重力波天体の電磁波フォローアップ観測

吉田道利(広島大学)
2014/09/10
光赤天連シンポジウム
1
重力波とは何か?
一般相対論によると物体は周りの
時間と空間(時空)を歪める。
平坦な時空
その物体が 加速度運動をすると時
空の歪みが光速で波として伝わる。
歪んだ時空
これが 重力波である。
まだ直接検出はされていない!
しかし、重力波を放出する天体候補は存在! 重力波天体観測に 重力波(イメージ)
さらに重力波以外の信号も出す!
よる宇宙物理が可能
2014/09/10
2
光赤天連シンポジウム
KAGRA計画
VIRGO (仏伊)
2014/09/10
GEO(英独)
光赤天連シンポジウム
3
重力波検出の特徴
レーザー干渉計では重力波の振幅 h (無次元)を測定する。
h∝1/d ( dは重力波源までの距離)
感度は距離の逆数に比例
重力波源数∝体積∝ 距離3 ∝感度-3
感度が10倍上がるとイベントは1000倍
現在のLIGOやiKAGRAは連星中性子星
合体を100年に1回検出できる。
bKAGRA
KAGR
A
国立天文台内の
TAMA300 iKAGRA
2016年を目途に10倍程度感度アップ
すると年間10イベント程度が期待される
(KAGRAも同時期同様な感度に到達)
確実に重力波が直接検出される
2014/09/10
光赤天連シンポジウム
4
2014/09/10
光赤天連シンポジウム
5



Electro-magnetic follow-up of gravitational
wave transients detected by advanced GW
detectors (LIGO, Virgo and KAGRA)
Utilize existing optical, infrared, and radio
astronomical facilities of Japanese
institutes
Extension of A02 sub-project of the
“Kakenhi” innovative area of “multimessenger observations of GW sources”
2014/09/10
光赤天連シンポジウム
6
Searching for EM
counter part is crucial
for understanding the
nature of GW sources
Metzger & Berger 2012
The most promising GW
sources  NS-NS merger
2014/09/10
光赤天連シンポジウム
7
2014/09/10
光赤天連シンポジウム
8












Michitoshi Yoshida (PI), Hiroshima University
Kouji Ohta, Kyoto University
Kentaro Motohara, University of Tokyo
Mamoru Doi, University of Tokyo
Tomoki Morokuma, University of Tokyo
Kenshi Yanagisawa, OAO, NAOJ
Masaomi Tanaka, NAOJ
Koji S. Kawabata, Hiroshima University
Takahiro Nagayama, Kagoshima University
Fumio Abe, Nagoya University
Kenta Fujisawa, Yamaguchi University
Nobuyuki Kawai, Tokyo Institute of Technology
2014/09/10
光赤天連シンポジウム
9
Japan Coordinated network for transients observation
A part of the project “Multi-messenger Observations of GW sources”
* collaborating with the KAGRA data analysis team
* science cases: GRBs, supernovae, blazars, etc.
Main features:
5 deg2 opt. imaging w/ 1m
1 deg2 NIR imaging w/ 1m
opt-NIR spectroscopy w/ 1–8m
opt-NIR polarimetry
• 1m Kiso Schmidt telescope
6 deg2 camera  36 deg2
•
•
•
★
50cm telescope
(Hiroshima Univ.
2014)
•
1.5m Kanata telescope
50cm MITSuME
91cm W-F NIR camera of NAOJ
1 deg2 NIR camera
Yamaguchi 32m radio telescope
★
3.8m telescope
(Kyoto Univ.
2015)
Subaru @Hawaii
★
★
★
IRSF (Nagoya Univ.)
@ South Africa
2014/09/10
MOA-II (Nagoya Univ.)
光赤天連シンポジウム
@ New
Zeeland
miniTAO (Tokyo Univ.)
@ Chile
10
Detection of EM counterpart of GW transient
with wide-field observations
Multi-mode observations 
physics of EM counterpart
The nature
of GW transient
GW alert
LIGO/Virgo/KAGRA
alert
Wide field obs.
EM counterpart
X-γ obs.
(A01)
Rapid identification
alert to other facilities
Coop.
Kiso 6x6 deg2
Camera
OAO IR WFC
Neutrino obs.
(A03)
Yamaguchi32m
NRAO 45m
Multi-wavelen.
Multi-mode obs.
detailed study
detailed study
identification
emission mechanism
redshift -> distance
emission mechanism
IRSF
Coop.
theory
(A05)
2014/09/10
MOA-II 1.5x1.5deg2
Camera
miniTAO
World-wide obs.
Kanata
long term monitor
Subaru
event evolution
HinOTORI 50cm
光赤天連シンポジウム
Kyoto 3.8m
11
2014/09/10
光赤天連シンポジウム
12
2014/09/10
光赤天連シンポジウム
13
Pipeline
software for
transient
detection for
KISS project
Image subtraction method to detect transient point sources
 reference images: SDSS, 2MASS, Pan-STARRS, etc.
If there is no reference image available, detect
all the point sources in the object image.
Catalog matching and select uncatalogued point sources.
Exclude moving objects using multiple exposure data and
asteroid catalog.
Select rapidly decaying candidates using multiple exposure data
and multi-sites observation data.
Send the
candidate
information
to GW
collab.
Check the coincidence between the positions of the candidates
and nearby galaxy locations and high energy satellite alert.
Keep other transient candidates for next day observation. Make
follow-up2014/09/10
observation for candidate
objects at least for 3 nights.
光赤天連シンポジウム
Try to find slowly brightening and decaying objects.
14

What we should consider for GW follow-up
1. Large uncertainty of localization (~10 – 100
deg2).
2. Quick and reliable selection of EM counterpart from a large number of candidates
(various kinds of transients, ex. SNe, CV,
AGN, etc., would be detected by wide-field
observations).
3. Follow-up of the EM candidates with multiwavelength and multi-mode observations.
4. Continuous follow-up for detecting slowly
changing EM counterpart (ex. macro-novae).
2014/09/10
光赤天連シンポジウム
15
Test Follow-up Observation for a Fermi
GBM alert w/ Kiso-Schmidt/KWFC
✓ Kiso Schmidt telescope (1.05m) + Kiso Wide Field Camera (KWFC; Sako+2012, SPIE)
✓ 2.2 x 2.2 deg2 field-of-view, 8 CCDs (2k x 4k)
✓ Quick image subtraction system is almost ready by Kiso Supernova Survey (KISS).
✓ Large storage (30TB) for SDSS reference images is being prepared.
✓ GBM416242156: 2014/03/11, 14:49, UT
✓ Localization error of Gamma-ray Burst Monitor (GBM) from Fermi satellite is comparable
to that of GW.
✓ GRB is “MOST_LIKELY”
✓ GBM localization
✓ systematic error: 2-3 deg (Singer+2013)
2014/09/10 error: ~3 deg
光赤天連シンポジウム
✓ statistical
16
FINAL_POSITION (3.32 deg stat. error)
2
0
1
0
1
1
1
2
2
0
0
iPTF possible
counterpart
2
2
2
0
0
2
2
2
0
0
12.5 deg
1
SDSS
2014/09/10
1
1
光赤天連シンポジウム
GND_POSITION (2.72 deg stat. error)
17
- KWFC 7+9 pointings
- g-band
- 180 sec exposure
# iPTF counterpart
could be a ghost... (no
X-ray counterpart there
by Swift)
2014/09/10
光赤天連シンポジウムKWFC
image
18



We are developing a coordinated network of opticalinfrared-radio observations for follow-up of GW transients,
J-GEM.
The network contains several existing small opticalinfrared telescopes in Japan, South-Africa, New Zeeland
and Chile.
We exchanged MoU with the LIGO/Virgo collaboration for
EM follow-up this April.
2020年代には複数の重力波望遠鏡が立ち上がる
 NS-NS合体の場合、距離限界は200Mpc
重力波天文学は必然的にマルチメッセンジャー天文学
(電磁波多波長+粒子)
 光赤外の大きな方向性として考えるべき
2014/09/10
光赤天連シンポジウム
19