢ䈐䈘SE䈱Diode䉕⋥䇮ਗ䈮㊀䈰䉎䋨SE=SD䋩䇭 47 නጀ ዊ䈘䈭Diode䉕⋥䇮ਗ䈮ਗ䈼䉎䋨SE=䌎䊶SD䋩䇭 䌎ጀ ᄢ䈐䈘SE䈱Diode䉕⋥䇮ਗ䈮㊀䈰䉎䋨SE=SD䋩䇭 48 8 Heat Model of Uncooled FPA IR Detector(Model)䋺General Equation H C (∆TB + ∆TΦ ) = ka ∆Φdt − − 4εσ T 3 S E (∆TB + ∆TΦ )dt + PB dt + HC ( Heat Model of Uncooled FPA IR Detector(Equation) kL S L (∆TB + ∆TΦ )dt − α G S E (∆TB + ∆TΦ )dt lL d (∆TB ) d (∆TΦ ) + ) + GC (∆TB + ∆TΦ ) = ka ∆Φ + PB dt dt d (∆TB ) d (∆TΦ ) + GC ∆TB = PB , H C + GC ∆TΦ = ka ∆Φ HC dt dt 1 dPB kL SL G ) and GC′ [W m2 K ] ≡ C + α G + 4εσ T 3 − where GC [W K ] ≡ SE ( lL SE S E dT SE k ∆Φ P , ∆TΦMAX [ K ] = a ∆TBMAX [ K ] = B GC GC HC ( dPB ( ∆TB + ∆TΦ ) dt dT d (∆TB ) d (∆TΦ ) k dP + ) + ( L S L + α G SE + 4εσ T 3 S E − B )(∆TB + ∆TΦ ) dt dt lL dT d (∆TB ) d (∆TΦ ) + ) + GC ∆TB + GC ∆TΦ = ka ∆Φ + PB dt dt k dP where GC ≡ L S L + α G S E + 4εσ T 3 SE − B lL dT = HC ( τ [sec] = Where ∆Φ = 0 ⇒ ∆TΦ = 0 d (∆TB ) HC ( ) + GC ∆TB = PB dt Bias㔚ജ䈣䈔䈱ᤨ dPB/dT䋾0䋨Bias㔚ജᱜᏫㆶലᨐ䋩㸢GC䈲ዊ㸢ᦨ㜞᷷ᐲ䇮ᤨቯᢙ㐳 Where ∆Φ ≠ 0 d (∆TΦ ) HC ( ) + GC ∆TΦ = ka (∆Φ ) dt dPB/dT䋼0 䋨Bias㔚ജ⽶Ꮻㆶലᨐ䋩 㸢GC䈲ᄢ㸢ᦨ㜞᷷ᐲૐਅ䇮ᤨቯᢙ⍴ ⿒ᄖାภ䈱ᤨ GC[W/K]䋺Thermal䇭Conductance HC[J/K]䋺Heat Capacity ో᷷ᐲᄌൻ䈲ᣇട▚䈚䈢᷷ᐲᄌൻ ฦ㗄䈱Ⓧ䋨OFCV䈫SFCC䈱Ყセ䋩 䊶SD䋼SE䋺No Good 䊶SD=SE 䋺Good OFCV : One − Diode q(VG − VO ) 1 dP S D VO i0 S q (VG − VO ) exp( − ) ≈ S E dT S E T kT kT ㈩⟎䌂 䈫䈜䉎 䊶SD䋼SE䋺No Good 䊶SD=SE 䋺Good ታ⊛ OFCV : One − Diode q(VG − VO ) 1 dP VO i0 S q(VG − VO ) exp( − ) ≈ η kT η kT S E dT T PRCV q(VG − VO ) ) (V − V )V qV kT = G O O exp( O ) 1 qV nVG (−VP ) kT nVG (−VP ) exp(− G ) kT OFCV ≥ SFCC SFCC䋺Series Forward Constant Current ; OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current ; PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage ฦ㗄䈱Ⓧ䋨OFCV䈫PFCV䈱Ყセ䋩 exp( 䋱䈱䉻䉟䉥䊷䊄䈫Nਗ䉻䉟䉥䊷䊄䈱 Biasᶖ⾌㔚ജ䈏ห䈛䈫䈜䉎 OFCV : One − Diode q(VG − VO ) 1 dP S D VO i0 S q (VG − VO ) ≈ exp( − ) S E dT S E T kT kT ㈩⟎䌂 䈫䈜䉎 OFCV : One − Diode q(VG − VO ) 1 dP VO i0 S q(VG − VO ) ≈ exp( − ) η kT η kT S E dT T q(VG − VO′ ) S V ′i q (VG − VO′ ) 1 dP ≈ n D O 0S exp(− ) S E dT SE T kT kT ⇓ OFCV ≈ PFCV q(VO − VO′ ) nV ′ ) ≈ O ⇒ VO ≈ VO′ kT VO 53 OFCV䈱ᣇ䈏㜞ᕈ⢻ 52 ] × SE [m2 ] where EIR = 0.025[W 2 ] m2 m τ λ = 0.5, ∆TO = 0.1K at F = 1, GC′[W HC [ J SFCC䋺Series Forward Constant Current ; OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current ; PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage 䊶OFCV䈱ᣇ䈏㜞ᕈ⢻䇯 䇭䋨୯䈲ᄢ䇮䈎䈧ᱜ୯䋩 䊶Diode䋱䈱ቯ㔚Bias䈱ᣇ䈏 䇭䋱䋰⋥䈱ቯ㔚ᵹBias䉋䉍䉅㜞ᗵᐲ䇯 ∆Φ[W ] ≈ EIR [W m2 K ∆TΦMAX = OFCV䈫PFCV䈲ᱴ䈬ห䈛ᕈ⢻䇯 䈚䈎䈚䈭䈏䉌䇮 PFCV䈱Nጀᓸ⚦ടᎿ䈲࿎㔍䇯 䊶㈩⟎䌁䈱ᤨ䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛䇯 䊶㈩⟎䌂䈲䌮䈮䈭䉎䇯 䊶୯䈲⽶୯䋺Bias㔚ജ⽶Ꮻㆶലᨐ䇯 䇭ᵈ䋩V0䈲䋱䈱䉻䉟䉥䊷䊄䈮䈎䈎䉎㔚 ฦ㗄䈱Ⓧ䋨䋱䋩 䊶㈩⟎䌁䈱ᤨ䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛䇯 䊶㈩⟎䌂䈲䌮䈮䈭䉎䇯 䇭ᵈ䋩V0㵭䈲ਗ䉻䉟䉥䊷䊄䈮䈎䈎䉎㔚 䊶OFCV䈫PFCV䈲ᱴ䈬ห䈛䇯 䊶PFCV䈲ᓸ⚦ടᎿ࿎㔍䇯 ታ⊛ OFCV : One − Diode q(VG − VO ) 1 dP VO i0 S q(VG − VO ) exp( − ) ≈ η kT η kT S E dT T SFCC䋺Series Forward Constant Current ; OFCV䋺One Diode Forward Constant Voltage SSCC䋺Series Small Constant Current ; PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage 51 ታ⊛ PFCV OFCV V (V − V ) q(V − V ′ ) (V − V ) = O G O exp( O O ) ≈ G O ≈ 1 PFCV nV ′ (V − V ′ ) kT (VG − VO′ ) O G O i (V − V ) 1 dP q(VG − VO ) ) ≈ − n 0 S G O exp(− SE dT T kT ⇓ OFCV䈱ᣇ䈏㜞ᕈ⢻ ㈩⟎䌂 䈫䈜䉎 SFCC OFCV 1 qVO = ≈ 1 ∼ 2.7 at n = 10 SFCC n kT (VG − VO )VO exp(− ⇓ OFCV : One − Diode q(VG − VO ) 1 dP S D VO i0 S q (VG − VO ) exp( − ) ≈ S E dT S E T kT kT 䊶㈩⟎䌁䈱ᤨ䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛 䊶㈩⟎䌂䈲䌮䈮䈭䉎 䇭ᵈ䋩VP䋼0㸢Ꮐㄝ䈲ᱜ䈱୯ 1 dP nS D (−VP )i0 S qVG qVG ) ≈ exp(− SE dT SE T kT kT OFCV PRCV 50 49 ฦ㗄䈱Ⓧ䋨OFCV䈫PRCV䈱Ყセ䋩 OFCV = PRCV G HC or f [ Hz ] = C HC GC ]= GC [W K ] kL S L 1 dPB = + (α G + 4εσ T 3 ) − S E [m 2 ] lL SE S E dT ka ∆Φ ka EIR ka EIR = = k L SL 1 dPB GC GC′ + (α G + 4εσ T 3 ) − lL S E S E dT ] = S E [m2 ]lD [m]ρ D [kg ]C [ J ] m3 PD kgK kL dPB 3 S L + (α G + 4εσ T )S E − G GC′ l dT f [ Hz ] = C = L = HC S E lD ρ D CPD lD ρ DCPD K 54 9 ฦ㗄䈱Ⓧ䋨䋲䋩䋺OFCV䈪ᬌ⸛ ฦ㗄䈱Ⓧ䋨䋳䋩 W G k S 1 dPB k L S L 1 dPB GC′[ 2 ] ≡ C = L L + (α G + 4εσ T 3 ) − ≈ − m K S E lL S E S E dT lL S E S E dT W k k P R αG [ 2 ] ≈ S V where MeanFreePath ≥ lGAP mK 3 T W 5 3 5 6 ( He, Xe: ) 2( H 2 , N 2 , CO 2, H 2O, SF6 ) 、 kV: ( He, Xe: ) ( H 2 , N 2 , CO 2): ( H 2O, SF6 ) k: S 2 2 2 2 ήⷞน = 4εσ T ≈ 6.12[W m K ] where T = 300 K , ε = 1 3 2 ρ DSi = 2.33 ×103 [kg m3 ], C PDSi = 714[ J kgK ], k LSi = 148[W mK ] J H J H C′[ 2 ] ≡ C = lD ρ DCPD = lD [ µ m] × 1.66 ≈ 5 ∼ 10[ 2 ] mK SE mK ρ DSi CPDSi = 1.66 ×106 [ J m3 K ] ∆TΦMAX [ K ] = OFCV : One − Diode 1 dPB VBi0 S q (VG − VB ) q (VG − VB ) 1 q(VG − VB ) PB ≈ exp(− )≈ η kT η kT S E dT T T η kT SE 1 dPB 1 q (VG − VB ) PB ≈ S E dT T η kT SE q(VG − VB ) ) : i0 S = 106 ∼ 1010 [ A m 2 ] η kT f [ Hz ] = 55 ᗵᐲ䈜䉎 GC GC′ = HC H ′ C 56 ήᰴరൻ ฦ㗄䈱Ⓧ䋨䋴䋩 GC ′ = 䊶⿷䈎䉌䈱ᾲવዉ䈮䉋䉍ㅏ䈕䉎ᾲ 䊶㕖Ᏹ䈮ᄢ䋺㻍䋱䋰䌞䋴[W/m^2K] 1 dPB を正で大きくし、GC ′を小さくする SE dT C q(VG − VB ) PB [W ] ≈ VB i0 S S D exp( − : ) i0 S = 106 ∼ 1010 [ A m2 ] η kT iB [ A] ≈ i0 S S D exp( − ka [0]EIR [W m 2 ] G ′ [W m 2 K ] k L S L 1 q (VG − VB ) PB − lL S E T η kT SE 1 kL 1 q(VG − VB ) ( SL − PB ) η kT S E lL T ∆TΦMAX = 1 148 1 (1.12 − 0.8) ( 2 × 5µ m 2 − 0.5mW ) 30 × 30µ m 2 30µ m 300 2 × 0.026 1 −5 −5 4 2 = (4.9 ×10 − 1×10 ) = 4.4 ×10 [W m K ] 9 ×10−10 = ka × 0.025 = 5.7 × 10−7 K G′ C H C′ = lD [ µ m] × 1.66 = 3.3[ J m 2 K ] f = GC ′ H C ′ = 13kHz 1 kL 1 q(VG − VB ) k × 0.025 ( SL − PB ) ∆TΦMAX = a = 6.25 × 10−6 K S E lL T η kT GC ′ 1 148 1 (1.12 − 0.8) = ( 2 × 5µ m 2 − × 1mW ) H C′ = lD [ µ m] ×1.66 = 3.3[ J m 2 K ] 50 × 50 µ m 2 50µ m 300 2 × 0.026 1 −5 −5 3 2 = (3 × 10 − 2 × 10 ) = 4 × 10 [ W m K ] f = GC ′ H C′ = 1.2kHz 2.5 ×10−9 GC′ = W k S l 1 q(VG − VB ) GC′[ 2 ] ≈ L L 1 − L PB mK lL S E k L S L T η kT l L [ m] 1 q(VG − VB ) gC [0] = PB [W ] k L [W mK ]S L [m2 ] T [ K ] η kT gC = gC = 30µ m 1 (1.12 − 0.8) 1mW = 0.42 148 × 2 × 5µ m2 300 2 × 0.026 30 µ m 1 (1.12 − 0.8) 30 µW = 0.012 148 × 2 × 5µ m 2 300 2 × 0.026 57 䌎⋥䇮ਗ䈶Biasὐ䈱Ყセ䋨0.26Vએ䈪䈱⚦Ყセ䋩 䋱䇭㗅ᣇะቯ㔚Bias䈪䈲䇮䌎⋥䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛ᗵᐲ䇯Bias㔚ജᱜᏫㆶലᨐ䇯䋺OFCV 䋲䇭㗅ᣇะቯ㔚Bias䈪䈲䇮䌎ਗ䈲ᗵᐲ䌎䇯Bias㔚ജᱜᏫㆶലᨐ䇯䋺PFCV 䋳䇭㗅ᣇะቯ㔚ᵹBias䈪䈲䇮䌎ਗ䈲䋱䈱䉻䉟䉥䊷䊄䈫ห䈛ᗵᐲ䇯Bias㔚ജ⽶Ꮻㆶലᨐ䇯䋺OFCC 䋴䇭㗅ᣇะቯ㔚ᵹBias䈪䈲䇮䌎⋥䈲ᗵᐲ䌎䇯Bias㔚ജ⽶Ꮻㆶലᨐ䇯䋺SFCC 㗅ᣇะቯ㔚Bias 䊶䋱䋽䌎⋥ 䊶䌎ਗ i 䌖S 1 dP S dT iP 䌖 =− I = CONST 1 (VG − V ) P T V S iP 䋲 1 dP 1 q (VG − V ) P = S dT V =CONST T kT S 䋱 iS q qV (VG − V ) exp( ) ∆T q(V − V ) ∆T ∆i 1 ∂i T kT kT G = ∆T = = qV i i ∂T kT T iS exp( ) kT ka EIR 1 q(VG − V ) ka EIR 1 q(VG − V ) = ≈ T kT T η kT k L S L 1 q(VG − V ) P GC′ − lL S E T η kT SE V䋺䋱䈱Diode䈮䈎䈎䉎㔚 P䋺䋱䈱Diode䈱ᶖ⾌㔚ജ ∆i 1 (1.12 − 0.26) 0.025 = ≈ 2.5 × 10−8 i 300 2 × 0.026 148 10µ m 2 1 (1.12 − 0.26) 0.16µW − 2 2 30µ m 900µ m 300 2 × 0.026 900µ m 0.055 5.5E4 5.5E4 䌖 䋱 䋲 OFCV䋨One Diode Forward Constant Voltage䋩 ᤨ䈱㔚ᵹᄌൻ䈱Ⓧ 9.8 ∆i 1 (1.12 − 0.65) 0.025 ≈ ≈ 2.3 ×10−8 i 300 2 × 0.026 148 10µ m 2 1 (1.12 − 0.65) 0.7mW − 2 2 0.03 30µ m 900µ m 300 2 × 0.026 900µ m 㗅ᣇะቯ㔚ᵹBias 䊶䋱䋽䌎ਗ 䊶䌎⋥ OFCV䋺One Diode Forward Constant Voltage PFCV䋺Parallel Forward Constant Voltage OFCC䋺One Diode Forward Constant Current SFCC䋺Series Forward Constant Current 58 2.3E4 ∂i iS q qV qV ka ∆Φ = (VG − V ) exp( ) , i = iS exp( ) , ∆TΦMAX = ∂T T kT kT kT GC 0.26Vએ EIR = 0.025[W ᵈ䋩PFCV䈲OFCV䈪䊋䉟䉝䉴㔚䉕䈘䈞䈢䈱䈫ห䈛ലᨐ 59 ∆TΦMAX [ K ] = m2 ] at F = 1, τ λ = 0.5, ∆TO = 0.1K 2 k a [0]EIR [W m ] G ′[W m2 K ] C 1 dP 1 q(VG − V ) P = S dT V =CONST T kT S W k S 1 dP k L SL 1 q(VG − V ) P GC′[ 2 ] ≈ L L − = − m K lL S E S E dT lL S E T η kT SE 60 10 PFCV䋨Parallel Forward Constant Voltage䋩ᤨ䈱㔚ᵹᄌൻ䈱Ⓧ ∆iP 1 ∂iP 1 q (VG − V ) ∆T q(VG − V ) ∆T = ∆T = iP = iP iP ∂T iP kT T kT T = V䋺䋱䈱Diode䈮䈎䈎䉎㔚 P䋺䋱䈱Diode䈱ᶖ⾌㔚ജ 1 q(VG − V ) ka EIR 1 q(VG − V ) ka EIR ≈ T kT T η kT k L S L 1 q(VG − V ) nP GC′ − l S T η kT S E L E ∆iP 1 (1.12 − 0.26) 0.025 = ≈ 2.5 ×10−8 iP 300 2 × 0.026 1 (1.12 − 0.26) 2 × 0.16µW 4 5.5 × 10 − 0.055 300 2 × 0.026 900 µ m 2 20 190 ∆TΦMAX [ K ] = 1900 ] at F = 1, τ λ = 0.5, ∆TO = 0.1K 2 k a [0]EIR [W m ] G ′[W m 2 K ] GC ′[ C V䋺䋱䈱Diode䈮䈎䈎䉎㔚 P䋺䋱䈱Diode䈱ᶖ⾌㔚ജ ∆V 1 1.12 − 0.65 0.025 =− ≈ −1×10−9 V 300 0.65 1 (1.12 − 0.65) 0.7mW 4 × + 5.5 10 -0.0024 300 0.65 900µ m2 4.7E4 m2 V − V ∆T ∆V 1 ∂V = ∆T = − G V V ∂T V T 1 VG − V ka EIR 1 VG − V ka EIR =− ≈− T V T V kL S L 1 (VG − V ) P GC′ + V SE lL S E T ∆V 1 1.12 − 0.26 0.025 =− ≈ −5 × 10−9 V 300 0.26 1 (1.12 − 0.26 ) 0.16 µW 4 5.5 × 10 + 2 -0.011 300 0.26 900µ m ∆iP 1 (1.12 − 0.65) 0.025 = ≈ 9.3 × 10−8 iP 300 2 × 0.026 1 (1.12 − 0.65) 2 × 0.7 mW 4 5.5 × 10 − 2 0.03 300 2 0.026 900 m µ × EIR = 0.025[W OFCC䋨One Diode Forward Constant Current䋩ᤨ䈱㔚ᄌൻ䈱Ⓧ ∂V 1 ≈ − (VG − V ) ∂T T W k S 1 dP k L S L 1 q(VG − V ) nP ]= L L − = − m2K lL S E S E dT lL S E T η kT SE n q (VG − V ) P ∂iP 1 q(VG − V ) qV k ∆Φ 1 dP = = iP , iP = niS exp( ) , ∆TΦMAX = a S dT V =CONST T kT S ∂T T kT kT GC 61 1 dP S dT =− I =CONST W k S 1 dP k S 1 (VG − V ) P V S62 E 1 (VG − V ) P GC ′[ ]≈ L L − = L L+ m2 K lL S E S E dT lL S E T T V S SFCC䋨Series Forward Constant Current䋩ᤨ䈱㔚ᄌൻ䈱Ⓧ ∆VS 1 ∂VS V − V ∆T V − V ∆T = ∆T ≈ − n G =− G VS VS ∂T nV T V T =− V䋺䋱䈱Diode䈮䈎䈎䉎㔚 P䋺䋱䈱Diode䈱ᶖ⾌㔚ജ 1 VG − V ka EIR 1 VG − V ka EIR ≈− T V T V kL S L 1 (VG − V ) nP GC′ + V SE lL S E T i = i0 S S exp(− qVG qV i = 1010 × 30 × 30µ m2 exp(− ∆VS 1 1.12 − 0.26 0.025 =− ≈ −5 ×10−9 300 0.26 VS 1 (1.12 − 0.26 ) 2 × 0.16 µW 4 5.5 ×10 + 2 300 0.26 900 µ m -0.011 ⇒ P = 0.16µW ∆VS 1 1.12 − 0.65 0.025 =− ≈ −1× 10−9 300 0.65 VS 1 (1.12 − 0.65) 2 × 0.7 mW 4 5.5 ×10 + 2 -0.0024 300 0.65 900 µ m ⇒ P = 0.7mW i = 1010 × 30 × 30µ m2 exp(− 4 ) exp( ) − 1 η kT η kT 1.12 0.26 ) exp( ) − 1 = 4nA (148 − 1) = 0.6 µ A 2 × 0.026 2 × 0.026 1.12 0.65 ) exp( ) − 1 = 4nA ( 2.7 × 105 − 1) = 1mA 2 × 0.026 2 × 0.026 3.7E3 ∂ VS n ≈ − (VG − V ) ∂T T EIR = 0.025[W m2 1 dP S dT =− I = CONST 1 (VG − V ) nP T V S ] at F = 1, τ λ = 0.5, ∆TO = 0.1K k [0]EIR [W m2 ] ∆TΦMAX [ K ] = a G ′[W m2 K ] C P = Vi0S S exp( − qVG qV ) exp( ) − 1 kT kT 1 dP k L S L 1 (VG − V ) nP W k S GC′[ 2 ] ≈ L L − = + 63 mK lL SE S E dT lL SE T V SE 64 Heat Model of Uncooled FPA IR Detector 䇭䇭䇭䇭䇭䇭䇭䇭䇭䇭䋨䉁䈫䉄䋩 䊶න⚛ሶో㕙䉕䋱䈱䉻䉟䉥䊷䊄䈱ធว㕙Ⓧ䈫ห䈛䈫䈜䉎䇯 䊶Bias䉕㗅ᣇะቯ㔚䈫䈜䉎䇯 䊶䈠䈱Bias㔚䉕᧪䉎㒢䉍㜞䈒⸳ቯ䈚䇮 䇭Bias㔚ജᱜᏫㆶലᨐ䉕㜞䉄䉎䋨ᔕ╵ᤨ㑆䈮䈲䈏䉎䋩䇯 ෳ⠨⾗ᢱ 䇭䋨Ᏹ䈮Bias㔚ᵹ䉕ో⚛ሶ䈮ᵹ䈚⛯䈔䉎䈫䇮FPA䈱᷷ᐲ䈏䈜䉎䈢䉄䇮 䇭䇭Dynamical Biasing䈫䈚䇮৻ㇱ䈱ᢙⴕ䈮Bias㔚ᵹ䉕ᵹ䈚Scan䈜䉎䇯䋩 SFCC䋺Series Forward Constant Current OFCV䋺One Diode Forward Constant Voltage OFCC䋺One Diode Forward Constant Current SSCC䋺Series Small Constant Current PRCV䋺Parallel Reverse Constant Voltage PFCV䋺Parallel Forward Constant Voltage 䊶䌇C䈏ዊ䈘䈒䈭䉍ᗵᐲ䈏ะ䈜䉎䇯 65 66 11 END 67 12
© Copyright 2024 ExpyDoc