SOUSEI Program International WS, November 25th, 2014 Understanding and attributing climate changes in the last decade Masahiro Watanabe AORI, University of Tokyo Contributors: H Shiogama, Y Imada, H Tatebe, M Mori, Y Kamae, R K Lestari, T Ogura, M Ishii, M Kimoto and team MIROC Research targets in Theme A Prediction and diagnosis of imminent global climate change Near-term predictability (incl. ENSO predictability) Attribution & mechanisms of past climate changes Event attribution (EA) Clouds and climate sensitivity T Ogura Climate model development for CMIP6 and innovative system for coupled data assimilation M Ishii Timeline of the MIROC group FY2012 2013 2015 2014 2016 2018 2017 post SOUSEI? SOUSEI program Exps using CMIP5 version models CMIP6 model development current (no longer fast) machine next (hopefully faster) machine DECK CMIP6 MIPs * First CMIP6 experiments may be started in early 2016 ENSO & near-term prediction MIROC5-CGCM (T85L40+1degL44) CHFP • Anomaly assimilation for ocean T, S • Initialization for atmos with NCEP reanalysis • 1979-present, 8 members, 4 times a year Feb Prediction skill for Nino3.4 SST anomaly Aug Plans for update (resolution, initialisation) May Nov Imada et al. (2014 submitted) MIROC5-AGCM (T85L40) C20C • 4 types of experiments • 1946-2013, 10 members • 2010-2013 100 members • Definition of natural SST/sea ice SST/sea ice Attribution experiments EA2013 Peterson et al. (2014 BAMS) Radiative forcing Historical PI fixed Historical ALL NST Natural* ALF NAT Attribution experiments Research Issues EA • 2010 Russian heat wave (Watanabe et al. 2013) • 2010 drought in Amazon (Shiogama et al. 2013) • 2012 heavy rain in Japan (Imada et al. 2013) • 2013 heat wave in USA (Shiogama et al. 2014) • 2013 heat wave in Japan (Imada et al. 2014) Attribution of long-term changes • Global warming hiatus (Watanabe et al. 2014) • Recent Eurasian cold winters (Mori et al. 2014) • NH heat waves (Kamae et al. 2014) • Increasing biomass burning in Sumatra (Lestari et al. 2014) Global warming hiatus Internally generated variability? Excess energy to TOA for 2001-2010 (Loeb et al. 2012 Nature Geo; Allan et al. 2014 GRL) Intensification of ocean heat uptake (Meehl et al. 2011 Nature CC; Watanabe et al. 2013 GRL) Associated with the Pacific decadal variability (Meehl and Teng 2012 GRL; Global-mean sea-level change (mm) Global-mean surface temperature (℃) Meehl et al. 2013 JC; Kosaka & Xie 2013 Nature; England et al. 2014 Nature CC; Watanabe et al. 2014 Nature CC; Trenberth et al. 2014 Nature CC; Meehl et al. 2014 Nature CC) Trenberth et al. (2014) UK Met Office (2013) Global warming hiatus Internally generated variability? Excess energy to TOA for 2001-2010 (Loeb et al. 2012 Nature Geo; Allan et al. 2014 GRL) Intensification of ocean heat uptake (Meehl et al. 2011 Nature CC; Watanabe et al. 2013 GRL) Long-term global warming TOA radiative energy imbalance (Net downward) Atmosphere Surface (warmed) Subsurface Hiatus Net TOA imbalance for 2001-2010=0.5∼0.6 Wm2 (still excess energy to the system) Atmosphere Surface (not warmed) 64% 29% Deep ocean cf IPCC (2013) More heat transferred to deep layer Hiatus reproduced in MIROC-CGCM Partial wind overriding experiments MIROC5.2 (T85L40) 5-member ensembles for 1958-2012 * ASYM-H: Tropical (30S-30N) t anomaly replaced with JRA55 reanalysis * ASYM-C: As in ASYM-H but with external forcing fixed at 1850 SAT change from 1990-1999 to 2001-2012 Observations ASYM-H Watanabe et al. (2014, Nature CC) Tropical ocean wind stress anomalies are sufficient to reproduce surface temperature anomaly pattern in the hiatus Hiatus reproduced in MIROC-CGCM Partial wind overriding experiments Decadal wind stress variability substantially contributes to the warming acceleration in the 1980-90s and hiatus in the 2000s CMIP models Obs Decomposition of decadal-mean SAT changes ASYM-H ASYM-C diff. ASYM-H (tropical tDecade anomaly DTINT replaced 1980s with reanalysis) +0.11K 1990s ASYM-C (ASYM-H + 2000s external forcing fixed at 1850) DTINT/DTALL 47% +0.13K 38% -0.11K 27% Watanabe et al. (2014, Nature CC) Substantial contribution of the internal decadal variations Fractional contribution decreases as rising signal of anthropogenic warming Surface air temperature anomaly [℃] Seasonality in warming trends Courtesy of Y Kamae Hiatus seen year round over oceans Hiatus only in DJF over land What has happened in warm seasons? Attribution of increase in NH heat waves MIROC5 ALL runs reproduce increasing f Contribution to heatwave frequency (25-50N) f = fADIR + fASST + fNAT fADIR fNAT fASST 38% 43% 19% Long-term 40% 15% 45% Decadal Combined analysis of ALL, NAT, NST ensembles Considerable contribution of direct radiative Effect of GHGs to increasing heat wave frequency. Kamae et al. (2014 GRL) Hiatus and East Asian summer Given the negative PDO accompanies hiatus ― Higher SST in the western Pacific Stronger subtropical high? Higher SST in the North Pacific Amplifies warming response? What we observed in 2013 hot summer High Warm gets warmer, cold gets colder SAT anomaly over Japan Temperature anomaly (℃) monthly anomaly for 1999-2012 Warm seasons Cold seasons 1960 1980 2000 Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Urabe & Maeda (2014 SOLA) Why cold winters? Due to warm western Pacific (hiatus) & warm Eurasia? Why cold winters occur in the last decade? EOF2 = WACE Decadal-mean winter (DJF) SAT diff from 1994-2003 to 2004-2013 • cold winters • warm winters EOF1 = AO Mori et al. (2014, Nature Geo) • EOF2 = Warm Arctic and Cold Eurasia (WACE) • Eurasian winter SAT explained by a combination between the AO and WACE • The WACE index is highly correlated with BarentsKara sea-ice anomalies (r=-0.81) Arctic sea-ice reduction favors cold Eurasia MIROC4-AGCM (T106L56) 100-member ensembles with Low sea-ice condition in Barents-Kara Sea (LICE) High sea-ice condition in Barents-Kara Sea (HICE) Phase of the WACE pattern (=EOF2) depends on sea-ice anomaly EOF1=AO 31% 20% PDFs of PCs probability (%) MIROC4-AGCM ERA Interim – LICE – HICE 23% 17% probability (%) EOF2=WACE model-PC1 – LICE – HICE model-PC2 Mori et al. (2014, Nature Geo) Sea-ice driven signal against noise SAT difference (˚C) Ensemble mean SAT difference (LICE-HICE) over central Eurasia sampling size of ensemble member Ensemble mean WACE index for LICE & HICE mean PC2 LICE HICE sampling size of ensemble member minimum number for robust signal detection Robust circulation response to sea-ice anomaly with only ≥ 20 members, weak SN ratio for SAT AO acts as noise Mori et al. (2014, Nature Geo) Summary Supported by the SOUSEI program, MIROC group has actively worked on attribution of recent climate changes and weather events as well as climate prediction The outcomes have been/will be beneficial to Physical understanding of changing climate Outreach to public The above activity willclimate be Collaboration with services continued/expanded towards CMIP6, hopefully funded by the post-SOUSEI backup Global warming hiatus Hypotheses Externally forced response? Weakening of solar activity (Kaufmann et al. 2011 PNAS) Increase of the stratospheric aerosols (Solomon et al. 2011 Science) Accumulated effect of minor volcanoes (Schmidt et al. 2014 Nature Geo) Internally generated variability? Climate ‘noise’ (Easterling and Wehner 2009 GRL) Intensification of ocean heat uptake (Meehl et al. 2011 Nature CC; Watanabe et al. 2013 GRL) Associated with the Pacific decadal variability (Meehl and Teng 2012 GRL; Meehl et al. 2013 JC) Unclassified Decrease of the stratospheric water vapor (Solomon et al. 2010 Science) Energy is still in Weakness of the hypothesis: Externally forced hiatus Top of Atmosphere (TOA) radiation budget by Clouds and the Earth's Radiant Energy System (CERES) indicates net storage of 0.5±0.43 W/m2 into the climate system for 2001-2010 Loeb et al. (2012 Nature Geo) Weilicki et al. (1996 BAMS) Where is the missing energy? Ocean interior is warming Continuous rise of global-mean sea level UK Met Office (2013) Intensified Pacific trades and heat uptake Partial assimilation experiments using CGCM * Eastern Pacific cooling hiatus (Kosaka and Xie 2013 Nature) * Intensified Pacific trades in the 2000s hiatus w/ increasing ocean heat uptake (England et al. 2014 Nature CC) Model response to 1992-2011 wind trend England et al. (2014) Partial Wind Overriding historical experiments MIROC5.2 (T85L40) 5-member ensembles for 1958-2012 Excess energy to the system * ASYM-H: Tropical (30S-30N) t anomaly replaced with JRA55 reanalysis * ASYM-C: As in ASYM-H but with external forcing fixed at 1850 2001-2010 average: 0.64±0.26 W/m2 (ASYM-H) 0.5±0.43 W/m2 (Loeb et al. 2012 Nature Geo) 0.62±0.43 W/m2 (Allan et al. 2014 GRL) TOA radiative imbalance ASYM-H Watanabe et al. (2014, Nature CC) Attribution of hiatus Contribution of natural internal variability & external forced component to the global warming acceleration & hiatus Substantial contribution of the internal decadal variations Fractional contribution decreases as rising signal of anthropogenic warming Decomposition of decadal-mean SAT changes ASYM-H Decade 1980s 1990s 2000s ASYM-C diff. DTINT DTINT/DTALL +0.11K 47% +0.13K 38% -0.11K 27% Watanabe et al. (2014, Nature CC) Attribution of hiatus Distinct structure of ocean warming Zonal-mean temperature change from 1990-1999 to 2001-2012 Obs (Ishii) DTALL =ASYM-H DTINT More heat uptake in the subtropics by the wind-driven circulation DTEXT More heat uptake in northern high latitudes (mostly North Atlantic) Watanabe et al. (2014, Nature CC) Introduction In the recent decades . . . 北極域で温暖化が顕著 (北極温暖化増幅) ユーラシアの中緯度域で寒冷化 The 10-year mean winter (DJF) SAT difference between 1994-2003 and 2004-2013. 再解析データを用いた研究 北極海における急速な海氷の減少が ユーラシアの寒冬を強制していることを示唆 (e.g. Liu et al. 2012; Tang et al. 2013) モデリング研究 ロバストな大気応答は未だに得られていない (e.g. Honda et al. 2009; Peings & Magnusdottir 2014) 非常に活発な冬の大気の内部変動が、海氷の減少 に対する大気応答の検出を難しくしている。 疑問 最近の寒冬の増加は海氷減少の応答?自然変動? AGCMを用いた大規模アンサンブルシミュレーションによっ て、冬に減少が著しいバレンツ・カラ海の海氷減少が、ユー ラシアの中緯度域に低温偏差を強制し得ることを示す。 地表気温偏差に対する大気の内部変動の寄与と、海氷の 変動に対する大気応答の寄与とに分離し、定量化する。 National Snow & Ice Data Center Model : MIROC4-AGCM (T106L56) Period : 9月〜3月 GHG : 2011–2012 (RCP4.5) 状態 Ensemble : 100 メンバー SST : 月別気候値 (HadISST, 1979-2000) sea-ice concent. (%) Experimental Design バレンツ・カラ海の海氷密接度 (9月) high-ice years low-ice years 2種類のアンサンブル実験: low-ice (LICE) 実験と high-ice (HICE) 実験 バレンンツ・カラ海で海氷が多かった10年と少なかった10年でコンポジットした 海氷密接度場を、 それぞれ LICE と HICE 実験で用いた。 LICE–HICE (SON) LICE–HICE (DJF) change in recent decade (DJF) バレンツ・ カラ海 sea-ice concentration (%) Observed and simulated change in SAT, SLP and Z500 (DJF) Difference of composite fields (LICE-HICE) Z500 (m) ERA Interim Z500 (m) AGCM ensemble mean near-surface air temperature (˚C) モデルのアンサンブル平均は、観測の特徴をよく再現している。 stippling indicates 95% statistical confidence Two leading modes governing winter SAT anomalies (OBS) EOF1 (31%) SAT & SLP(cont.) & V10 AO r = 0.85 EOF2 (23%) decrease WACE r = -0.81 increase EOF2 は、“Warm Arctic and Cold Eurasia” (WACE) パターン。 PC2 は、バレンツ・カラ海の海氷偏差と強い相関(r = -0.81)。 バレンツ・カラ海の海氷変動に付随する地表気温の変動はWACEで表現され、 それは北極振動とは独立で個別の変動である。 Two leading modes governing winter SAT anomalies (OBS) EOF1 (31%) SAT & SLP(cont.) & V10 r = 0.85 EOF2 (23%) decrease r = -0.81 increase ユーラシア中央部における寒冬は、北極振動(内部変動)とWACE(海氷減少による応答) の組み合わせで説明される。 近年の寒冬の頻度の増加には、WACE の寄与が大きいことが示唆される(WACEは有意 な正のトレンドを示すので)。 Two leading modes governing winter SAT anomalies (AGCM) ERA Interim EOF1 (31%) AGCM EOF1 (20%) AO EOF2 (23%) EOF2 (17%) WACE 200メンバーのアンサンブルシミュレーションの卓越変動は、観測のそれをよく再現する。 WACEが卓越変動であるか否かは、海氷の変化に依存しない!(intrinsic mode) しかしながら、WACEの出現頻度は海氷偏差に依存する。 Scatter plots of PC scores ERA Interim AGCM contour: PDF of PCs for both LICE and HICE • cold winters • warm winters difference between LICE and HICE PDFs LICE の寒冬 (blue •) の頻度は、HICE の寒冬 (blue x ) の頻度よりも明らかに多い。 逆もまたしかり (red marks; • and x)。 実際に、LICE の 14.4% のメンバーが、ユーラシア大陸中央部で寒冬を示し、それは HICE の 6.2% よりも 2倍以上大きい。 * The cold and warm winters over central Eurasia (60E–120E, 40N–60N) are defined by averaged SAT anomalies above and below one standard deviation, respectively. MIROC in CMIP5 Who are we Joint modeling group among AORI Univ of Tokyo, National Institute for Environmental Studies (NIES), and JAMSTEC Model lineup CGCM MIROC5 (T85L40+1deg) MIROC4h (T213L56+0.25deg) ESM MIROC-ESM (T42L80+1deg) MIROC-ESM-CHEM (T42L80+1deg) MIROC in CMIP6 Support for modeling activity Program for Risk Information on Climate Change (‘SOUSEI’ program), 2012-2016, 5000K USD Model lineup CGCM MIROC5 (T85L40+1deg)MIROC6-CGCM (T85L56+1deg) MIROC4h (T213L56+0.25deg) ESM MIROC-ESM (T42L80+1deg)MIROC6-ESM (T85L80+1deg) MIROC-ESM-CHEM (T42L80+1deg) NICAM AGCM (7km/14km/28km) Attribution of hiatus Wind stress variability responsible for the global-mean SAT change 10-member AMIP runs w/ and w/o anthropogenic warming (AMIP-H & AMIP-C) reveal the decadal t variability is approximately independent of the global warming PC timeseries t EOF1 reanalysis Global-mean SAT t EOF1 AMIP-H Watanabe et al. (2014, Nature CC) Strengthening of heat uptake efficiency Discrepancy in k between ‘observations’ and CMIP5 Simplified energy balance Assuming small Td and steady Ts, approximate balance will be Heat uptake efficiency k may be estimated using obs DT, DF and GCM-based range of feedback parameters l What’s the process making differences in k? Watanabe et al. (2013 GRL) Pacific Decadal Oscillation (PDO) Dominant natural decadal variability in the Pacific atmosphere-ocean system PDO tends to be in its negative phase during 2000-2012 Trenberth et al. (2014 Nature CC) Global-mean surface temperature anomaly [℃] Record September 2014 Linear trend = 0.61 ℃/century +0.34 ℃ (wrt 1981-2010) In reality the record high temp continues from June ! http://www.data.jma.go.jp/cpdinfo/temp/sep_wld.html Global-mean surface temperature anomaly [℃] Record October 2014 Linear trend = 0.63 ℃/century +0.34 ℃ (wrt 1981-2010) In reality the record high temp continues from June ! http://www.data.jma.go.jp/cpdinfo/temp/oct_wld.html Has hiatus started changing? http://www.data.jma.go.jp/cpdinfo/temp/oct_wld.html Decadal forecast suggests the end of hiatus? ….. But skill lacks in the tropical Pacific Operational forecast by Hadley Centre 5-95% range of the forecast from 2014 Nov2008-Oct2013 surface temperature anomaly http://www.metoffice.gov.uk Simulated ocean warming Zonal-mean ocean temperature anomaly for 2001-2010 Observations (Ishii data) MIROC5 (11-member historical runs) Warming overestimated, but the structure not too bad Watanabe et al. (2013 GRL) Dominant internal variability 2001-2010 SST anomalies in MIROC5 For ith member (i=1,N) Ensemble mean does not show the hiatus There are members simulating hiatus How to extract the structure associated with the hiatus in the model? Ti T Ti Thiatus ‘Hiatus’ SST pattern (regression across members) T SATg Obs SST anomaly (2000-2012) Watanabe et al. (2013 GRL) Anthropogenic SST changes Estimated from CMIP AOGCM attribution experiments SST trends 1946-2012 Fraction of interannual/decadal components to linear trends MIROC3.2 (10members) CMIP5 MME Watanabe et al. (2014, Nature CC) Attribution of hiatus Does wind stress trend (ie weakening of the Walker cell) play a role? -NO. Global mean SAT time series is virtually unchanged w/o trend Watanabe et al. (2014, Nature CC) Attribution of hiatus Wind stress variability responsible for ENSO = EOF2 10-member AMIP runs w/ and w/o anthropogenic warming reveal the interannual t variability is almost independent of the global warming Watanabe et al. (2014, Nature CC)
© Copyright 2024 ExpyDoc