4. 4-1. !"#$%&'( !)*+,-&./$%01%2345 6789:;<=>?@ABC"DE0FG9! 0FHI$JKLMNOAPQR$%STUVWCCXYC "Z[\]^WFW_`a!b"C!FW]!FcdZ[efUVWg# XY!"#Z[a!hi!jWkl"m,nop&-4pqr st7$%*u3H4589Holsapple’s v-?@ABY_`HI$J wsqF-xyzC"{E9mZ[hi|}~, 4-1-1. $% npd= 4 km/sec p0F9m rs]$%& 30 % (x& 3-1-1x& 3-1-2 !"# Table V +Onose and Fujiwara, 2006c) ,yzw"m0spall &$%9m"$%& pit +Fp ¡¢9m,-Xppit £¤¥Y89C"¦R9m pit rs§$%9mrs t7*u+¨7Y 50 %©ª,X$%9mrspit rst7*u+ «. 4-1 ¬,pit rs§$%®¯°±&²³"|´µW¶ ´XYqF¡¢p´!Cd, « 4-1. pit rs§$% Fig. 4-1. Fraction of compacted mass to estimated ejecta mass by pit volume ·¸0F9m¹$%9mrs©ªº& yz»E9m¼<=>+qYrs+½¦x-m¾m%®+¿À - 90 - XY0dq¦RXYWp´,yz&Áy y ÂÃYÁy 9mC|$%9mÁ 9m-ÄÃWÅ5ÆÇÈ+!x W»E9m(«. 3-5),ÉXm"ÊËY3H45ÌÍ+ 3-1-2 0ÀÎ ,pit YXm+F¼Ï+ÐÑÒ YXmYÓzY+ÔÆ Õ¹ÂÃYÄürs+¨7(«. 4-2),ÂÃ%®&ÖFRx ×nYÅØÙ01 = 1300 kg/m3 Y,ÄÃ%®&ÂÃ%®Y$%+Ú¹ !Û%®Ù0t = 920 kg/m3 Y4V(Ù01 +Ù0t)/2 pY¿Àx,Xm"¼ rsY%®C"¨7$%YpÂÜxÝ"mº& 7 g ©ªx Xm&$%9mºÞE(ßà 4 g)0FÝݶ´áXm&Áy 9mÄà %®â¡À±ã¹"mäå±W, « 4-2. $%9mrs+¨7æç« Fig. 4-2. Schematic figure of estimation of compacted volume Holsapple (1980)&-mÉp!"#3Þè²-+é73ê+6 789 Deq Yëìã¹+d,XY´íî9m34589Óï] ðqñòxóôµõq&Brikhoff et al. (1948)Wö÷®øRù jet ÷®+½¦ úûp¨7ü34589 DeqýYÅØqpþr¸¥ DprojþrY %®¼Ù0pÙ0t +ôçpÓ9m, Deq = D proj ρ0 p (4-1-1) ρ 0t Xçnp Dproj=7.1 mmÙ0p=1146 kg/m3 Ù0t =920 kg/m3 +Y3H45 89& 8 mm pY½¦9m,X&Þyzw"mÅ5ÆÇÈ+ x¨73H45ÌÍ 13.41.4 mm Y`~G9áWþr F Y0F8ÌÍp $xXY+¬x, - 91 - « 4-3. 1 $%²Aæç«: ÃÃÏ+¬, Fig. 4-3. Schematic figure of one-dimensional compaction: columns in right and left side represent target before and after the impact, respectively. ÔqY%®Ù0t ÓzWþrF 89 Dpp ÉpxÁ y ÂÃ89 Dpc ÉpW%®Ù01 Ép$%9mXXC"ÄÃ89 Dps É pW%®(Ù01 +Ù0t)/2 Ép$%9mY 1 ²A¹º°+(«. 4-3), Xñò29m²ApþrF 89& 9 mm pd,þr89L¸¥ 0.6 9ö$W9mY,Xm&Nakazawa et al. (2002) ßÞè0F9mö$9&þr9 0.6 pdXY+Äqp, F 89W 9 mm $9W 3.6 mm pY¿ÀYö$ÐÑÉp!"& 12.6 mm Y!FXm&ÞEY#$ap , 4-1-2. <=>%&' n0F("mëìY<=>Y)YHousen and Holsapple (2003) 0*º+,(-.=)+ô/0%ÞèÔY+Holsapple v?@A B+ô_`x,Holsapple and Schmidt (1979)p&rs VcÒ¥ Rcr89 Dp 'J g +ëì+Ó12pþrÒ¥ rp÷® v iþr!"# %®Ù0pÙ0t3® Y t +ô42x12vVvRv2 +5L0 ÀÎxXm")+Àç2x, πV = ρ 0t Vc mp (672rs) - 92 - (4-1-2) ρ π R = Rcr 0t mp π Dp ρ = D p 0t mp π 2 = 3.22 1 3 (672Ò¥) (4-1-3) (67289) (4-1-4) (672'J) (4-1-5) 1 3 gRcr vi2 Housen and Holsapple (2003)ô& 44 % 70 %96 %-3®& 10 C " 30 MPa pFnÞèp9ôx(60 %)$:3®(13 MPa)+; p,«. 4-4 Housen "<C"=ôx<=>?@0>-.?v2 YvV !"#v2 Y$%)+Ó>.@nÔ+;q+¬,+A|Br pC§ÞèÔ& Schmidt (1980)qp,$% Ecompaction &r s Vcþrº mp%®Ù0tDºhE Me +ô5LFÓ9mºp, Ecompaction = ρ 0tVc − M e mp ($%) (a) (4-1-6) (b) ?@AB: Housen and Holsapple (2003)*º+,+ô/0 « 4-4. $%Yv-? ÞèY_` (a) 672rsY672'J,C ÞèÔ& Schmidt (1980)Schmidt and Housen (1987)Holsapple and Housen (2003)0,Xmn p¨7"m+;,(b) 672'JY$% Fig. 4-4. v-scaling and target’s compactions: comparison with the experimental data from Housen and Holsapple (2003) (a) Cratering efficiency and gravity scaled size. The data for sand from Schmidt (1980), Schmidt and Housen (1987), and Holsapple and Housen (2003) are shown. (b) Compaction efficiency and gravity scaled size. p=dGF3®+A|ùvV &ÞèHmv2 W 10-8 C" 10-5 µp IJ xáxWdhE,Xm&Åû®+A|C% - 93 - &v V &v2 WhE|m~´Kp:;Y§ap,nÞ è0F("mW 60 % v V q 100 û®pFXm& Housen and Holsapple (2003)¹ 70 %§x("mY#$ap,L7 §x½¦9mvV &®5ÄëìW x·¸0qY`~G 9á!,Mp672'JY$%p&%¯°W¢7"m® q³"|´µÂp,nÞè$%q Housen and Holsapple (2003)Ô³"|´ µÂNÉd, 4-1-3. HI$J{À nO&ÉP%!ùÅQHI$J¨7+ Mizutani et al. (1983)RSTUx- !ù§HI$J+wsq, P%!ù§HI$J&5L0! Rankine-Hugoniot ûç+ô ¨7"m, ρ j (U j − u pj )= ρ 0 jU j (º°) (4-1-7) Pj − Poj = ρ 0 jU j u pj (Vº°) (4-1-8) (NOAP°) (4-1-9) E j − E0 j = (P j + P0 j )(V0 j − V j ) 2 bxÙ0j Ùj &Z[Wú%®Uj &Z[÷®upj &Z[WúBX ÷®P0jPj &Z[Wú$JE0jEj &Z[WúÂNOAPV0j Vj &Z[Wú_rsp,YZ j &p(þr)& t()+Ó, XXpþrù!"#ùÊË[&ãfpp$J Pp Y Pt ÂNOAPEp Et & x,Z[Wú$JÂNOAPY_~Y $JÂNOAP&4\p´IjG9pP0jE0j + 0 Y, BX÷®+ 0 YYþrBX÷®& vi pFZ[Wú& ]BX÷®W xá!XYC" upp Y upt & vi +ô0Ó9m, u pt = vi − u pp (4-1-10) Z[÷®YZ[WúBX÷®V&0!ÞèçW°^, U j = C j + s j u pj (2-1-2) bx Cj &_A`÷ sj & Grüneisen )2Yã¹"m412p, (4-1-7) - (4-1-10) !"#(2-1-2)+ôY0FHI$J Pcore &5L0ÓXYWp´, 1 v v 1 Pcore = ξρ 0t C t2 1 + s t ξ i i 2 Ct Ct 2 (4-1-11) bxa&þr]%®+ô5L0Ó9m, - 94 - 2 ξ= 1+ δj = ρ 0t δ p ρ j − ρ0 j ρj (4-1-12) ρ 0 pδ t Zel’dovich and Raizer (1964)!"# Shen et al. (2003)RS ·¸0FHI$Jbc+,nFd &%®Ù0tÙ01 _WÙ01/Ù0t = 1.4 pF_`a¶´,X0! $%Weu&$%DdHIMÝM$J&'W¶´ pZ[÷® Ut YBX÷® upt [)ç U t = Ct + st u pt (2-1-2) (Ct &_A`÷st & Grüneisen )2Yã¹"m412)+-ÉÉôXYW p´!,xWdn&Shen et al. (2003)YÅF Mie-Grüneisen )2+_r s2Yx¨7Xm+9ôf(W, ÉW P-V «^pjF$%9mC+¿À, P-V g[ &«. 4-5 _rsW 1/Ù0t ÌÍC"hÉij[ PHt +Y,&$J 0_r s 1/Ù0t kC"-$:3® 12 MPa Ép& ±a$:9m,-Wðla! +ÉpV&$JW 12 MPa ÉÉpW|9mXY0$%Wfá,ðla !W("m&Resinyansky and Bourne (2004)pô"m¿ÀYÅF üÅû® $%+mèx 0 ùý Hugoniot g[ß!g[+náqY¿À, ùZ$C"oøpq¹12&4\p´Y"m(Fomin and Kiselev, 1997)p$%r$Ïp("m$%%® 1300 kg/m3 C"½¦9 m 44 %+ðla!Y,Zel’dovich and Raizer (1964)pdd& $%0FstW!á!deuppn& Resinyansky and Bourne (2004)YÅF« 4-5 g[ PHt(V)+%ðla!%®Ù01 Y 2 uv%®Ù0s W'! PH2(V)Épw9xXY+,PH2(V)& PH2(V02)=0 hÉg[pV02 &q YqY_rs V0t +ô 1 1 V02 = V0t − − ρ 01 ρ 0 s (4-1-13) YÓ9m,Hugoniot g[ PHt &yz$J 0 Y´_rs V02 +F$JW3® x 12MPa Ép& ±a$:9m,X$J WhÉF W 0 !Ép$%W{,W 0 !Y_rshEcd|#$JW^} ,PHt(V)Y PH2(V)&ßpp 1 1 V ' = V − − ρ ρ 0s 01 (4-1-14) YÍáY´PHt(V) = PH2(V’)p, ~$J V’% Hugoniot g[ PH2(V’, V02)+ Zel’dovich and r$p_rs V02 C"hÉd - 95 - Raizer (1964)¬9m+ô¨7,MaP%!ù%0d("m Hugoniot g[^$J PH YñÌrsFÂNOAPH & Ma! PTT XYWp´, ±a! PCC Y ±a! PCC &ùXVáJ qpF®&4)p,MpMa! PTT &ù®ã p,npx®&2®+!Y"mp(Kadono and Fujiwara (1996)nYëì»E9m®& 5000 K)X Ï +f(&!, PH = PC + PT (4-1-15) ε H = εC + εT (4-1-16) « 4-5. Z$% P-V «: PHt &Þ9ôx%® 920 kg/m3 P-V g[Y x¿Àxq,PH2 & PHt YßpV02 C"hÉF 0 Ép$%9mY¿ÀxU P-V « Fig. 4-5. P-V diagram for shock compression of the porous gypsum: PHt represents a Hugoniot curve of gypsum target, whose original density was 920 kg/m3. PH2 was set parallel to PHt, originated from V02 and compacted into solid. Ma$J PT YMaNOAPT +Ô#|¹ Mie-Grüneisen )2(V‘)&_rs2p Γ(V ') = PT V ' εT (4-1-17) YÀÎ9mqp,Shen et al. (2003)&X Mie-Grüneisen )2_rs¯°±+F ²A2x, - 96 - q V ' q ' Γ(V ') = Γ0 exp 0 − 1 q ' V0 (4-1-18) XXp V' d ln(Γ ) = q0 = q d ln(V ') V0 q' -x q ' = d ln (q ) d ln(V ') , (4-1-19) XXpq0q’& Shen et al. (2003)kl"m 1.070.9 +ô,Érs12W 4\p´YxU Mie-Grüneisen )20 &P%!ùZ[÷® Ut YBX÷ ® upt +Ô#|¹ st +óôx5LFÓXYWp´, Γ0 = 162s t2 − 360 st + 215 18s t (4-1-20) np0FHI$J&r$Y`~¶´Y"mpyzÏ $J P0 !"#ÂNOAP0 &4\XYWäåp,xWdZ[¹ NOAP°ç(4-1-9)&(4-1-21)FáXYWp´, εH = PH (V02 − V ') 2 (4-1-21) ç(4-1-14)(4-1-15)(4-1-16)-x(4-1-21)+ôZ;$0F("mÂNOAP H +çFÓY5Lç!, εH = PH (V02 − V ') V (PH − Pc ) = εC + εT = εC + 2 Γ (4-1-22) Xç+ PH x¹³5L0! Hugoniot g[+Óûç!, PH 2 (V ' , V02 ) = (K − 1)PC (V ')− 2 ε C (V ') V' V K − 02 V' ε C = ∫ PC (V ')dV ' V02 (4-1-23) (4-1-24) V' XXp K = 2/+1 p, $JMaYrsY)+ÓçPC(V’)&Þèa¨7"mqp,Stretton et al. (1997)0dÏ+a$:xÞèÔ+ÓxW«. 4-6 p, Xm"k+ç(4-1-25)p¬9m Birch-Murnghan ûçpXY0FM$J PC Y_rs V’)+¨7,X Birch-Murnghan ûç&rÏûç$J%®§ [¯°±+;xqp $:9mù§rsY%®)+Óq p, - 97 - Vos n PC (V ') = Ap − 1 V ' (4-1-25) XXp Ap Y n &À2pV0s Y V’&r$Y$:9mÏpP%!_rs+Ó,n qg[0F¨7"m~´pWn W 3.5 C" 4.5 µp12Y´g [12&_rs½EY`~G9pStretton et al. (1997)RS´ n=4 Y Xm+g[Y Ap & 9.1 GPa Y!d, « 4-6. a$%¹$JY_rs): & Stretton et al. (1997)Þè0F("m q,Birch-Murnghan ûç n +1@x, Fig. 4-6. Pressure and specific volume of the powdered gypsum under the static compression: data were obtained by Stretton et al. (1997). Three fitting lines are corresponding to three values of the coefficient n. yz%® 1322 kg/m3 W0F 0 Ép$%+Ú¹Y¿ÀxU Hugoniot ûç PH2(V’)&ç(4-1-18)(4-1-24)-x(4-1-25)+ç(4-1-23)XY0 F("m,Þyz%® 920 kg/m3 Hugoniot ûç PHt(V)¸&X mç(4-1-14)+ ô9xm³0, ¹Z[÷® Ut YBX÷ ® upt Y)&Z[zpº°ç(4-1-7)YVº°ç(4-1-8)0F5LF Ó9m, u pt = PHt (V0t − V ) (4-1-26) Mp= þr&P%!ùC"!7Z[÷® Up YBX÷® upp Y [)ç+ôXYWp´, U p = C p + s p u pp (4-1-27) - 98 - XXp Cp sp &þrùZ[+ÓÀ2p,XmYZ[zpVº° ç(4-1-8)+uHxXYpþrZ[Âp$J+"Hç PHp WçF("m , PHp = ρ 0 p (C p + s p u pp )⋅ u pp (4-1-28) ÓzYþrÓz&$JYBX÷®+¡Sp÷® vi +ô 5L)WF\|, PHp = PHt (4-1-29) u pt = vi − u pp (4-1-30) 5^Fx¨7"m!"#þr Hugoniot g[+ô«. 4-7 0 0FHIx$J+wsqXYWp´,ëì+1 !"#P%!IØ$J+ Table XII ¬,¹yz%®âà M9 92044 kg/m3 +¢Y0FHI$J& 141 GPa Y!,X&P %!x¨7HI$J 25GPa Y`~ 0.56 xC!"!, « 4-7. Y=þr P-up «: þr Hugoniot g[&÷®p 4.2 km/sec C"n,Xm"g[£kWZ[p$JBX÷®+Ó, Fig. 4-7. P-up diagram for porous gypsum and nylon projectile; the projectile’s Hugoniot is plotted backwards and starting at a particle velocity equal to the impact velocity vi. A curves’ intersection gives a pressure and a particle velocity, behind the shock waves in both the target and projectile. - 99 - Table XII. Shock induced pressure and parameters Parameter <Target> Initial density Compacted density Non porous density Shock wave's constant Birch-Murnghan parameter Mie-Grüneisen parameter <Projectile> Impact velocity Initial density Shock wave's constant Impact induced pressure Symbol Unit Case 1 2 3 4 5 solid gypsum 920 1300 2280 1.79 3.5 10.7 2.78 920 1300 2280 1.79 4.0 9.1 2.78 920 1300 2280 1.79 4.5 7.9 2.78 964 1300 2280 1.79 4.0 9.1 2.78 876 1300 2280 1.79 4.0 9.1 2.78 2280 2280 2280 1.79 3.5 10.7 2.78 0t 01 0s st n Ap o kg/m3 kg/m3 kg/m3 vi 0p Cp sp m/sec kg/m3 m/sec 4200 1160 3945 1.17 4200 1160 3945 1.17 4200 1160 3945 1.17 4200 1160 3945 1.17 4200 1160 3945 1.17 4200 1160 3945 1.17 Pcore GPa 14.40 14.35 14.30 14.18 14.54 20.98 GPa 4-1-4. Z[hi!"#¤¥%&' ùÂ+¦§Z[&P%!ùÂ+¦§q0Fq3hi!"#¤ ¥+Ú¹YHm,Xop&yzp»E9mÁy 9m< =>Yop¨7HI$J+ôÂpZ[hi+¨x, ·¸0F9myz&3-1-24-1-1 ¬xF pit ©zYÁy 9mWÅ5ÆÏ°^, $45WXÅ 5Æ45ÌÍY¿ÀxXXp$JWop¨7HI$J xY¿À ,Áy ÄÃÊË&$:[ð¶$JW 1 ª$: 3®Y x á!dkéupY"m,xWdHI$J $Ò¥ Áy <=>-x3®C"ÂpÒ Ï¦§ Z[hi+¨7XYWp´, =þr§ 4.2 km/sec p0FHI$J&o 0F 141 GPa p, $Ò¥&nÞè&½E9m"ɧ 0F9m $Ò¥½E«&!,-XpNakazawa et al. (2002)¹ §ßzÞè¹ $9Wþr9 0.6 pdXYC" 0F9m $ +þrÓzC"-Ò¥ 0.6 C" 1.2 pY¿ À,Áy Ò¥& 22 mm pF 1 ª$: 3®& 12 MPa p,Ma¬ ÷®W:;xW$:3®&:;pXm+ 12 MPa - 100 - C" 50 MPa Ép129x-&'+bcx,45C"!" r ¹Z[$J Pt(r) & $pHI$J Pcore $Ò¥ r0 Z[!"0hi+ô 0!!"2pÓ9m, r Pt (r ) = Pcore 0 r β (r>r0) nÞèEÀ9mÁy (4-1-31) 9mÒ¥Mª$:3® $Ò¥ $J+^®0¿ÀYhi& 3.5 û®Y½¦9m(Table XIII),¬ ÷® W¶´XY0$:3®:;&'&$:3®W 5 !Y´½¦9mhi & 3.2 C" 2.6 hE,É $ W 2 !Y´hi& 3.2 C" 4.8 :;,X&Nakazawa et al. (2002)px¨7"mhi 1.8 0F qArakawa et al. (1995)¯§x¨7"m 2.2 0Fq¶´áZ[hi+ F+¢f(±+¬x,ɹ Z[hiW¶´XY&Fujiwara et al. (1977)% !°zC" spall Þèp»E9m0 Wp&»E9m!!jï±&'+ äå±W, Table XIII Decay Indices of Gypsum Target Shock pressure Pcore GPa 14 10 18 14 14 14 14 Transmitting distance rs mm 19 19 19 15 25 19 19 Compressive strength Ysh MPa 12 12 12 12 12 20 50 - 101 - Decay coefficient r0=2.16 3.2 3.1 3.4 3.6 2.9 3.0 2.6 r0=4.32 4.8 4.5 4.9 5.7 4.0 4.4 3.8 4-2. !"#$%&'"()*+ ,-./+"0%123%1 2 1 4526789:(Onose and Fujiwara, 2004a);<"==1!">? 2CD4+ pit GH# I ;E5 2 1"spall 2@AB +1!"#$%&'/+F spall GH2 CD4+ 526JK STR"5 ;LM9!"NO/+PQR +12>?9U+ spall "@AB 2CD4V"==1WR1XYZ[S 2\"5 +-.]^ spall _`a"*+, Z-_`a2bcR"de; 4-2-1. 0%123%1ST: Lfghi /+ 2.5 msec jk ! 23l11m/sec"m! 60l15 bcno9pqr6Ks+ (3-4-2-2);tuvwfg=!"5 +xyz2{|6 spall GH/+ "5 526JK ;< +xy}~*F!vw spall GHs529~F ^R"0%12 spall 2 R;5 + spall GH/+ 2o0%12R"jSTR;/+ 5 msec jk xy"$%&'6 pit /+ 13 mm spall GH:F9"/ 6 12 m/sec /YZ6 0.01 g jF9:;bcn}~9 spall !"3%12"mF"( )6 5 msec j F6:6"N6 spall 2F!0%1 2R"9XR; ()R~ 5 msec R!"/+ 2.5 /+ 5 msec 9: ¡GH= 0%1¢£2*s9:;tuvwfg=!"5 ¡GH9!"pqr R¦§ K 0%1xyF2"vw¤¥ 3%1xy0F6( ;L©ª9PQ ¨6"J 0%1¢!"2«fg¬ 0_01 =! 224/1090 (Table XIV)9:"3%1¢2c®¯*9"5 ¡GH /+3%1W78°o±~"²0%1W2R;<" 5³ 12 m/sec !"tuvwfg9´s+ ¥2¦§µ¶·6¸<2~PQ pit GH/+vw¤ "3%1W¹o9 :; ºµ9"/+ 5 msec j»¼R3!" pit GH/+ 1 mm j6" m 80l8 vw¤¥2z½¦§*µ¶ |6 10 m/sec j9:;5 "5 +!#z2{ +3%12R"jSTR;/+ 2.5 - 102 - /+ 5 msec jk R!"/+ 13 mm jk pit GH/+ ="/"YZ6 0.01 g j9"/"6 12 m/sec jF;/+ 5 msec j¾ R!"#/+¿+/ spall 9:2ÀS9~Fj; 9:;3%1WÁÂÃ!#z2{|6 2 mm j9:"NO9 JK 2>? 2CD4!Ä789:; tuvw*fg=!"|y+1F X9~*6Å¢^52 9:;5 +!bcnÆ/+ƶ/ 6"Jf*eÇ6UÈ*s"5 78°6o +! Ä82R;<"`É< ÊËs"0%123%1ÌÍ Î52!Ï*/; Ðs*2"&'2 pit "6ÑÒ*52"0% 123%12()Ë6Ó<52"«+~6ÔÕ52"*|" 1 Î!Ö×*;Ðs=!"N¥9&'JK6Ö×* s"$%&'1ØÙ!V*;R6"Ðs= R!"()ÚÛÜ1 ÎR;1 Î !m6 45 "60 "70 hi"# !"Ðs I 4 msec"3 msec"2 msec 9:;5 ()2m*+,$%&'ÝÞß(à. 3- 27, 28)/+áâSs9:;ãQS xy"ä1WF å¢"*+,"m"vw¤¥9$%&'"*+,æ ç1è2éê Table XIV ; Table XIV Number and average of fragments in early and late fragments run Impact conditions Threshold Slit in ejection No. Group No. Angle Projectile time diameter or not degree mm 0_01 0 7.1 slit early t(z=0) <5 224 late 5< t(z=0) 866 0_02 0 7.1 slit early t(z=0)<5 54 late 5< t(z=0) 694 0_04 0 7.1 no-slit early t(z=0)<5 34 0_06 0 7.1 no-slit early t(z=0) <5 35 late 5< t(z=0) 500 7.1 early t(z=0)<4 81 45_01 45 slit late 4< t(z=0) 146 3 no-slit early t(z=0)<1.5 151 45_21 45 late 1.5< t(z=0) 288 60 7.1 early t(z=0)<3 92 60_01 no-slit late 3< t(z=0) 196 7.1 no-slit early t(z=0)<2 67 70_01 70 late 2< t(z=0) 61 Averaged value of fragments in each group - 103 - Ve m/sec 28.18 l14.47 2.50 l1.97 18.86 l6.94 3.53 l2.38 12.38 l7.28 15.67 l19.27 2.96 l2.05 23.05 l9.05 7.21 l4.08 19.77 l12.64 4.45 l2.70 14.42 l9.00 2.41 l1.82 18.98 l16.59 3.59 l2.53 ìe x(z=0) degree mm 59.0 l15.9 14.4 l5.6 78.7 l10.0 3.9 l4.3 68.6 l12.2 18.7 l6.7 80.2 l8.0 6.4 l6.5 74.3 l11.4 12.9 l8.3 91.5 l20.9 9.2 l7.1 87.8 l14.5 7.5 l5.9 92.0 l22.0 3.1 l18.8 85.9 l9.7 7.8 l13.7 79.5 l19.7 4.3 l4.2 64.3 l22.6 1.7 l5.3 91.6 l30.2 -2.6 l11.7 75.3 l19.5 4.1 l7.6 86.2 l26.5 3.7 l10.2 85.5 l20.3 2.6 l8.0 Fragment radius mm 0.6 l0.6 0.5 l0.1 1.5 l0.9 0.7 l0.2 3.8 l1.3 2.9 l1.8 0.7 l0.2 1.4 l0.6 1.0 l0.2 0.6 l0.3 0.5 l0.2 1.0 l0.6 0.7 l0.3 1.6 l0.7 1.2 l0.7 4-2-2. 1XYZ[S2íîYZ ï 4-2-2-1. 0%1YZ[S >? spall xy§ç6 4 mm jFR!"5 +6Æv w2ðñòkRÅóY9:52"ôb! 1: 0.68: 0.22 éê2 9:526JK (3-3-1);#59"0%1YZ[S:"õ !ÆvwõöR2R"6ð9!*52÷ø2" >ù÷øØÙ; äR"PQVÍúû=4ü¥í"ýô"þô()/+ >ù´sF Table XV *+,à. 4-8 ;5 ! Appendix C ® Vfg¬ 0_06 =RÚ>ù¢RF9 :;>ù¢ 100 1/sec jF"6ðF"ÁÂÃF> ù!PQ9~*/;PQ9~=4>ù %!=F 0.1 /+ 0.02 sec 9:" 5!"N¥9 20 cm 2 m/sec"16 m/sec 6*("0.1 sec" 0.013 sec 2z½öR;+"*iö9"fRÜ45 2678*(!+þ"Å=#>ù %æ jR/Q9~ *°6 22F; à 4-8. >ù2YZ: Nakamura (1993)2 Fig. 4-8. Rotation and mass of fragments: with Nakamura (1993) - 104 - Table XV Rotational frequency of fragments Observed longer than half rotational period Rotational Mass frequency g 1/sec 0.0500 50 0.5600 29 0.4500 33 0.2700 21 0.0500 38 0.0700 16 0.6900 26 0.3800 22 0.1790 19 Early fragments Mass g 0.0044 0.0072 0.0163 0.0098 0.0034 0.0019 0.0171 0.0015 0.0017 Late Fragments Rotational frequency 1/sec 16 49 29 33 28 51 19 16 12 Mass g 0.0238 0.0016 0.0199 0.0011 0.0002 0.0009 0.0011 0.0011 0.0081 0.0027 0.0003 0.0026 0.0006 0.0004 0.0007 0.0007 0.0003 0.0014 0.0010 0.0010 0.0007 0.0023 0.0008 0.0015 0.0006 0.0022 0.0010 0.0003 0.0007 0.0005 0.0003 0.0009 0.0006 0.0019 0.0004 0.0010 0.0027 0.0008 0.0009 0.0008 0.0009 0.0019 0.0019 0.0003 0.0004 0.0028 0.0056 0.0045 0.0017 0.0038 0.0005 - 105 - Rotational frequency 1/sec 33 17 36 17 13 50 6 100 12 16 8 15 13 26 23 12 99 28 11 41 8 15 17 18 17 25 50 40 47 18 16 34 23 8 14 22 9 21 29 9 61 20 24 33 67 7 7 4 4 34 25 Lfg9QSRxy"NO92>?C6DFR"3-41-3 9ü¥íéê/+´s+ YZ2">?R!//4 QSRYZ2à. 4-9 ;ÊË!"äR+ ¥í/+´s+ YZ "¹}¹ü ;>ùR6ü¥í/+[Q YZ¹}2¹! 10 !«+~;R6"¢¯*> ù"xN9(6"#/R/>ùR*F R!"<<Q GH9¶~R6¹} 3 !$6%&; à 3-14 x"YZ!K'9~*9"ü¥í éê/+[S YZ Mestimated 2>?RYZ Mmeasured b(6 )2SR*+,Vx2"YZ6 10 mg /+ 1 g -.k9"/06+ M measured = 0.38M estimated j"NO2>? Q ; (4-2-1) C6D4+ */R!" ü¥íéê/+ð2RYZ´s(3-4-1-3)"5 0.38 152YZ2;YZ[S2!36´<426"L ©ª9PQ 0%1YZ!"0.1 mg j2[S <925 4 3-.6="5 F/+ 1 g F 7¶852!9 789:; à 4-9. N O/ + ´s Y Z 2> ? YZ : ÊË!N¥9´s+ ü¥í/+Pî ¹}¹ YZ Fig. 4-9. Fragment mass estimated from the averaged area of fragment’s silhouette and one measured with balance: error-bar represents two ends of fragment mass estimated from max and minimum area of each fragment’s silhouette. - 106 - 4-2-2-2. 3%1YZ[S 3%1=!"F:sÎi6}~"<>?R2§; C4+ FF*9"#YZ[S!<=Ö×9:;2«"fg¬ 0_01 /+ 70 msec 3úû=>?wtV 424 åxy"4 pixel j 9@ 6 80 %:s;3-4-1-3 =®"5ÁÂÃGH= !>?dA"#/*K'Ë6YZ}~*üBC52* (Table IX);! 3-3-2 ® 1: 0.6: 0.8 9:"spall 2c®2bcnð "üB>ùüB!>?dDxÊËF2E+ ; R6"3%1R!"FG*; ºµ9"3%1W!HõüBI42E+ 5 +!õ9KL" ¤¥R="5-.!5 ;*J*+" +$%&'F: pit GHkM2ºNR"5 pit O.PGHvwõ! 1300 kg/m3 <9HõI4/+9:(3-1-2);<"3%1$%&'9: pit GH! Q<=GH9:"55/+ 6HõI42E52!RS9: ; R6"3%1R!"N¥9PQ ü¥íéê/+ ð9:2SR´sYZ"Hõ÷ø 1300/920 /4F YZ2RT; 4-2-2-3. N/+[SRYZ ï oU`VWXÞORNü¥íYRÁÂô s"1ãFGÕ[SYZ"YZ mf 2#YZ}~* Z¢ N(mf)à. 4-10 ;3-4-2-4 9´s¦§[@`\vw YZ ïà. 4-11 ;5 +à=4]¹}^2!"/+ 9¹}FR"3vwYZF9!*;bcn}~ *xy">? 2C6FR!">?R"!/9QSR YZ;+_!"R`a(6ý52b~c«R ÷øDxYZ[SÊË(3-1-4-3)EdRF9:;BI4GH6e³9: s"JfüBgI4¢6 10 h 2"di66¸sQ *(Table II"3-4-1-4 )j~"1ã:!Ík0(3-3-1)9*+,R (®~¢!">?R2( Table VIII R; N (m f )∝ m b (3-3-1) - 107 - à 4-10. N/+ ´s í îYZ ï : YZzxl:é+*GH!ÁÂà GH9df¤(3-4-1-4);¹}!/+ 9¹} 9:;(a) 0_02: ¦§"tuvw: (b) 0_06: ¦§"tuvw*R (c) 45_01: m 45 " tuvwD~ (d) 60_01: m 60 "tuvw*R (e) 70_01: m 70 "tuvw*R Fig. 4-10. Cumulative number-mass distributions of fragments measured through movies: flat regions in small fragment mass end represent detection limits for small fragments (3-4-1-4). The largest fragment means largest one which ejected from the crater. (a) 0_02: vertical impact with the slit, (b) 0_06: vertical impact without slit, (c) 45_01: impact at an angle of 45 degrees with the slit, (d) 60_01: impact at an angle of 60 degrees without slit, (e) 70_01: impact at an angle of 70 degrees without the slit. tuvwfg(0_02, 45_01)=!"}~*6mn the the the the ;fg oS!"QS9~YZ-.6 1 3 4R/*(45_01"0_01 3%1)" ®~¢´sp*FF:;<"m6}~*fg(60_01"70_01) =!"0%123%1 6ÄÌÍ9:s"ä1YZ ïq 6U+ ; - 108 - *6 à 4-11. ¦ § [@ í îY Z ï: Í!r1|y+FW* Ä8* 6É< ; Fig. 4-11. Cumulative number-mass distributions of fragments ejected at a reconstructed vertical impact: the all fragments include those, which belong to neither early fragments nor late fragments. 5 +ÉsÍfg="0%1YZ ï®~¢!"3% 1®~¢F*O="#!-0.23 /+-0.55 9:;5!"3-31 R>? spall ÚíîYZ ï=4®~¢-0.58"-0.66 "0% 16 spall /+)2xSstn9:;<"5®~¢! d³uv<9"YZ*GH=F¿J*6Ks+ *;Lfg xy"YZ}~*F/+ 10 å4! spall 9:9" YZ}~*GH=!0%1YZ ï*+2ÍkYZ ï*+!z½ ºN; QS9~YZ-.6w"YZ ï®~¢´sp*F (0_01"45_01)j2"3%1®~¢!"-0.84 /+-1.66 9:"5 45_04 9>? Ffg¬ x/4´s®~¢-1.27 2stn9:;fg«+ ~!:6"3%19¹F}~*!"0%1W# F"YZR5 1 3*;spall 2!p®~¢y6}~ 9"YZ6GH=!"ÍkYZ ï¤*+!"3%1YZ ï¤ *+Ü; 0%1ÚPQRfg¬ 0_04 2"QS9~YZ_6wzfg¬ 45_01 j2"N/+´sYZ ïÍk®~¢!"-0.96 /+-1.55 2*"0%12 3%1®~¢O;<"fg¬ 0_06 *+,¦§[@=!" ¢6¯*GH9{*)y63"bcn}~*6|/*7~2" YZ6bcn*GH= {*7~2q - 109 - *66U+ ; YZ}~*GH=!"spall 6z2{|:s"YZGH=! 3%1¢6}~n2*52/+F"5q *6!"0%123%1 YZ ï®~¢6Ò*525269~2E+ ; 4-2-2-4. ]^YZ ï2bc oBfg=>? 52!"Fujiwara et al. (1977)®+ BfgV">? YZ ïq ;<"Takagi et al. (1984)!"" YZ ï!#7~ 3 GH 4+ ®;à. 4-12(a) Takagi et al. (1984)=´s+ ª9>?/+´s+ + 52 YZ ï"(b)L© fg¬ 0_04 YZ ï;L©ª9>? YZ ï=F"N[Q al. (1984)®+ *6Q6^ /+ YZ ï=F"Takagi et 3 GH6^;Takagi +Bfgø!Å¢:6"#9 FB4"/QS ¢6Å"/q (2R:;fg¬ 0_04 =>? *6!~UF R!xV"*/ 9"0_04 YZ ï9!GH III lh 6U¼z*; 5 +YZ ï!"¢¯*YZ}~*GH(GH I)=!"{ *ÔÕ;5 !" GH6e³9:52÷ø9:2E+ (Melosh et al., 1992);<">fg=!5x*}~* 6 //R!"å<=Jfn9:"L©ª= F"0.1 g jbcn}~*6 20 å fg(0_05"0_06)2"¯* fg(0_07 *|)6^;fg=5GH I 6¤ n5 5 !"% +}~*6Åfg=9:; GH II !bcn*+/*7~;à 4-12(a)R Takagi +fg=4 ®~¢!-0.23 9:R"L©ª9>?/++ /++ F!-0.62"NO F!-0.23 /+-0.55 9:"}~**;L©ª+ ®~¢!"äfg= spall /+*0%1R´s+ ; GH III =!"YZ ï7~![,{*"Takagi +fg9!-0.53"L© ª>?/+!-0.86"NO/+!-0.96 /+-1.55 O;L©ª+ H III 9®~¢!"Takagi et al. (1984) G -0.5 /+-0.6 "Kato et al. (1995) + -0.7 /+-0.9 2c®2/*}~*7~2*;5 # *¤R"5bg*g2YZ ï®~¢ s® Kun and Herrmann (2005)®+ !"ÅóYY¨2 "/ Y°^R78°6:;Kun and Herrmann (2005)9!"5bg *g6hi®~¢y6}~*2®;L©ª+ YZ ï=4"GH III SGH®~¢!"äfg=@AB/ - 110 - +*3%1R´s+ <!5 y** ; (a) (b) à 4-12. >?YZíîå¢ ï: (a) Takagi et al. (1984)/+bR" B YZ ï (b) fg¬ 0_04 =>? }!"/+ xy¹}F YZ ï;¹ ; Fig. 4-12. Fragment mass-cumulative number distributions for collected fragments: (a) quoted from Takagi et al. (1984), impact disruption experiment at low impact velocity range. (b) mass-No. distribution of collected fragments in experimental run No. 0_04The largest fragment means the one ejected from the crater. íîYZ ï=4GH II 2GH III ®~¢c®2"#GH III ®~ ¢yµ6}~*;5 !"spall 2@AB]B/ ^$ ¡¢F9:78°6:;Kadono et al. (1997)!"£Þt¤o *+,BfgV">?RYZ ï´s;# ø"¤·B+ xy"F2¤¤¥2¥¥\ÉP]2 / ^®~¢6"-0.1 /+-0.3 9:R"¦fg2RV" tðBfg= ¤+ £Þ 3 / YZ ï®~¢!-0.5 9:" FF}~*R;Åstrom et al. (2005)!" - 111 - + FF}~*R;Åstrom et al. (2005)!" Þv§¨¨w52"YZ ï®~¢"2 / n *BF"3 / n*BF# 9 R"-0.5"-0.7 2R; spall !vw¤¥h 6"¤©zO+ F9"(2R 2 ªá6U+ vw¤¥ÉP9:"5 52!:6"ÛLn ¤Bx* 2 / n*B2 D4526 789:;ºµ9"pit GH/+ I @AB!"Q«9HÓB F9"F22*GH6 3 / n¬652/+F"5 n*B2,D4+ 6 3 / 78°6o; R6"2 / n*B "0%12R spall YZ ï=4®~¢-0.23 /+-0.55 2c®"3 / n*GH6@AB "3%12R @ABYZ ï=4®~¢-0.96 /+- 1.55 yzx6}~2xLfgø!"kn*!Ò*F Kadono et al. (1997) Åstrom et al. (2005)®2stn9:; 4-2-3. ]^fg"_`a2bc L©ª9+ "= ¯©ª+ "YZ ï"¼ F2bc;()"*+,3%1 Z-_`a2bcjR!"°V©ª6*s"M±s 4-3 ²52; 4-2-3-1. Ò*vw·=42 1ST L©ª9´s+ "m2"°V©ª F2bcà. 4-13 ;Gault et al. (1963)fgFL©ª ³´fgø22Fà. 4-13 (a)"Cintala et al. (1999)µo=4 à. 4-13 (b)"Onose et al. (1998)B à. 4-13(c);Lfg=4 2 >fgø/+i ¦§[@` \vwF"bcsà. 4-13 (d); Gault et al. (1963)ofg= L©ª³´fg=PQ " `¶Fà. 4-13(a);Gault et al. (1963)=!"·a¸¹º»¼k 6.1 km/sec 99:R"L©ª ³´fg=!"½Â¾»¼k 4.2 km/sec 99:"¿À!Ñ Ò*6"Áµ2Fo9:52"tÂaÃ6J)R*5 2/+"Áµ2FÄÅV"#&`<<R;Gault et al. (1963)!" - 112 - (a) (b) (c) à 4-13. "5 (d) 2m : m!vw¤¥Æxµ¶ 0 2§Çµ¶ 90 2;(a) = : Gault et al. (1963)oGH"L©ª³´fgGH(½Â¾ð"4.2 km/sec) (b) Cintala et al. (1999)µ (c) 4.2 km/sec 9B (Onose et al. 1998) (d) ¦§[@(à. 3-26)[È Fig. 4-13. Ejection velocity and angle of fragments: 0 degree and 90 degree in the ejection angle mean directions parallel and perpendicular to the target’s surface. (a) Impact cratering on basalt targets: empirical data from Gault et al. (1963) are quoted with ones obtained in my preliminary experiment (Nylon-Basalt impact at 4.2 km/sec). (b) Impact cratering on a sand target quoted from Cintala (1999). (c) Impact disruption of a gypsum target at 4.2 km/sec, (d) reconstructed data-set of fragments ejected at one vertical impact cratering on gypsum at 4.2 km/sec - 113 - = !"É$%o"m9 jet 6:"# 3"{m6}~*3m 45 4pqr6:"¹3 [,m6}~*¨6U+ 9"QS 2R;Ê+fg!ËáRF xy¹FF9F5 100 m/sec 9:;#59L©ª9 QSVGH9¶s®s"³´fgV #`¶;³´fgs"ARvwºµl6Ì4R< "¦¿¿À6ÄÍ Rs"T78*`¢!¯*6"L³´fg= + `xyoF2"Gault et al. (1963)GH`2!s tn*R; 5 + +fg=Q # 1. 9!U+ 2bc2"j526 2"L©ª9 ; o"m jet S6"L©ª¦§ =!"N/+F"Qη 2 /PQ /+FJK */;5 !"Love et al. (1993)=4£ÞtUÃÏko fg="jet 6JK =4vwÐÑf·^°6 */522stn9:"jet %& ;Onose (1996)"õ 917 kg/m3 Ò =!"¦§hiFvw2»¼k;Q/+vw ¤¥Ó 2E+ jet 6JK ="vwõ÷øR!Sn9: ; 2. jet b~GH=U+ "om2"5 m9pqr!""·Áµ=JK r6Q b~ ;R"pq !"hi6 200 /+ 800 m/sec 9:R" hi! 20 /+ 80 m/sec 9:"hi=!6 1 3;= !"mF526Ks+ ;=Q 0%19:"spall 2 D4+ "5GH! 9"5GHR! spall ÔÉÚ 4-2-3-2 ®; 3. pqrµ¶3"Gault et al. (1963)9!m6ÔÕ7¶6U+ 57¶!L©ª+ =" o=43%12 Fstn9:;ºµ9"L©ª3%16 10 m/sec j/() 5 msec j¾9 :R"=Õ ¦§µ¶· ! 100 m/sec F ÉP"1 3}~;+"L³´fg·=PQ ()!"#z2{|6/+ 2.5 msec jk9:"5()!vw 3%12c® 1 3;R/R*6+"fg=PQ 3%1 ¢!F2c®<<=¯*;R6"!~2R52® s!fg9+ ()"&'ÉPÖ× *`69:; 5x"2vwfg=!" - 114 - Dm6Ks+ 2x,Q6Ks+ Ø°Ùkfg9JK ;§3"jet U+ ;#59"*| 1STjxÚ pqr"bcno0%12R" 51Wxy¯*2Fbcn}~*F! spall CD4+ 0%1Q w¤¥2z½¦§µ¶· ;5 "bcn9" pit GH/+"v 3%12; Cintala et al. (1999)9µ 1.9 km/sec ¦§(run No. 4207, Al sphere, 4.76 mm in diameter)=4ßÞvÛÜÝü+ 2m à. 4-13 (b)R;Cintala et al. (1999)=!()PQ!V" 6}~* "m6*7¶6U+ Þ<"vw¤¥Æxµ¶ ¦§*µ¶ 52F"JK *; 6"m! 45 D jet F"6vw¤¥2 *;Gault et al. (1968)=!"µ· 6 km/sec 9fg6V" "¨6Ýü ;ßÝüR º ÛÜ/+!"/+ 81 msec »¼R3F6àR¨6JK ;R/R"#µ¶!"«+!6 45 2RF9:" 9z½()=JK "vw¤¥¦§*µ¶· 2!Ò*R;£ÞtU÷¨" vwµ/+ÝüR"áWâ¨ãäaå+52"¨ PQRfg Anderson et al. (2004)6Ô+ 6"Êæ+º fg=F vw¤¥R¦§*µ¶·!Ks+ *;j/+"µ· =!""·=U+ "G Hm!*; à 4-13 (c)! Onose et al. (1998)vw 4.2 km/sec B -m ï;0%1SGH" /+ 2.5 msec jk 6Q ;vw¤¥/+ spall F"N=JK5269~;R6"B=F0 %1!^2Rç; bcn}~*6âèé¡R3!"vwkhl%6" vwI4¥/+]^ 52*"z½ê£¨6Q ;Bfg=F"6 12 m/sec j"m6 75 j3% 12GH·6Ks+ ! ;R/R*6+"= Í:s3%1Îi6 60 %R"5Bfg= 5GH Îi! 7 %¼z*;5fg!"F2F2! =4 20 m/sec jPQ52án2RF9:9"Q¿ À!L©ª z/fg2ÛLn!º9:;6 1 /+ 3 m/sec m!"=!vw¤¥¦§*µ¶6®9: 6"B=!i¶~"vw¤¥2}~*m** - 115 - µ¶ ¢zx6Å*;R6"B=3% 1!Ks+ *2E+ ; Gault et al. (1963)!"= + -.!"µ# 2!Í6Ò*526®+ U ;L©ª= F"Ù<9:229!()!Ò*F" Dxm6Ks+ *|,Q6Ks+ ;ºµ9"µök =!"Gault et al. (1963)j¾V" ©ªFÉs"^©ªU ³=!"Dxm!Ks+ */;55 2!"vw¤¥¦§*µ¶·9:3%1eë!"vw6Ù <9:/k9:/^R52R;<"B=!3 %16Q9~*52/+"3%1!vw6B /69:526 / ; 4-2-3-2. 0%1-.2 spall _`a2bc Melosh (1984)"Melosh (1989)®+ = spall -.!"$%&'26:52"2YZ 6:526Ô+ (1-2-3-2);5M9!"L©ª=PQ 0%1-.6 spall # " 2ìíR*52; spall !"vw¤¥/+î Deq ïQ æç r0 Hi Pcore öHð/+vwkhñòfó9ñòR*6+ôõö÷6"vw¤¥9 ãä 52"öHð/+ r 9:Q="ö÷¥§39¨ upt(r)5 2 ! vspall 9"vw¤¥ÉP6 1989);öHð/+ r 9:QHi Pt(r)!0(4-1-31)9¤ r Pt (r ) = Pcore 0 r F9:(Melosh, ; β (r>r0) (4-1-31) (4-1-31)øù"Hi:+" Rankine-Hugoniot µ40(4-1-8)2¨ upt(r)2ö÷ Ut +S¢ Ct"st ¤(2-1-2)úû2" r 9ö÷k9¨ upt(r)!"0(4-2-2)9¤ ; U t = C t + s t u pt (r ) ρ 0t u pt (r )(C t + s t u pt (2-1-2) (r ))= P r0 core r β (r>r0) (4-2-2) 52~ü0t !HÓI4Ævwõ9:;ö÷vw¤¥2¦§* 6vw¤¥=ãä A spall 6 9"ýC !¨xyvw¤¥¦§* Ú9:;R6"spall vspall !¨ 2 !þwavw¤¥¦§* öR2E+ - 116 - ; v spall = 2u pt (r ) 1 s 1+ D eq (4-2-3) 2 r = s 2 + Deq2 L©ª=V" (4-2-4) 4.2 km/sec ¦§vwk%&RHi!"4- 1-3 14 GPa 9:;öHðÚ»¼kæç 0.6 /+ 1.2 !9:2S2 2.2 / + 4.3 mm 2*"52~ñòf!"@ABGHu=4Hi 12 MPa 2 '2~"4-1-4 # I 3.2"4.8 2*;ö÷S¢ Ct"st Simakov et al. (1974) 2490"1.70 2=~"%î Deq 6vwA¥/+, 12.5 mm 9:2S R("$%&'2à. 4-14 ; à 4-14. 0%12 spall $%&'2: 3 / !tuvwD~ vwQSRF2"2 WXÞQSRF6É< Melosh (1989)_`aR6"L©ª9+ ;2f+! "î 12.5 mm"%&Hi 14 GPa" öHðæç 2.2"4.3 mm"ñòf 3.2"4.8 úûRF; Fig. 4-14. Initial positions and ejection velocities of early fragments: 3-D velocities were measured both with the target box having the slit and with two cameras. Black and blue lines represent velocity of spalled fragments from each given initial position, which was calculated using Melosh (1989). The equivalent center of burst was set 12.5 mm in depth, and the pressure of the isobaric core was set 14 GPa, as measured and estimated in this study. Radii of the isobaric core were assumed to be 2.2 and 4.3 mm, and they result in attenuation ratio as 3.2 and 4.8, respectively. - 117 - 0%1W¢!"3%1# F¯*"<"$%&' 6 20 mm j9:¢!2fgD~o10 å9:9"L©ª9V" 3.5 km/sec /+ 4.6 km/sec 9¦§fgÍ=+ 0%1 ` È:;tuvw"< 2 WXÞ 3 / + FQ9(0_01, 0_02, 0_04)"1 WXÞ 2 / PQRF Q9R(0_04(C/*/F), ÉP), 0_06);L©ª+ ®2"Lfg+ 0_05(oWXÞ Shimazu HPV-1 9Ýü ä Melosh (1989)0úûR´s+ !"«+~6}~F"5 *+2c 2stn9:; <"Melosh (1989)"/+ r = spall ls !" vspall"»¼k§ç Dproj"vwbg Tt"vwõ2÷ ü0t"cLt jx¤ l s ρ 0t v spall = Tt øù! D proj ; (r>r0) c Lt (4-2-5) spall Z"ù!5 C+ ií¤R;spall Polansky and Ahrens (1990)Âo9%&R spall ôb2 1: 1: 0.2 §µk2S2"spall YZ mspall ! 0.2ü0tls3 9:"5 "È2"spall 2YZjx*6)2E+ 2(4-2-5)i ; 1 vspall D proj 0.2 3 − 13 mspall = Tt cLt ρ 02t (4-2-6) L©ª=4" 4 km/sec D9¦§fg= QS Í0%1W2YZà 4-15 ¤;3 / PQRm9"2 / ÚO q9¤;<"N¥ 2>?C6D~"YZfAQS5269~!"R Q9¤R:;ÝÞßÍkRYZ6ÔÕ 6JK 6R¨ ;YZ20(4-2-7)*+,; k v spall ∝ m spall (4-2-7) Í k !-0.26 9:"YZ6fQ ;5 +!\ Melosh (1984)8n´s+ FÚR!-0.29 2* -1/3 6"`Q« +~6}~"/7~y6s"¢ R !# I 0.180.23 9: ; #59"YZ[SÊË6}~ 1 mg j"2 !è2YZU ûéê´s6à. 4-16 9:;46 mg 2U=4" ñ¯!"ü¥í/+YZ´sAV`a(ý b~c«RFG 78°6:;5 +éêR0(4-2-7)9*+,V x2"#!-0.26l0.04 2*"#¢ R ! 0.94 2*;YZS2 - 118 - ç 60 mg jR"Uãéê*+,2#7~!-0.43 9"¢ R ! 0.99 2*; à 4-15. 0%1 -Y YZ : 3 / + 9¤;N¥2>?C64+ Fm9"2 / + F FR9"ü¥í/+[S F +9¤; Fig. 4-15. Mass-velocity relation of early fragments: triangles and circles represent fragments those 3-D and 2-D velocities were measured, respectively. Open and closed symbols represent ones those masses were measured and estimated, respectively. YZ[S6Ö×9:52"<`ê«+~6}~52/+"` µ"7~ k !-0.26 /+-0.43 -.96"5 (1984)9´s+ +!"Melosh -1/3 2R ïR=" ìí2!*; <" Nakamura and Fujiwara (1991)oBfg´s+ -0.34 2Fstn9:; jL©ª=40%1`!"Melosh (1984) spall -."$%&'26:52"2YZ6: 52Áµ2stn9:"5fF<0%16 spall 9:52}; - 119 - à 4-16. YZUãéêRYZ- ï Fig. 4-16. Mass-velocity relation of averaged fragments for each fragment mass bin. 4-2-3-3. 3%12 Z-_`a2bc µ*|k= # 9 2"*|Ù< F29!LYnÒ*52 4-2-3-1 9®;R/R"5 Z-_ `a!"]^8="kí}h ¿D4 º_`a2R&'R9" s"Lfg+ 3%12bcd !V; µ*|k=4"+h¤s"Z_`a6ç+ ;5 !"1-2-3-3 ®"Maxwell(1977)#+ ¦ §=4"+_`a9:"$. vwkh9Y "!<HÓ"2. vw¤¥/+ Y!Ñ%&R*"3. ï9¨ ÛQ2絶 UR !/+ R"ä"'" (¢((t)=,®~¢ Z 0(4-2-8)9C+ g¤ ;2xSF2 )(à. 4-17 (a)); UR = α (t ) RZ (4-2-8) ®~¢ Z !":+";Z 6}~*2"+*fæç6 *"vw¤¥9 ()m!}~*;Maxwell (1977)9!vw2 ¦§µ¶Z*^R"iüBëâ2xS9" - 120 - =¹Fp* Z ! 2.7 9:2R;<"Maxwell (1977)!ä"'6<HÓ°9 :"((t)*+, Z 6S¢9:"6vw¤¥:2S2" vw¤¥9+§µ¶ uV",鵶 uH"*+,vw¤¥/+ mìe !jx*9¤ 2R; α (t ) sZ (4-2-9) u H = (Z − 2 )uV (4-2-10) tan θ e = Z − 2 (4-2-11) uV = (a) (b) _`a -0à.(a) Maxwell (1977)ÛÜ6vw¤¥:Vu/½ à 4-17. Z-_ a Z-_`a (b) Croft (1980)Ú "shi Z-_`a(R"Croft L0 àsî}~R:) Fig. 4-17 Schematic figures of Z-model: (a) Original type of Z-model whose explosive center was set on the surface. (b) Z-model modified by Croft (1980) whose explosive center was buried. Its buried depth was a little larger than the one in Croft (1980). - 121 - tuvwD~vw 3 / PQR"fg¬ 0_02 =4 3%1R"åvw¤¥/+mF2"0(4-2-11) Z PîR6à. 4-18 (a)9:;3%1m!vw¤¥2¦ §*µ¶"R6"´s+ Z !"µp* 2.7 2c®"1/ }~*R; 62s+ hiR Z-_`aÚR(à. 4-17(b))"5 î6}~z|")m6}~*52R6 Croft (1980)9:;R/R *6+"5 Croft(1980)VÚ6pC9~!"î6æç 0.03 jhiRÚ9:;Anderson et al. (2004) x"Z=3 ¿À 9F"î}~2"Z-_`a9!"¶/x" ³QRR< x52*; (a) (b) à 4-18. ä $%&'2 m/+´s Z : fg¬ 0_02 `;(a) 6vw¤¥:2SRhi (b) 6vw¤¥/+ 12 mm î:2 SRhi Fig. 4-18. Initial position and Z of each fragment estimated from its ejection angle: fragments’ data are obtained by empirical run No. 0_02. (a) an explosive center is set on the target’s surface, (b) an explosive center is buried 12 mm from the target’s surface. - 122 - &'69 2hi"mìe ! Z 2/+&'Um3 (4-2-12)x44;<"5 p2m2î/+ Z ´s526Ï(4-2-13); tan ∆ − tan 2 ∆ + (Z − 2) tan θ e = cos ∆ 1 − tan ∆( Z − 1) cos ∆ Z= (4-2-12) tan θ e (1 + cos ∆ tan ∆ )− tan ∆ + cos ∆ tan 2 ∆ + 2 cos ∆ cos ∆(tan θ e tan ∆ + 1) (4-2-13) %6î 12 mm :2SR("åm/+³Q Z " 0(4-2-13)´sFà. 4-18 (b);Z ê! Maxwell (1977)6µ 2RR 2.7 Oºµ"748 å 137 åR"Z STH/+ 2 j6î ; î2 Z È("+">?"*+, þwaà. 4-19 ;6 12 mm 2~"Z=2.2 22fAþw a2"³Q "+¶~6stn*6"Z-_`a6³Q"h/+ 6 ùh/+# F39*5!"fA9!U+ */;+""+67îF"fA>?æ ¼z*;Z }~R"î}~R al. (2004) ¶/x" 6"Anderson et x"5x*Él*¿À=!"Z-_`a/+ 6³Q 52*"Z-_`apC-.9:52R; 5"L©ª9´s+ :;5 «î676+ 3%1 Z-_`a¿D4!ë6 !"Z-_`a6"#F#F<HÓ°"k,6)hi_`a9: R"Lfg9vw!Hõ÷øgI4Ùk9:52¡¢28 " ;<"µ=!"§ç»¼k§ çÎi! 3 %9:"Q« 6"L©ª9 oHGHQ92S526789: pit §ç»¼k§çÎi! 26 %9:" oHGH"F!Q92RS9~*52F 28" - 123 - ; (a) (b) (c) à 4-19. Z-_ _`a/+´s+ "+"2"fg/++ >?"þ w a b c : >?"*+,þwa!fg¬ 0_02 F;ôvw ¤¥/+î"ô/+O; (a) Deq = 12"Z = 2.2, (b) Deq = 12"Z = 8, (c) Deq = 20"Z = 2.5. Fig. 4-19. Streamlines and ejection velocities estimated from Z-model and the outline of the crater and fragments’ velocity vectors obtained by the experiment run No. 0_02: vertical and horizontal axes represent depth from the target’s surface and distance from the center of the pit, respectively. (a) Deq = 12"Z = 2.2, (b) Deq = 12" Z = 8, (c) Deq = 20"Z = 2.5. - 124 - 4-3. !(4-3-1)"#$%&'(! )*+$,-./0123456789:;<!(4-3-2)= $>?:@ABC"#DE 5 msec DE 50 msec $F.GH$I:@J K-.(4-3-3)L 4-3-1. MN$O:@PQ0/0RS$T.U: pit VWDEXY Z[\C"#DE 5 msec ]^$/0123_`abcde$12 m/sec ]f gh.iT&j_klCbm 2 mm ]fT.(3-4-2-24-2-1)Lno pqab"#$O:@.rs!0/0t23$O\.uvw ghxyzii${. 4-20 $|-L$}-. { 4-20. uvwgh: spall ~DE spall iL2 ghC:LEarly gh HPV-1 iL Fig. 4-20. Initial positions and ejection velocities of fragments: spall fragments means those were recognized as spalled ones from the shape of its silhouettes. This group includes fragments measured in two dimensionally. Early fragments contain those measured with hyper-velocity camera, HPV-1. - 125 - PQ0/0RS$T. pit(m 13 mm)DE6gh@:.CE .Lvwgh$EI:ix5C|.z $,!@uvw"#RS-. 1C 5.8 mm VW$ R! @O&jghi 1 DE 5 m/sec ¡:VW$ R!@:.L2 gh¢! £@¤: spall R$¥D\=¦§¨©ª.iC«¬-.LGray @:.iz$i$i®@nEcD¯ T&°"#!±²5CT.i={³c:Cgh 2 ´¯i$O:@µ¶DET.:µ¶$eD¯@iCn@:.L { 4-21. rs pqab"#$%& .·¸¹ghº»: =rsic¯ $O\.¼½¾2pixel %&¿¿T.LÀÁÂÃgh HPV-1 $O:@ ¼ÄC'(-.VWÅÆÂÃgh E-2 $O\.¼ÄC'(-.VWT .LzÇÈDEÉ!·¸$ 0.35 ʧÇÈDE É!ËÈ$Ìh 1.3 g/cm3 ʧiT.Í$}-.¼½¾$ÎC(§.L Fig. 4-21. Mass-velocity relation of fragments listed in reconstructed data set simulating all fragment ejected in one vertical impact: fragments smaller than 2 pixel shows a decrease in mass-cumulative number distribution which represents detestability of fragments fall here. Blue, green, and red hatching means detect ional limit of the hyper-velocity video camera(HPV-1), the high-speed video camera(E-2) for early and late fragments respectively. The mass of early and late fragments obtained by multiplying 0.35 and 1300/920, respectively. - 126 - Ï:@·¸ghxy$I:@JÐ.({. 4-21)L==iz ·¸gh$xC¥E.C¤£@ÑD:VW$ R! @O&$O:@¼ÒÓcVW$O:@gh·¸$xy¥Ec:L Ç 4 pixel %&iÔ:iC_klT&=%ÕcÖ×ØVW ·¸ÙÚhC£c.(3-4-1-3Table IX)L¼ÛÜCf!Ý.C ÇÈÞßàC 2 pixel %&Ô:Ö×ØVWT.-.{. 4-21 $O\. Âú¼ÛÜCáân·¸ÙCãä$åæ$c¯@:.VW|! @:.Lç!=EÑD:ij_klCèé]êë@O&g hì.$íºcîïCðE@:.L (a) (b) (c) { 4-22. ghñò: ghó$ºô!L(a) ab"#pqºrs0/0t23 (b) ö÷ 0_02 (c) ö÷ 0_21 Fig. 4-22. Histogram of ejection time bin: (a) reconstructed data set made by one vertical impact. (b) 0_02, (c) 0_21 - 127 - njÇÈøSC/0123ùÇDEú.ABC¤:=$%¯@ i û\E.L{ 4-22 $ABüýó$òcEþ$gh s|!Lab"#rs$!:ghcEþ$gh9:@ ghCn.¼zòC°@$ £c¯@:.L@ab"#$O:@ghC 10 m/sec ]fj:o iC 5 msec DE 40 msec 6¤:AB$@O& =à/0123 18 cm 2 g 2200 m/sec !à 0.16 msec 30 DE 300 $®-.Ln 6z:AB$.jghi6g:$,!6¤:AB$ .jghi6¤£c¯@:.Lab"#rsö÷ 0_02 AB :$û:@ö÷ 0_02 $O:@Slit û/0123R$O\./0 123vwCo@:=C|@:.(Appendix D)L ghüýó$òì. {. 4-23 $ghC 2 m/sec DE 4 m/sec vw$0PIL=gh$O:@¨ëÃ$O\. vwEI%&ìghÎÞß-.gh 4 %T.L2 39:$O:@¤:C23$%&Ý.j uvwPQ0/0-.0.9 m/sec %&i¤: !T.ghC 2 m/sec DE 1 m/sec VW$O\.ò"³#$$%&-.ic:JÐE.Ln gh:VW$O\.¼'"³CÝn.gh=R(i#$):i 20 m/sec T&gh!:à 12 m/sec T.=E* [\@:.ÒÓ5i:JÐE.LÔc+,Ë9: 0_21 $O\.ghº »ËCbm 7 mm -×.ý/9:$,!@¿¿ghg:VW$«¬-.0e CT.CË!@EIi:nö÷ 0_21 q1/0123C2 I$ô@:PQ0/0sZ3¾$T.4T.=DE¯&!56 ð.$0/7C8n.L { 4-23. ghò: 0_010_020_06 bm 7 mm -×.ý/+,Ë$%. "#0_21 Ôc+,Ë$%."#T.L Fig. 4-23. Ejection velocity and number of late fragments: in empirical run No. 0_01, 0_02, and 0_06, nylon spheres, 7 mm in diameter, were employed as projectiles. In the empirical run No. 0_21, a polycarbonate sabot shot the target. - 128 - 4-3-2. /012345678 XYZVWDE/0123ùÇabde9ghZ- :;«$%&<=-.=åæT.(4-2-3-3)Ln4-2-3-1 i $>C?.@¿clA¯B&ChI/012 3$,-."#PQ0/0s$O:@¢T.LA¯B&Chc:DË/0123 (EFü0Øcl)$,-."#PQ0/0s¿PQ0/0$®-.ºCGò $ºú!@!nÕZ$O:@>-.=HcD ¯L!C¯@$I!@PQ0/0J$«¬-."# icOA¯B&ChK-./0123L·«¬CøMcNôO!@:.=CC£| .Lj=Onose and Fujiwara (2006a)|!$/0123A¯B&C hK-.ºC"#$%&'(!)*+$,!456$78-.=$%&C P!Q!=¼R-.L"#PQ0/0sA$=C45 6ST!ÒÓ5$I:@Dence (2004)$%.-Ubm 52 km Charelevoix PQ0 /0?$O:@i|@:.LnKadono et al. (2005)$O:@igh"#Z $O:@456C¥E.=CïV@:.L 4-3-2-1. WM "#PQ0/0s/0123YÇ$PQ0/0J/0123)Ì VW¿XYZVWC¦SXY$ª&k:.ZC?K.LjXY ZVW[\$>C.]dVW(3-1-2)$ò radial-crack C.¢T& I$ crack ^¯@:._`6cVW][$O:@A¯B&7'$,!@i456$78 -.=CÒÓT.L$,-."#PQ0/0s$O:@C .abcd6$e:fg{/0123YÇ{({. 3-5 rh){. 4-24 $|-L =$O:@/0123XYZVWj[\ª&A¯B& 7'$,!@456$ijÕ=ÒÓc]dVW$ºô-.L=XYZVW ]dVW3¾k SF-Ç(the outer boundary of the shear-fractured region)lmLnË6$ =Ç{. 4-24 (a) ({. 3-5 rh)/0123YÇ$|.o:XYÇ-./p pT.Lfg{(b)DE(d)$O:@qÁrÃeDXC SF-Ç|-L"# $%&s"s+/0123R"t!cCEuv!SF-Ç$w¯A/ 0123px)*ZChn"t!JÐE.Lno=)*+C SF-Ç$y-. /0123]dVWmde[e$*¢zo¢{ÐE.i$=b| -.Jde$}þzo¢C{ÐE.({. 4-24 (b))L)*+~Ïi$=Ezo¢ SF-Ç$[-.]dVW$È.L¿C@+C SF-Ç$w&=$F¯@: )*7'Cª&E.SF-Ç$[-.]dVW$Èzo¢C456$q -. ({. 4-24 (c))Lzo¢q $!C¯@SF-ÇË$mdeeghC'(!= ~CXYZRuF&j\ùÇ$!$==DEXY - 129 - (a) (b) (c) (d) { 4-24. Øfg{: (a) /0123YÇ$¥E. ò({. 3-5 r h) (b) SF-Ç9)*+y (c) )*+DE SF-Çû$ÐEzo¢q (d) SF-Ç ~ùÇ9 Fig. 4-24. Schematic figure of an ejection mechanism of late fragments: (a) cross section of the crater and definitions of variables. (b) input of the compressive wave on SF-surface (shear-fractured surface), (c) release from the compaction wave and elastic rebound of the SF-surface, (d) ejection of late fragments - 130 - ZC!@ùÇ$:iDE$.({. 4-24 (d))P.LI/0123$O\. SF-ÇY/0123ùÇ$abcx$x!@,T .SF-Ç$O:@'(!eghÕâ/0123ùÇabcsº][:$ â!!Õ=$c.L!C¯@!@?./01 23ùÇ$,!@_`abci$½E.=$c.L $O:@no 4-3-1-2 SF-Ç$y-.)*+¥Èi&=+P.LÏ:@ 4-3-1-3 $O:@SF-Ç[$T./0123A¯B&Ch!º /I½45Ë!= Green xò9:@ P!)*+4-3-1-3 -.L($4-3-1-2 ! Green xò$y-.=$%&SF-ÇT& ghcEþ$j~ÏAÉ!=MN$%¯@ðE5O-.(4-31-4)L 4-3-2-2. )*+ ·L·9"#$%&'(-.I)*+Z)Ì$K½cAC DD.$jâC& £c.@:.Ln+$¡Õ)'"³i¢ ¿DT.JÐE@:.LÐ Bonnan et al. (1998)·£¤¥$,-. 201 m/sec DE 350 m/sec "#´: 5 mm ¦§¶Ç¨Ç)'cEþ$" #¦§¨Çgh!L=$%&ÜC 9 %17 ©T.¦§¨ Ç"s+âC&$DD.Ajª 500«40 nsec380«20 nsec T.= |!LnXu and Thadhani (2004)ÜC 50% Ni-Ti ¬!$,-.500 m/sec DE 1000 m/sec "#´:¦§¶Ç¨Ç)'!L"#ghC 1000 m/sec 3 mm ¦§®a!"s+âC&A 40.5 nsec T&= "#ÇâC&A¯ 6 $c¯@:.L =%Õ$·°}¿±²$,-."#$x!@"s+âC&$³Mc A$O\.´cïVCT.L!D!cCE;«MN$O:@"s+âC &ACL·Ü"#ghcEþ$¦§:#$MN ³M.gh 4.2 km/sec "#$O:@s"s+CÜ 60© µú 22 mm u-. !£¶c¯@O&MNì@:.)*+·-. $b=E9:.=åæT.L!D!cCEMN¸9!$O:@ i"s+C·L·uv-.=$%&6¹:âC&AIJÐ. =;«MNº»!c:L =%Õ$SF-Ç$y-.)*+Y 0.5 DEòµsec ]âC&A¡Õ= C·¼.C$O:@=+!L=MN³M.)*+Y½$·-.=Cåæc+][YP-.=$%& C¾¿$c.À\.T.L )*+)' P1 /0123px)*ZCh$:!:P!L4-1-4 i|! - 131 - $L·ZCh$zo¢ghÁ«5CT.=CÂE@:.C==à 12 MPa 9:LnghcEþ$j~ÏA${Ð.)*+)'*à Ä-.=C 1 Å:T.:Ô: !É´¯L ~ÏA t1 $x!@=nË6$ÃÄ-.=ãä$åæT.C³c£i+ ,,bm"s+CÆ -.$³McA@:àTÇÕJÐE.L $O:@9:+,ËÌh 1146 kg/m3"s+ù-ò CÈsÈàOO 3945É1.171 T.(LASA Shock Hugoniot Data %&)L"#$O:@+,Ë$'(!)'g(4-1-28) ù-=C.L PHp = ρ 0 p (C p + s p u pp )⋅ u pp (4-1-28) == 4-1-3 %&-×.ý$,-. 4.2 km/sec "#$%&'(!)' 14.4GPa b hT.+,ËDZgh uppcEþ$"s+gh Up OO 2200 m/sec 6500 m/sec ¥ÈiE.L!C¯@"#$%&'(!"s+C+,Ëbm 7.1 mm Æ -.$³McA 1.1Êsec bhT.Lj=SF-Ç$)*+CË9-.A t1 1Êsec cEþ$=C·uv-.=$%&A}àf-. 3Êsec10Êsec 9:@É´¯L=EàÉ$9:_Dòi$ Table XVI $|-L Table XVI Elastic response of the target to compressive wave Material Gypsum Basic Young's x0. Modulus 1 x10 SF-radius /2 x1.5 Pressure x0.1 x10 Duration /3 x3 Basalt Basic radius /2 Material properties Size Compressive wave SFSound Young's Poisson's Pressure Duration Lame's parameter Density radius velocity modulus ratio a P1 cLt E t1 0t t kg/m3 m/sec Pa Pa Pa m Pa sec Out put Velocity Duration vre_max t_0.1vremax m/sec sec 920 2200 4.0E+09 0.2 1.2E+09 1.9E+09 0.02 1.2E+07 3.0E-06 1.5 2.0E-05 920 696 4.0E+08 0.2 1.2E+08 1.9E+08 0.02 1.2E+07 3.0E-06 1.7 6.5E-05 920 920 920 920 920 920 920 6957 2200 2200 2200 2200 2200 2200 4.0E+10 4.0E+09 4.0E+09 4.0E+09 4.0E+09 4.0E+09 4.0E+09 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.2E+10 1.9E+10 1.2E+09 1.9E+09 1.2E+09 1.9E+09 1.2E+09 1.9E+09 1.2E+09 1.9E+09 1.2E+09 1.9E+09 1.2E+09 1.9E+09 3.0E-06 3.0E-06 3.0E-06 3.0E-06 3.0E-06 1.0E-06 1.0E-05 1.1 2.5 0.26 0.15 15 0.55 3.2 6.2E-06 1.0E-05 3.0E-05 2.0E-05 2.0E-05 1.8E-05 1.7E-05 2650 2650 5418 7.0E+10 5418 7.0E+10 0.2 0.2 2.2E+10 3.2E+10 0.02 1.6E+08 3.0E-06 2.2E+10 3.2E+10 0.01 1.6E+08 3.0E-06 5.5 7.7 8.0E-06 3.4E-06 0.02 0.01 0.03 0.02 0.02 0.02 0.02 1.2E+07 1.2E+07 3.0E+06 1.2E+06 1.2E+08 1.2E+07 1.2E+07 4-3-2-3. Green xò9: ÌÍ(1962)ÎÏ(1957)i$Green xò9:45Ë/0123 ρ$F¯'$%&A%= ´ÕLGreen xò G(r, t; ρ, τ)T.ABτ$O:@pρ .AB t r $O\.òÐ6$g!iT.L - 132 - [' f(r, t)Ë9-.Ñi~dbgvw rAB t v w(r, t)9:@g(4-3-1) $ù.L ∂ 2 w(r , t ) 2 = Ct ∇ 2 w(r , t )+ f (r , t ) 2 ∂t (4-3-1) ==Ct gT&/0123ÒýÓÜ Et ÌhÔ0t 9:@g(4-3-2)ù.L Ct = Et ρ 0t (4-3-2) :n3¾Ç S #$Cg(4-3-3)ùt = 0 g(4-3-4)Cs&â½]$O: @ w 'Õ+ù|ª.i-.L==Φ(r, t)h1h2 (h1,h2>0)3¾#$ù- òT.Lnh1 C 0 T.ÖHT.=h2 C 0 T.×T. =ØÙ-.LÚ3¾Ç S $abT&[\e£ÛvdeÜP3T.L h1w(r , t )+ h2 ∂w(r , t ) = Φ (r , t ) ∂ν w(r , t ) = f (r ) , (4-3-3) ∂w(r , t ) = F (r ) ∂t (4-3-4) pÝ$3¾ÇT. ! Green xò G(r, t; ρ, τ)ÖH$O\. Green xòT.Þ Mß G0 3¾#$|-à3¾#$ G1 áù.LÖH-cFâ3¾Çc :½$>:VW$O\. Green xò G0 âxò9:g(4-3-6)ÞMßT.L ∂ 2G0 (r , t; ρ ,τ ) − Ct2∇ 2G0 (r , t ; ρ ,τ ) = δ (r − ρ )δ (τ − t ) 2 ∂t (4-3-6) nà3¾#$ G1 g(4-3-7)!DI G = G0+ G1 C t = τ$O\.#$g(4-3-8) O%þ3¾ S #$g(4-3-9)-%ÕcßT.L ∂ 2G1 (r , t; ρ ,τ ) − Ct2∇ 2G1 (r , t; ρ ,τ ) = 0 2 ∂t (4-3-7) G (r , t ; ρ , τ ) = 0 , ∂G (r , t ; ρ ,τ ) =0 ∂t (4-3-8) h1G (r , t ; ρ ,τ )+ h2 ∂G (r , t; ρ ,τ ) =0 ∂ν (4-3-9) ãØAB t (t>τ) vw r $O\.(r W) v w(r, t) ]#$- Green xò G(r, t; ρ, τ)cEþ$[' f(r, t)9:@g(4-3-10)ù-=C.L w(r , t ) = ∫∫ G (r , t ; ρ , τ )f (ρ , τ )dρdτ (4-3-10) $MN$O\.45Ë/0123Yj3¾#$ -.L$ O:@SF-Ç[\ª&¢45Ë!@ä.n:-.=CÒÓT./012 3]dVWRS$/I½Ë-.L=/RS/0123YÇ DEìEåRS$jm SF-Çm 20 mm $jªpæ-.i-.L - 133 - I/0123½ËT&ÚÌcç6´Õ$/0123"# ´¯ÇCÖHT.=Jè-.³M5CT.L!D!cCEPQ0/0 !SF-Çm¯ 20 mm $,[email protected] mm 6U:vw$åRSC«¬-.=D EnÛé==/0123ùÇ*ê-.Lëpì5p j@:=CïV@:.(íî et al., 2003)SF-ÇëÇ!@ -.=$%&/0123ì5aÃÄ!@:.ÒÓ5CT.LnI/0 123$O:@SF-Ç\$XYZC«¬-.C$O:@/ \ÖHT.P!LcïcEXYZ[\ðËc¯=EX YZ[\VWñ~ -.=ãä$åæçDET.L /0123Y$x!@SF-Çm¢ò!SF-ÇT&ghj~Ï A=$,-.Á«5ÃÄ!LTable XVI $-O&I$ 4.2 km/sec ab"# $%&PQ0/0s/0123YÇ$¥E.XYZVW[JX !Am 20 mm >!=C 1/2 T¯ !É!LnSF-Ç [\$«¬-. radial-crack *JÐ%&[\Ç456S7JÐ.$m C 30 mm T. !$x!@iÉ´¯L30 mm mde7'σr C 4-1-4 %Õ$"t-.Jde7'σθàCòó6A¯B&ZCh(¯ 1MPa)Ð c£c.vw$:LSF-ÇmC 30 mm !AÉy-.)*+)'σr ! @ 3 MPa {ÐL ½Ë$\CÖHT./CT. !=/RSô-.õö$O: @/m a %&i:ãØm r (r > a)$O\.AB t v w(r, t)ÌÍ(1952) %&g%Õ$ù-=C.L Ct r −a r −a t − Ct C a − a t − C w(r , t ) = t e t r ∫ 0 Φ (τ )e Ct τ a dτ (4-3-11) Φ(τ)/\$F.[ ==aCt jª SF-Çm gT.LΦ 'TEF-3¾#$T&g(4-3-12)ù.L=nË6$ SF-Ç9)*+ yù!@:.L$O:@Ûé=)*+g(4-3-13)ù.+ !@P!L=ù9:.)*+7'C÷-. ÷-. !¿)*+~ÏAC !$+DEoC¥E.É´Õ"s+~ÏA 3 µsec n !L Φ (τ ) = − ∂w(r , t ) ∂r P1 Φ (τ ) = λ − 2µ 0 (4-3-12) (0 < τ < t1 ) (4-3-13) (τ ≤ 0, t1 ≤ τ ) ==P1 t1 jª)*+)'~ÏAλµ Lame’s yòù-.Lg(4-3-13)Ⱥ-.ãØm r (r > a)$O\.AB t v w(r, t)gù - 134 - .L 0 C r Ct r 2 − t t + −1 t − +1 a P1 a a a a w(r , t ) = e e − 1 r (λ + 2 µ ) C C r 2 t t a P1 e − a t + a −1 e a t1 − 1 r (λ + 2 µ ) r−a t ≤ Ct r−a r−a <t < + t1 (4-3-14) Ct Ct r−a + t1 ≤ t Ct g(4-3-14)AB t øùº-.=$%&w(r, t)ghCìE.L 0 C r − t t + −1 ∂w(r , t ) aCt P1 e a a = ∂t r (λ + 2 µ ) C C r aC P − t t + −1 − t t1 t 1 a a a e e 1 − r (λ + 2 µ ) r−a t ≤ C t r−a r−a <t < + t1 Ct Ct r−a + t1 ≤ t Ct (4-3-15) $O:@³Mc SF-Çú~ghjvq $³McAcr = a -.==vcEþ$ú~ghg(4-3-16)g(4-3-17)ù.L 0 C − tt aP1 a − w(a, t ) = e 1 (λ + 2µ ) Ct Ct aP1 e a (t1 −t ) − e − a t (λ + 2µ ) (t ≤ 0) (0 < t < t1 ) (4-3-16) (t1 ≤ t ) 0 C − tt ∂w(a, t ) Ct P1 e a = ∂t (λ + 2 µ ) C C CP − t t − t t1 t 1 e a e a − 1 (λ + 2 µ ) (t ≤ 0 ) (0 < t < +t1 ) (t1 ≤ t ) g(4-3-14)RSDEµú r øùº-.g(4-3-18)c.L - 135 - (4-3-17) 0 a − Cat t + ar −1 a ∂w(r , t ) aP1 = − − 1e ∂r + r 2 r r λ µ ( ) a − Cat t + ar −1 Cat t1 aP1 1− e e − 1 r (λ + 2µ ) r r−a t ≤ C t r−a r−a <t < + t1 Ct Ct r−a + t1 ≤ t Ct (4-3-18) =9:.mdecEþ$Jde7'σr (r, t)σθ(r, t)g(4-3-19)g(4-3-20) ù.L 0 C − t t σ r (r , t ) = 2λ a − − − P 1 1 e 1 + 2µ λ (t < 0, t1 < t ) (0 ≤ t1 ≤ t ) 0 C − tt σ θ (r , t )= P1 a λ + 2 µ (λ + 2 µ )− 2(λ + µ ) e (4-3-19) (t < 0, t1 < t ) (0 ≤ t1 ≤ t ) (4-3-20) /0123ÌhcEþ$û+ g$x!@¸9!i¦A$¦§µ üËs!ý&ç!!i9:.L/0123Ìh 920«44 kg/m3 T&û+ g 2170«150 m/sec T¯LPoisson’s σpt 0.2 -.Òý ÓÜg(4-3-21)9:@ì.=CÒÓT.L Et = (1 + ρ 0t )( ) Ct2 1 − 2 ρ 0t Ct2 σ pt 1 − ρ 0t C 2 t (4-3-21) nLame’s yòλµg(4-3-22)(4-3-23)ù.L λ= ρ 0t Ct2σ pt (1 + σ ) (1 − 2σ ) (4-3-22) ρ 0t Ct2 2(1 + σ pt ) (4-3-23) pt µ= pt $O:@SF-Ç~/0123L5Á«5JÐ.$I/0 123DEÌh g9:@É!ÒýÓÜ Et = 4 x 109 >!= 0.1 10 $,!@É´¯Ln$pÝ6cþ@$O\.ÒýÓÜÌ hpx)*Ch9:Éi´¯Lò@ Table XVI $-L 4-3-2-4. SF-ÇSTghj~ÏA SF-Ç9)*+yDE=$,-./012345678$¡Õ SF-ÇghC? - 136 - gh@íº$Ô£c.nSF-ÇmÙú=Çú~g h[\$eDÕde½!@{. 4-25 $|-L+ù)*+$%& SF-Ç$ [e7'CF.cd$O:@AB÷$¡:vC÷!==$zo¢CÈ @:.=|-LnSF-Çgh[ej==$y-.)*+ Ch$Á«-.L+ù-$g(4-3-13)9:@:.)*+7'C÷-. ¿)*+~ÏAC÷-. ! !$+DEoC¥E.LSF-ÇC)*+DE .SF-ÇJ$ÐEzo¢q CÝn&SF-ÇghdeIn &RS$eDÕdec.LSF-ÇT&gh(à=C)*+DEß àT&==DEÈzo¢q i$Û"³! 0 $-.L { 4-25. SF-Ç ÇvghA6Ùú Fig. 4-25. Displacement and velocity of the SF-surface MN$O:@SF-ÇT&gh(à vmax =C(à 1/10 n"t-. $M-.Aτ0.1vmax £¥323ò!@9:LT&~ÏA SF-Çgh Cj(à 0.1 $"t-.n!GHgh¯ 1 Å$ 1n¯@:.DET.({. 4-23)LTable XVI $ñ#$$O\. vmax τ0.1vmax à{. 4-26 $|-Lno>c.u#$T.ÒýÓÜ 4 x 109Pa /0123$sbm 20 mm SF-Ç$Ch 12 MPa~ÏA 3 µsec )*+Cy! !T&gh 1.5 m/sec T&ìEghá6T.LpdT&~ÏA 0.02 msec T&I$?.A¤cEþ$jEI$ .$Ô:àT.L - 137 - { 4-26. SF-Ç ÇT&gh(à=C(à 0.1 $c.nT&~ÏA: G $,-. 4.2 km/sec "#f!>c.u#$$,-.É5OLþ@$,-. 4.2 km/sec "#f!u#$$O\.É5O B |-L Fig. 4-26. Velocity and duration of the rebound of the SF-surface: G and B represent each result calculated to simulate impact cratering on gypsum and basalt target at an velocity of 4.2 km/sec, respectively. /0123ÒýÓÜC 1 ÅÔ£c¯ !~ÏAC¯ 3 c.LAi and Ahrens (2004)"#$%&PQ0/0Cs/0123p 1cm dË$ýY! ´ g! `$%¯@ gC"#¶ 1/4 $c.=|!LAi and Ahrens (2004) $O:@_`6c gT&$O:@³M./0123 ËÒýÓÜT.c[±²T.CMN$O:@i"#Z$¡:/01 23ÒýÓÜCf!~ÏAC¿¿þÒÓ5c:L SF-ÇmCº$c¯ !T&gh 1.7 $c&j~ÏA 0.5 $c .L-cFâj°#$C¦§cE%&ÔcPQ0/0%&g:C:A .=C|.L=Ôc+,Ë9:ö÷ 0_21 $O:@ gh òº»$O\.(àC¿¿ghg:de$¯ @:.=({. 4-23)á6T.C=D.$c.0/ÈC³M - 138 - T.L à$,!@ÒýÓÜC 18 )*ZChC 13 T.þ@$,-.bm 7 mm -×.ý/ 4.2 km/sec "#f!u#${Ð.jT&gh 3.8 ~ÏA¯º$c¯LE$Gault et al. (1963)9:E 3 mm /$%.þ@ $,-."#$%&sPQ0/0¼!òy-.jgh 5.5 ~ÏA 1/10 $c¯L===þ@9"#PQ0/0s$O\ .ghC$O\.i%&i£nABi:=$á 6T.C=D.$c.0/ÈC³MT.L )*+)'cEþ$~ÏAOi$gh$*{Ð.LÐ)*+Ch C 10 $cT&ghi 10 $c&)*+ChC 1/10 $cgh i 1/10 c.L!C¯@ÔC%& 1 Å)*Ch:·L·s @:.P-.=$%&É.T&gh 0.15 m/sec c& !@CÔË$r È-.=CÒÓ5T.LnSF-ÇmC £c.T&ghCÔ£c.=DE"#PQ0/0sfC£c.$ ÔË$r È-.=.ô!C÷!%&ÛO6$Qs-.L 4-3-3. AB$x-.JK 4-3-3-1. ¨ëDE[!uUcEþ$uU /0123ùÇDEC"#DE 5 msec DE 40 msec n~Ï.GH!@U:vwDE$¡Õi(4-3-3-1)·L·uv-."s+Õ $¡Õi(4-3-2-2)SF-ÇT&$K½AC³MT.=(4-3-2-4)j!@ SF-Ç (§T&~CRuF.$³McA(4-3-3-2)CJÐE.L noÝ$U:vwDEgh.=$¡Õú~A¼-.L"# DE¨ë$w.n$ø'¢C£iP!@ ´¨ë "#n[!=EuUìLghDE"#ABì .=$¡Õgh¥Èi&o´0.3 msec T&=$¡Õuvw Î 5 m/sec 1.5 mm1 m/sec 0.3 mm T&PQ0/0U 24 mm .íº$Ô:L[$%&ðEà{. 4-27 $|-$$%.bh: T.CPQ0/0U%&iU:VW$im=C|L= ABCU:vwDEgh=$%.ú~A¢<=û\ Ec:=|!@:.L - 139 - { 4-27. ¨ë%&[!@ì t=0 U Fig. 4-27. Initial depth of fragments at t = 0, extrapolated from their trajectories +,˶Ç$«¬!/0123L·C"#$I! 1 6$)Ì[\ù vw-.iDE$ $ !$I:@JK-.L=/0123 1 6)Ì 4-1-1 {. 4-3 |!i¦)Ì{$O\.+,Ë!yUDEPQ0/0 [email protected]:i ghig£n¦A$.®¯ghIiC:=DE({. 4-22)=Euvwjghüýó$ "c!@:.JÐ.=CÒÓ T.L/0123YÇ´¯@:c:$O\.XYZVWcEþ$)Ì [\VWU=ECPQ0/0U$4-.iP!@ìLn ghüýóuvwgh´Õ=Õâ#ghüý$ }-.i·¸$4-.i!L=%Õ$!@ì#ghüýó$= - 140 - $}-.$,!@ìuUüýghüýñuU-.L gh´Õ=C#¨ëghüýñuUn[!A B#$,-.AB!#ghüýó$=ÞßìC Table XVII T.LóEIT.C=)ÌJè!uUDEJÐ@i# ghüý$}-.ghüýñuUDEú~Ý-.AB"#DE 1.5 msec DE 7 msec T.É/0123)ÌU:vwDE/0123ùÇnú ~A¢AB¤<=-.=c:L /0123)Ì$DD.A$x!@$$!#$$O\.;«0/C c£=Ñ$ÃÄ-.=%ÒÓT.L4-3-2-2 $|!±²¿°})Ì$O: @"s+âC&A(i 0.5 µsec T&=àn ÞßA@ 4 Å]iÔcàT.L Table XVII Modified ejection time of fragments from the buried depth for each velocity bin Initial depth bin mm Modified ejection time msec 0_01 ve<0.6 0.6<ve<1.25 1.25<ve<2.5 2.5<ve<5 5<ve<10 10<ve<20 23.7 20.2 14.3 11.3 9.6 9.5 - 24.1 23.7 20.2 14.3 11.3 9.6 -17.4 5.2 6.5 4.0 2.6 1.6 30.5 13.9 6.8 1.9 1.6 1.2 ve<0.6 0.6<ve<1.25 1.25<ve<2.5 2.5<ve<5 5<ve<10 23.8 21.8 14.7 9.8 9.4 - 24.1 23.8 21.8 14.7 9.8 0.9 5.0 6.9 4.2 1.5 2.8 6.8 7.0 4.5 1.8 0_02 4-3-3-2. Ë gAB¤ MN;<!$O:@SF-ÇÝn¯RS$eDÕ+ CXYZVW$«¬-.Rnu.³MCT.L= $³McA56$ÃÄ!L Teramoto et al. (2004)bm 40 µm DE 220 µm Fü0Ø g&R!= EC 92 m/sec DE 171 m/sec 'ÌcpÝ6cF g 5 km/sec (!£:à| -=nËR g Cpowder fDm df $Á«-.=|!L)0/({. 428)g(4-3-2-4)Ã-.yòàαpowderβpowder jª0.3 O%þ 33 c.L α C powder = β powder d f powder (4-3-24) - 141 - MN$O:@JK´¯@:.Teramoto et al. (2004)C g!Ë !@DmÜs!@:.L· 3 $O:@¶c&jnn[´Õ =HåæT.CT£n*!@noDm$x!@JK´ÕLðE Dm 1µm DE 10µm T&= Teramoto et al. (2004)C g!F ü0ØDm$ 1 Å]Ô:VW$T.Lg(4-3-24)$+:=Dm 3µm n[ -.j g 46 m/sec T.L$s-.iL· gC Teramoto et al. (2004)9:EF(5 km/sec)$,!9: 2 km/sec T&Ô£c¯ @:.LË g${Ð.iL· g{$x!@nç,£FD¯@:c:C =C4xy$T.P-.uv-. g 18 m/sec bhT.=C· .L== SF-ÇDE+,Ë!yUnµú 25 mm -P g 91 m/sec cEþ $ 18 m/sec u-.P-.j`MAOO 0.3 msec cEþ$ 1.4 msec c.L { 4-28. Teramoto et al. (2004)$ $|Fü0ØDm-P g Fig. 4-28. Diameter of glass beads and bulk sound velocity employing data from Teramoto et al. (2004) C/0123ùÇDE.n$DD.AÕâ 8 ô£C= ECph)Ì[\/0123DET.=$%&<=û\E.L Table XVII $|!.κABÕâ 0.3 DE 1.4 msec SF-Ç$O\.)*+$, -.45678$¡ÕeghCXYZuv-.$³McA xû\E.=C·.L$SF-Ç78$K½AC³MT.L4-3-2 ìPQ0/0s$,-.>c.u#$$,!@ÉT&~ ÏA 0.02 msec T&~ÏA. 3 Å]Ô:Ccrack $%./0123ÒýÓÜf¿SF-Ç45678Cuv-.I$$A }.ÒÓ5Jè-.I~ÏA$?£ÒÓ5CT.Ln SF-Çëp!=$%.Y$¡Õ/0123ì5aÃÄÒÓ5Jè -.=âEiÉ~ÏA-de$£L - 142 - 4-4. 4-4-1. spall !"# spall pit $%&'()*+,(-./0123456789:;-<;=>?5@,A9-.BCD!EFG&H89A!(3-2-3, I. 3-9 (g), (h), (i))" J-K44LMNOP 1.3 QRST!78-spall /0U VW!4LMNOP 1.6 QRS8(I. 3-9(l))-#/0 X(AEFG&YZ9A!#V&H89A!" J-[\]^ 2 _&`a8bc\U bD lj -Rdefb(40 U 300 m/sec) gh-ij,A9- 5@kCDZ9A!#V !(3-4-2-1)"Vmn- 45 ij,o!=>56^ h -<;56^.X(pqDZ9A!"J- 70 ,A960 m/sec r:b+ !K9<;s(=>56,A9[\p+t !" - !hEFGuvDp+DA"Vmn=>5 6^ w89-xy+ 37.5 U 45 zP&{|V89A!78- 45 ,A9 30 &{|V8- 70 ,A9 30 U 37.5 &{| VT!X}D!" #X}- spall /01~-fb !D EFG&T!j-234 ?V 89!VT!(Melosh, 1989)~-+t!Z9 T!(Anderson et al. 2004) F¡%+DA"Dahl and Schultz (1999)¢£7T!ij¤¥&A-X(¦!§¨©ª«D g.¬ 234®7T!5@¯VCDZ9A!#V&H8"#¤¥X(Hij X(¦§¨°5G-±²³D g Onose (1996),o!´7T!µ bij¤¥¶Vv·e+t!"8U8D ¢£+t(-J-U -#¤¥aA ¸@¹+º¨¬&\»8p+t!#VU - #¤¥¶&.JJ±²³¼aT!#V+½DA"J-¾¿DijX(¦ spall /0¬[U p(Onose 1996, Onose and Fujiwara 2004b)-Vmn-ÀÁ 70 X(¦+tZ9p-ÂÃXZ9:;56 spall 1ÄAp-<;56 spall 1ÄAp-spall DApDÅFÆ8-# f$¬ÂÃAEFG&YÇ#VHÈ9A!j-ÉtZ9 ÊË&TÌÍGt!" Î5+- ÏÐV bwÑ~-ÏÐ%Òw89-ij X(Ó pV-xyX!pVÔÕÖD×Alj DUZ"I. 4- 29 ij,o!ÏÐ-bwÑ&kØ8"# ¤¥X(Ó &ËÚ9t!"DÛD - 143 - I-Ù -ÎÜij,A9 ! £T!Ù-45 &ݽ-°Þß pàU +t!"I. 4-30 -ká%o8 £T!&H8"±¤¥,A9[\T !#V+½bD gÏÐâ),A9-xyX(Ó ÏÐVbwÑV-ijX!pVÔãClj DUZ"à8-ij ,A9 !NO䪽DÙåDA#V-J-æ çèJ(%¸éêD!#V&ëT!V-ìíÇA9T!jî D!¤¥e'ÓÌÍ+t!"ÏÐ%Ò,A9-#æïðñ} n ǽ~-\»+½ÏÐâ)òA#VX!ó5-X (p 9A!(I. 4-10)" (a) - 144 - (b) - 145 - (c) I 4-29. ij X( Ï ÐVb wÑ: Rdeª½DÙôij, A9°Þß 9A!j-ÀÁ¤¥X(Ó ÷øD gÏÐù»úµ<T!/0 ¶&JVj9õH8"iö$- (a) 45 (¤¥üý 45_01-45_03-45_04) (b) 60 (¤¥üý 60_01) (c) 70 (¤¥üý 70_01-70_02-70_03) Fig. 4-29. Mass-velocity relations of fragments ejected in oblique impact cratering: some datasets from different experiments shearing the same impact angle are combined, in order to increase number of data points in large mass region. Hatched area represents those where detestability of fragment shows obvious decrease. (a) impacts at an angle of 45 degrees (45_01, 45_03, 45_04), (b) an impact at an angle of 60 degrees (60_01), (c) impacts at an angle of 70 degrees (70_01, 70_02, 70_03) - 146 - I 4-30. VÏÐ-b bwÑ Fig. 4-30. Impact angle dependence of mass-velocity relation of fragments 4-4-2. æ pit $%4L-æ V89þ= 4LVVA}+$8~ 4Lc+t(-.EFG MNOP 1.0 Q+t!"#K44LEFG# 1.3 Q +t!78-~~qA+t!(3-2-3)"pit 4Lj!%4L 35 U +t(-#(æ V89 pVm 60 % !" 45 ,A9 pit 4Lj!~~ª½DZ9A!#Vrþ-pit 4Lj !EFGÕÖ+DA (I. 4-1)- 70 ijX( ¦4L 4ml +t(-#-ÏÐãU ÏÐ&Lp ! 㩪 2 g VD!j-¶&TÊË&ÍT!(I. 4-31)" U b\»U -ij+æ çèJ!#V X(V çè8-# 4jT!6 (22 mm U %¸éêD!6D g-¦ !(3-4-2-3)"#-xyX(¦! 24 mm)VRd89-ijX!p 60 X ! 15 mm V-qA#Vwo !Gt!" bÀ Á/0Z9A!Vm!#V+tn-æ çèVw o !U +t!"J-±²³,A98æ ,A9- - 147 - !"/0#$qD!A-%Ú&('(çÔ)D!6H 9,(-*VVp pit $%+$qDZ9A!#VVpwo ! Gt!" I 4-31. æ T!4LEFG Fig. 4-31. Impact angle dependence of evacuated volume, which thought to be responsible to late fragments ijX( !æ -,D!Ç<;5 66t!(I. 4-32)"#½-xy56U -.õ>U 60 V½,A9p- \Z9 75 +t(-. qD/É8U DA"#- 60 0,A9p-æ ª½ D/ÉDA#V&õ89A!Vm !" 70 (¤¥üý 70_01),A 9p->:+#õ>VxyD56U <;A56^ T! pÖl9A!-#¤¥,A9Væ%1éê+t(- :>7T!+t!j2A bª½Dn I349ADA" - 148 - ǽ+!j-# I 4-32. æ -.EFG: 0 45 60 3 56+-. B¤¥+-.V 17&8 89õØ89A!" Fig. 4-32. Impact angle dependence of the averaged ejection angle of late fragments: averaged data from impact experiments at angles of 0, 45, and 60 degrees are shown. Data sets for the 0 degree’s impacts and 45 degrees’ impacts are shifted a little. I 4-33. æ b%ÒV: 9xy-: 60 Fig. 4-33. Impact angle dependence and ejection velocity of late fragments: red and blue lines represents number of fragments ejected in each ejection velocity bin at a vertical impact and a 60-degrees’-impact, respectively. xyD g 60 +ijX!¦X( æ - bzPkÙ&I. 4-33 H8";<Vp-y$ 7 mm =O>P? X! 4.2 km/sec ++t(-1 m/sec U 20 m/sec tAàb&YÇ7T!÷ «8A" 60 ,A9æ b~~2A/ 0@&YÇ6 -ª½D,A9-æ bµ< - 149 - T!G&HÈ89A!"8U8D -æ}A±2ApJ+÷¦B8 ¤¥-ij+ 60_01 VqA234&aA 45_21 8UD-#&CDT!j îD!¤¥EFGj !" #X}-æ D g b-.EFGµ - ,A9- 5@X(-NOä- bD CD(-.BCDZEFG g !#VV7He+t!"#- y<+ÕÖ+tZ§¨°5G-$&æ I «VD ! SF->J!J+KLT!Ô-EM-.ÏÉ89A#Vwo !Gt !" 4-4-3. NOä7T!ijVÂà ±¤¥X(Gj ¤¥X(Gj -NO¦NOäEFG&-P -CDZÂÃ,o!-NOäEFGVR d8(Table XVIII)"Gault et al. (1973)-Moore et alQ(1965)R Comerford(1967)DÅfb ¦-pm-STU~VWU7T!ij,o! ÏÐ Meject Dp -y$ Dc-.89y$RwT!XYZ&-234V[0p[0t -234 Ekp -\i MNOP.B]½QLVA}+õ8 "pV^,A9-õ>V-D56& 0 -xyD56& 90 VT! NOPaA 9,(-õ_p cgs `+t!-±²³VaGj-##+ xy& 0 VT!-mks `+Øb8" M eject = 10 −13.061 D p = 10 Dc = 10 − 5.450 − 4.823 ρ 0t 1.133 (cosϑi ) E kp 2 (4-4-1) 1 6 0p 1 0.357 0.66 E kp (cos ϑi ) ρ 0t (4-4-2) 1 6 0p 1 0.370 0.86 E kp (cosϑi ) ρ 0t (4-4-3) ρ ρ ρ0p Dc 0.2 = 10 0.617 E kp0.013 (cos ϑi ) Dp (4-4-4) 2347T!R~-.ÂÃ{xyX(¦! &234y$+cdÉ8p7T!-NOäEFG &õTMNOP]½Q/É&-I. 4-34 H8"2347T!R ª½D!Ç-t!A234y$7T!Rª½D!Ç4LEFG&õT]½ÑÙqD!6 !"##V -7T!234ª½D!Å-NOäEF - 150 - GqD!#V&HÈ8 Burchell and Mackay (1998)¢£7T!¤¥¶Vv ·e+t!"# ¤¥,A9-2347T!eðGfA,A 9-4LEFGqA#V&HÈT!Vm!#Vp+t!" 8U8D -fGg7T!ij¦¤¥ÙJàåD-# ¤¥-234VhD 8-b/0~ijø- ,o! spall kl6p.BCD!ÂÃ,o!¤¥¶&-mT!# VÊË&T]½+t!" Table XVIII Impact angle dependence and density ratio Projectile Target Impact velocity material density (g/cc) material density (g/cc) km/sec This study Nylon 1.2 Gypsum 1 4.2 Gault (1973) Al 2.8 Basalt 3 6.25 Grey (2002) Al 2.8 ice 1 5.2 Onose (1995) ice 0.92 ice 1 0.5 Vc Dp/Dproj. Ek1.0cos1.37i Ek1.13cos2.0i Ek1.2cos1.42i Ek2.3cos2.6i 3.4 3.1 9 2 I 4-34. ÂÃX!-NOäEFG&HT]½ÑÙ/É Fig. 4-34. Crater depth’s dependence on the impact angle and impact conditions - 151 - 4-5. bkÏÐ%Ò 4-5-1. bVLWÏÐ ±¤¥b 4.2 km/sec &{|V8-¤qnop+bVËD!b /0+¤¥+t!-234~V89qa8=O>P~NO.pqno p+_r,A9steDÏ+DA"J-±¤¥X(¦ NOäy$ 10 cm +t(-¤qno:,o!Äâ)u!NOä ¦-D g#ñ}vwX¦¼aT!j-ÊË&ÍT!#V&xD A"±^+HÈ9A!æ bNOäEFG(4-3-2-4)p ëT!V-NOäw89Ùyz{þ|&}#V-_Æ}~,A9°Þéê+t!"8U8D -±²³,o!Τ¥X(Ó ¦,A9 bD vwX¦wo m gÏÐ&-qno:,o!X! !+T!#V+t}" br+ !&-2ApU LW8pI. 4-35 +t!" ©ª-4L&Uo9GjÏÐ+t!" ±¤¥+ZÏNO7T!¦0-4L 35%U ÏX(¦!"# 60% Îþ L8 +DA-X(¦+t(UÇ:J!pj b 0 T!pV89IH8"!>[X(-X( "/0#X(ª½D!#V\!-# !"/04L &ij0,A9p»ÐeT!#Véê+t!j#IH89ADA" ÎÜxyX( !¦-¤¥üý 0_01 V 0_05 &aAp(3-4-2-4) V-¤¥üý 0_02-0_04 ,Xg 0_06 &aAp(ìí Appendix E &H)&1" ;¦,A9c\æ LWÏÐ-0.58 g-2.8 g Vª½CD!-# æ £T!}A>:+Ù pixel T!qD+t! j->:U ÏÐù»éê+t!#V+t!Vm !"Î5+- }Aª½Dp-. !UU&Öø9A!#V X!n ǽe+t!"ÎÜxy,A9 !¦,A9- pæ p%6éê+t!J9A!j- -æ £T!-%6Dpmp&KV8" ±²³,o!xy¤¥,A9bc\¦B8cÏÐ-4LU ù»!ÏÐ 38 %U 50 %T!"¤¥üý 0_01-0_05 &aA¦ ,A9-5 m/sec r<-1.25 m/sec r<b+ ÏÐ-bc\&}# V+½ÏÐ.B 32 %-12 %T!"1õTV- ÏÐ 21 %-10 %-æÏÐ 88 %-29 %-.B 5 m/sec r<1.25 m/sec r<b+ 9A!#VD!(Table XIX)" - 152 - Table XIX Total mass of fragments ejected lower than the given ejection velocity in the reconstructed vertical impact all ve<10 m/sec ve <5 m/sec ve <2.5 m/sec ve <1.25 m/sec late g 0.59 0.58 0.52 0.4 0.17 early g 4.62 3.15 0.99 0.47 0.44 gray g 0.24 0.23 0.22 0.02 0.02 ij¦,A9[\cÏÐ4LU cW !ÏÐj!-xyX!pVd]qDZ9A!"#-I. 4-35 SH8 45 ¤¥Xwǽ &qa8phU ¦(C Z9A!j-Rdeª½D spall [\ÙåDA#V-J- 60 ,A9 spall Ð4åDA#Vwo - 153 - !" (a) (b) (c) (d) (e) I 4-35. ¡ r <b + LW ÏÐ: ©ª4LU cW ÏÐ+t!"T!ÏÐpX(¢UÇT!VA}£+ #I¤Ø8 (a) ¤¥üý 0_01 V 0_05 U ý 0_02-0_04-.89 0_06 U ¦xyÎÜ%. (b) ¤¥ü ¦xyÎÜ%. (c) 45_01: 45 - Xw½ qa. (d) 60_01: 60 -<6½. (e) 70_01: 70 . Fig. 4-35. Cumulative mass of fragments ejected at a velocity lower than the given one. Vertical axes represent the evacuated masses estimated from crater volumes. Parts of the evacuated mass corresponding to compaction are also indicated. (a) reconstructed data set for one vertical impact employing data from 0_01 and 0_05. (b) reconstructed dataset for one vertical impact employing data from 0_02, 0_04, and 0_06. (c) 45_01: impact experiment at an angle of 45 degrees employing the target box with the slit. (d) 60_1: impact experiment at an angle of 60 degrees. (e) 70_01: impact at an angle of 70 degrees. - 154 - 4-5-2. b1LW¥Ù%Ò m br<+ !NOä¦&T!j-ÎÜxyX ( }Am r<b+ ÏÐ%Ò(I. 4-36-I. 4- 37)-NOäzPk Ù(I. 4-38)D (a) (c) g?zPcÏÐ(I. 4-39)&H8" (b) (d) (e) -0_05 X(¦-xyÎÜ%¦ bkÏ I 4-36. ¤¥üý 0_01Ð%Ò: (a) 1.25 m/sec r<b+ h (b) 2.5 m/sec r<b+ h (c) 5 m/sec r<+ h (d) 10 m/sec r<+ h §e¨K9 Fig. 4-36. Fragment mass-cumulative number distributions of fragments produced by a vertical impact reconstructed from empirical runs No. 0_01, 0_05: (a) ve < 1.25 m/sec, (b) ve < 2.5 m/sec, (c) ve < 5 m/sec, (d) ve < 10 m/sec, (e) all fragments - 155 - (a) (b) (c) (d) (e) -0_06 X(¦-xyÎÜ%¦ bk -0_04I 4-37. ¤¥üý 0_02ÏÐ%Ò: (a) 1.25 m/sec r<b+ h (b) 2.5 m/sec r<b+ h (c) 5 m/sec r<+ h (d) 10 m/sec r<+ h §e¨K9 Fig. 4-37. Fragment mass-cumulative number distributions of fragments produced by a vertical impact reconstructed from empirical runs No. 0_02, 0_04, 0_06: (a) ve < 1.25 m/sec, (b) ve < 2.5 m/sec, (c) ve < 5 m/sec, (d) ve < 10 m/sec, (e) all fragments - 156 - (a) (b) (d) (c) (e) I 4-38. ? N O ä z P £ T ! Ù : (a) 1.25 m/sec r<b+ h (b) 2.5 m/sec r<b+ h (c) 5 m/sec r<+ h (d) 10 m/sec r<+ h §e¨K9 Fig. 4-38. Number of Fragments belongs to each fragment mass bin: (a) ve < 1.25 m/sec, (b) ve < 2.5 m/sec, (c) ve < 5 m/sec, (d) ve < 10 m/sec, (e) all fragments ##H8ÏÐ-.V*Å :+ª½&pVLp p+t(-qDpw89.ÏÐù» 㪽Aj©ÌÍ+t!Vmn 2.5 m/sec r<µb+ 4 mg r<qDæ V 16 mg r:}Aª½D+¦9A!#VuU!"#-æ 2NOäqD/0{89A!78- ÏÐVb Ôw&YA2ANO䪽A#Vw89A!"8Z9- b: ß 2.5 m/sec Vµª»9A!V½-#br+ !-æ U D!íUAV-ª½D spall X(¦!#VD(-NOä «¬É !" b:ß&:!A-X(íUD spall p#J! X}D(-{ÔNOä !X}D!" - 157 - (a) (b) (d) (c) (e) I 4-39. ?NOäzP£T!cÏÐ: (a) 1.25 m/sec r<b+ h (b) 2.5 m/sec r<b+ h (c) 5 m/sec r<+ h (d) 10 m/sec r<+ h §e¨K9 Fig. 4-39. Mass of Fragments belongs to each fragment mass bin: (a) ve < 1.25 m/sec, (b) ve < 2.5 m/sec, (c) ve < 5 m/sec, (d) ve < 10 m/sec, (e) all fragments - 158 - 5. 7 mm "#$ %&'()*+,-./0123456789:/;< ABCD%EFDG6HIJK#LE;< ! 4.2 km/sec !=>?@ !MNOPQRS 45TGUVM /KW23 0_01 XYZ[N\G%E;<PQK 0.03 mg ]^78 !K 0.18 m/sec [N 83 m/sec ;<_` 1110 aCD./IJbc%EFIHde=^ ;<f8gKhij !-PQkl ;<PQ 0.65 mg ]^;< RS#m/F# n;< ! 1 [N 70 m/sec !CD./Jopq_`[Nn;<K()* +,rY[N789:Epst()*+,rYu/vwxy"EqXYZ[Nz "[M;<PQ\G./IJK{|#m/F &'-./23}~)()b789:/;< qvwxy78psMN O ![Nw78;<Jw78;< 2 iu/IJK{|#m/F ;< 9:E;< 2 spall ;<J;;<qvwxy[ N}~)() spall klJ pit klq::-uN:/IJK9:EF w78;<23[N 5 msec ]789:E;<HdvwxyK pit [N 13 mm AB spall klm/#[78 !K 12 m/sec /"E ;<P QK 0.01 g ]^JG%EF 9:E spall ;<HdK 4 mm ]^% I:NK23()*+,Jo%E ¡P¢P#mB£¤¥ uMIJ¦§K 1: 0.68: 0.22 ¨©J./ª«#m/IJK9:E(3-3-1)Fe=[ N\D9:Ew78;<PQi¬L®¯ -0.23 [N-0.55 #mB 9:E spall ;<Z°PQi¬u/L®¯-0.58-0.66 ±(3-3-1)Fspall ;< ;<vwxyJ78 !³´Km/IJ;< !² !JPQ³´Km/IJK µ¶N:/(Melosh, 1984Melosh, 1989)KI: CD9:i·9:Ew 78;<J¸¹%MF w78;< }~)()m/º pit kl[N;¥uE;<K23 [N 5 msec ]»()*+,J¼½WM¾¿12 m/sec ]À mBq¼JÁÂK 2 mm ]À#m/(3-4-2-24-2-1)F;< ¯Ä1/J;< !#789:/# !ÃUw78;< !K 2 m/sec [N 4 m/sec xyÅ)}ÆFw78;<L ®¯ -0.84 [N-1.66 #mBI:45ÇÈ 45_04 # 9:E;<É[uÄ1E L®¯-1.27 JÊ˲#m/F G9:Ew78;<Z-ÌÍÎÏÐÑÌÍÎABÒÓ ./IJ ÔÕ#m/(4-2-3-3)F"E4-2-3-1 #ÖEw78;<m/ I: ´×./;<KØD9:/ Ù&t&'MÂÚÛÜBÝ!Æ()*+,-. /23}~)()bÞ#mBw78;<78ß% }~)() àSÑ./23ÚÛÜBÝ!á./()*+,¢PÑKâãMäåæE% /IJKÝçèé9:/FqI#()*+,ÚÛÜBÝ!á./êiK23A - 159 - Bëì%E£íî-%ïð²ñ./IJABwK789:EJòG%EÌÍÎ óô%EF()*+,;9:EklJqõBSö÷¾klJiå%q øù#m/ SF-Y23ABb9:E£íîKúû./JòG%EFI£íîüý ÷¾kl()*+,ïð²MþAB SF-Y ¿L !IeLK}~)( )8¿[HrY"#;9:E&'%&'rm/[N 78./J%EF 4-3-2 ()*+,÷¾klïð²ñ )¯/IJAB? @²Ä1EF SF-YB !z vmax JI:Kz 1/10 "#./ã./p³τ0.1vmax ,+,¯J%EFJM/vw J%g 4 x 109Pa ()*+,b9:E 20 mm SF-YÝ! 12 MPa p³ 3 µsec £íîKúû%EC°./JSF-YB B 45#Ä1N:Ew;< ! 1.5 m/sec #m !JÊ˲#m/F ¾# Bp³ 0.02 msec #mB4ßØD9:/w78psMNOqNL /J!"#9 #m/F w78;<78psMNOqp³$9 I:NK23£¤ºvw xy[N% / !#789:/IJMNO SF-Y#ëì%E¿L !K&'. !K&JHIJJ'BKèé9:/FTeramoto et al. (2004) ()#*Ã) +, DG456, OAB/[M01# AB, K-¤M¢q:J 1.5 .#9çM/IJMN K&çM/IJè%EFII# SF-Y[N2úº9 "#3· 25 mm Teramoto et al. (2004)CD9:E 404m *Ã)+u /5Î}, 91 m/secMNOI:&'6%Ä1E 18 m/sec #¿L eLK79:/JòG./Jq8ãp³ 0.3 msec MNO 1.4 msec JM/F 0123X9 }~)():+«]w78;<78;!K<Ͼ ²#m/IJMÂ=N:/F¾#w78;< !-PQ® 23;!X9 ./IJ 8>M[ÛEFw78;<-./23;!X9 23;!?$ JJ78;!KttÀ@ABM/IJ78psK1MBw78;<Ji AKÔÕM/IJ78 !Ktt&çM/IJKµ¶N:/F DG9:E;<[NBN:E !]À#789:EZ° PQ;<Z°PQi¬MNOnÃU;<¯CPQÄ1EFw78;<K &ç/[MklC%/-%w78;< ;< Km/E1EJ 2.5 m/sec ]À§ ²% !JPQ³´ !#789:/;< /[wJw 78;<HdzLç&[Nób9:/IJMB;<:+!DK=N: /F - 160 -
© Copyright 2024 ExpyDoc