Ogasawara, Haruhiko Citation Behaviormetrika (2

ESTIMATION OF ABILITY USING PSEUDOCOUNTS IN
ITEM RESPONSE THEORY
Title
Author(s)
Citation
Behaviormetrika (2014), 41(1): 131-146
Issue Date
URL
Rights
Ogasawara, Haruhiko
2014-09
http://hdl.handle.net/10252/5380
ファイルの原本はJSTで公開されているものである。
This document is downloaded at: 2015-01-31T23:48:18Z
Barrel - Otaru University of Commerce Academic Collections
B
e
h
a
v
i
o
r
m
e
t
r
i
k
a
, , ,
Vo1
.41 No.1 2014 131-146
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSINITEM
RESPONSETHEORY
HaruhikoOgasawara*
Amethodf
o
re
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
yu
s
i
n
gp
s
e
u
d
o
c
o
u
n
t
si
nd
i
c
h
o
t
o
m
o
u
si
t
e
mr
e
s
p
o
n
s
e
m
o
d
e
l
si
sg
i
v
e
nwhena
s
s
o
c
i
a
t
e
di
t
e
mp
a
r
a
m
e
t
e
r
sa
r
eknowno
re
s
t
i
m
a
t
e
db
yas
e
p
a
r
a
t
e
c
a
l
i
b
r
a
t
i
o
ns
a
m
p
l
eo
fe
x
a
m
i
n
e
e
sw
i
t
ht
h
es
i
z
eo
fa
na
p
p
r
o
p
r
i
a
t
eo
r
d
e
r
.T
hep
s
e
u
d
o
c
o
u
n
tm
i
n
i
m
i
z
i
n
gt
h
ea
s
y
m
p
t
o
t
i
cmeans
q
u
a
r
ee
r
r
o
ri
sa
l
g
e
b
r
a
i
c
a
l
l
yo
b
t
a
i
n
e
d
.Though
,
af
i
x
e
dl
o
w
e
rboundf
o
rt
h
ep
s
e
u
d
o
c
o
u
n
t
t
h
ep
s
e
u
d
o
c
o
u
n
td
e
p
e
n
d
so
nunknowna
b
i
l
i
t
y
i
sd
e
r
i
v
e
du
n
d
e
rt
h
el
o
g
i
s
t
i
cm
o
d
e
lw
i
t
he
q
u
i
v
a
l
e
n
ti
t
e
m
s
. Thel
o
w
e
rboundi
snum
町田
i
c
a
l
l
ys
h
o
w
nt
ob
er
e
a
s
o
n
a
b
l
eu
n
d
e
rt
h
e3
p
a
r
a
m
e
t
e
rl
o
g
i
s
t
i
cm
o
d
e
lw
i
t
ha
n
dw
i
t
h
o
u
t
m
o
d
e
lm
i
s
s
p
e
c
i
f
i
c
a
t
i
o
n
.
1
. Introduction
I
nitemr
e
s
p
o
n
s
et
h
e
o
r
y(
I
R
T
)e
s
t
i
m
a
t
i
o
no
ft
h
ea
b
i
l
i
t
yo
rp
r
o
f
i
c
i
e
n
c
yl
e
v
e
lo
fan
examineei
soneo
ft
h
emainp
u
r
p
o
s
e
so
fthea
s
s
o
c
i
a
t
e
da
b
i
l
i
t
yt
e
s
t
. Amongv
a
r
i
o
u
s
,
t
h
emaximuml
i
k
e
l
i
h
o
o
de
s
t
i
m
a
t
o
r(MLE;Lordう 1
9
5
3
)hasbeen
e
s
t
i
m
a
t
o
r
so
fa
b
i
l
i
t
y
ab
a
s
i
co
n
e
. Themaximumap
o
s
t
e
r
i
o
r
io
rBayesmodale
s
t
i
m
a
t
o
r(BME;Samejima
1969う Chapter2
;Bock&A
i
t
k
i
n,
1
9
8
1
)i
sa
l
s
of
a
m
i
l
i
a
r,
wheret
h
estandardnormal
p
r
i
o
ri
st
y
p
i
c
a
l
l
yu
s
e
d
.Thes
o
c
a
l
l
e
dweightedl
i
k
e
l
i
h
o
o
d(WL)byWarm(
1
9
8
9
)g
i
v
e
s
t
h
eW Le
s
t
i
m
a
t
o
r(WLE)removingt
h
easymptoticb
i
a
so
ft
h
ec
o
r
r
e
s
p
o
n
d
i
n
gMLE
山 (
1
9
8
9
)methodcanbes
e
e
na
sa
whent
h
eIRTmodeli
sc
o
r
r
e
c
t
l
ys
p
e
c
i
f
i
e
d
. Warrr
i
r
t
h1
9
9
3
)
.
s
p
e
c
i
a
lc
a
s
eo
ft
h
eweighteds
c
o
r
eo
rt
h
ep
e
n
a
l
i
z
e
dl
i
k
e
l
i
h
o
o
d(
s
e
ee
.
g F
Ogasawara (
2
0
1
2
a
)g
a
v
et
h
e asymptotic p
r
o
p
e
r
t
i
e
so
ft
h
e MLEunder p
o
s
s
i
b
l
e
BMEand
modelm
i
s
s
p
e
c
i
f
i
c
a
t
i
o
n(
p
.
m
.
m
.
)
. Ogasawara(
2
0
1
3
a
)d
e
a
l
twitht
h
eMLE,
WLEa
ss
p
e
c
i
a
lc
a
s
e
so
ft
h
ee
s
t
i
m
a
t
o
rbyt
h
eweighteds
c
o
r
ewithag
e
n
e
r
a
lw
e
i
g
h
tt
h
a
t
c
o
r
r
e
s
p
o
n
d
st
ot
h
ef
i
r
s
td
e
r
i
v
a
t
i
v
eo
ft
h
el
o
gp
r
i
o
rd
e
n
s
i
t
ywithr
e
s
p
e
c
tt
ot
h
ea
b
i
l
i
t
y
白e
df
o
r
m
u
l
a
t
i
o
n,
Ogasawara(
20
l3
a
)
parameteri
nt
h
ec
a
s
eo
ft
h
eBME.Undert
h
i
su
n
i
t
h
easymptoticmeans
q
u
a
r
ee
r
r
o
r(AMSE)o
ft
h
e
g
a
v
et
h
easymptoticp
r
o
p
e
r
t
i
e
se
.
g
.,
e
s
t
i
m
a
t
o
rwitht
h
eg
e
n
e
r
a
lw
e
i
g
h
t
.
抗
i
temp紅
a
r
担
a
metersa
r
eassumed七obek
王n
owno
rt
ohave五xed
I
nt
h
eabovemethods,
V
刊a
l
u
悶e
b
i
出
l
日
i
t
匂
ye
s
t
i
m
a
t
o
rwhent
h
ea
s
s
o
c
i
a
t
e
ditemparametersa
r
ee
s
t
i
m
a
t
e
dbyas
e
p
a
r
a
t
e
t
h
e油
a
o
ritemc
a
l
i
b
r
a
t
i
o
n
. Ogasawara(
2
0
1
3
b
)a
l
s
oshowed
sampleo
fexamineeswiths
i
z
eN f
2
th
抗 w
henN i
so
fo
r
d
e
rO
(
η5/ ),
whereηist
h
enumbero
fi
t
e
m
sぅ t
h
easymptoticc
u
う
う
・
う
う
K巴y Wordsα
ndPhα
s
e
s
:3
p
a
r
a
m
e
t
e
rl
o
g
i
s
t
i
cm
o
d
e
l
jmeans
q
u
a
r
ee
r
r
o
r
ja
s
y
m
p
t
o
t
i
cb
i
a
s
ja
s
y
m
p
t
o
t
i
c
v
a
r
i
a
n
c
e
jp
s
e
u
d
o
c
o
u
n
t
jB
a
y
e
sm
o
d
a
l
ja
b
i
l
i
t
y
.
*O
t
a
r
uU
n
i
v
e
r
s
i
t
yo
fC
o
m
m
e
r
c
e
T
h
i
sw
o
r
kw
a
sp
a
r
t
i
a
l
l
ys
u
p
p
o
r
t
e
db
yaG
r
a
n
t
i
n
A
i
df
o
rS
c
i
e
n
t
i
f
i
cR
e
s
e
a
r
c
hf
r
o
mt
h
eJ
a
p
a
n
e
s
eM
i
n
i
s
七r
y
o
fE
d
u
c
a
t
i
o
n,
C
u
l
t
u
r
e,
S
p
o
r
t
s,
S
c
i
e
n
c
ea
n
dT
e
c
h
n
o
l
o
g
y
,
N
o
.
2
3
5
0
0
3
41
.
A
u
t
h
o
r
'
sa
d
d
r
白日 s
:D
e
p
a
r
t
m
e
n
to
fI
n
f
o
r
m
a
t
i
o
n乱n
dM
a
n
a
g
e
m
e
n
tS
c
i
e
n
c巴, O
t
a
r
uU
n
i
v
e
r
s
i
t
yo
fComm巴r
c
e,
3
5
2
1,
M
i
d
o
r
i,
O
t
a
r
u0
4
7
8
5
0
1,
J
a
p
a
n
.E
m
a
i
l
:h
o
g
a
s
a
@
r
e
s
.
o
t
a
r
u
u
c
.
a
c
.
j
p
,
"
H
.O
g
a
s
a
w
a
r
a
1
3
2
mulantsupt
ot
h
ef
o
u
r
t
ho
r
d
e
randt
h
eh
i
g
h
e
r
o
r
d
e
ra
s
y
m
p
t
o
t
i
cv
a
r
i
a
n
c
eo
ft
h
ea
b
i
l
i
t
y
e
s
t
i
m
a
t
o
rwitht
h
eg
e
n
e
r
a
lw
e
i
g
h
tu
s
i
n
ge
s
t
i
m
a
t
e
ditemp
a
r
a
m
e
t
e
r
sa
r
ei
d
e
n
t
i
c
a
lt
o
t
h
o
s
ewhent
h
eitemp
a
r
a
m
e
t
e
r
sa
r
elmown.
h
edichotomousr
e
s
p
o
n
s
emodeli
sused,
wheret
h
e2xnc
o
n
t
i
n
g
e
n
c
y
I
nt
h
i
spaper t
t
a
b
l
ef
o
rc
o
r
r
e
c
tandi
n
c
o
r
r
e
c
tr
e
s
p
o
n
s
e
sbyanexamineei
sf
o
r
m
u
l
a
t
e
dwithni
t
e
m
s
b
e
i
n
gg
e
n
e
r
a
l
l
yd
i
s
t
i
n
c
t
.I
nt
h
et
a
b
l
e,
t
h
e
r
ea
r
en1'
sandn0s
.The2x1c
o
l
l
a
p
s
e
d
wheret
h
e
t
a
b
l
ef
o
rt
h
enumberso
fc
o
r
r
e
c
tandi
n
c
o
r
r
e
c
tr
e
s
p
o
n
s
e
scanbeo
b
t
a
i
n
e
d,
h
en
u
m
b
e
r
c
o
r
r
e
c
ts
c
o
r
ei
sn
o
tn
e
c
e
s
s
a
r
i
l
yt
h
e
sumo
ft
h
etwof
r
e
q
u
e
n
c
i
e
si
s叫 thought
伍c
i
e
n
ts
t
a
t
i
s
t
i
cf
o
rt
h
ea
b
i
l
i
t
yparameteru
n
l
e
s
ss
p
e
c
i
a
lmodelse
.
g
,
・t
h
e1
p
a
r
a
m
e
t
e
r
s
u
l
o
g
i
s
t
i
cmodel(1PLM)a
r
eu
s
e
d
. Asas
p
e
c
i
a
lc
a
s
eo
ft
h
e1PLM,
t
h
el
o
g
i
s
t
i
cmodel
市 a
l
e
n
ti
t
e
m
sw
i
t
h
o
u
tg
u
e
s
s
i
n
gparameters仏
(
LME;Bi
註
r
口由
I a
u
r
立
r
I
叫
withe
q
l
t
ω
o
t
吐
h
珂eb
i
n
o
m
i
a
le
r
r
o
rmodel(
L
o
r
d& No
v
i
c
l
王
ぅ 1
9
6
8ぅ Chapter2
3
)
.
A pseudocount(PC)i
sana
r
t
i
f
i
c
i
a
lf
r
e
q
u
e
n
c
yt
obeaddedt
ot
h
ec
e
l
l
so
ft
h
ec
o
n
b
e
t
t
e
r
"e
s
t
i
m
a
t
i
o
no
fa
s
s
o
c
i
a
t
e
dp
a
r
a
m
e
t
e
r
s
.I
nt
h
e
t
i
n
g
e
n
c
yt
a
b
l
ei
no
r
d
e
rt
ohave“
v
a
r
i
o
u
sv
a
l
u
e
so
ft
h
e
c
a
s
eo
ft
h
eb
i
n
o
m
i
a
lp
r
o
p
o
r
t
i
o
nwi
tht
h
e2x1c
o
n
t
i
n
g
e
n
c
yt
a
b
l
e,
pseudocounthavebeenused,
whichw
i
l
lbea
d
d
r
・
e
s
s
e
dl
a
t
e
r
.Thep
seudocountmethod
cana
l
s
obes
e
e
na
saw
e
i
g
h
t
e
ds
c
o
r
emethod,
whichg
i
v
e
st
h
ea
s
y
m
p
t
o
t
i
cp
r
o
p
e
r
t
i
e
s
o
ft
h
ea
b
i
l
i
t
ye
s
t
i
m
a
t
o
rwitht
h
ep
s
e
u
d
o
c
o
u
n
t
.
h
epseudocountwithminimizedAMSEi
sd
e
r
i
v
e
d
.U
n
f
o
r
t
u
n
a
t
e
l
y
,
I
nt
h
i
spaperぅ t
t
h
eo
p
t
i
m
a
lpseudocountdependsont
h
ep
o
p
u
l
a
t
i
o
na
b
i
l
i
t
yt
obee
s
t
i
m
a
t
e
d
.However,
whent
h
eLMEh
o
l
d
s,
a五xedl
o
w
e
rboundo
ft
h
epseudocounti
sf
o
u
n
d
. Thel
o
w
e
r
boundando
t
h
e
rv
a
l
u
e
so
f五xedpseudocountsa
r
ei
l
l
u
s
t
r
a
t
e
di
nt
h
ec
a
s
eo
ft
h
ef
a
m
i
l
i
a
r
3
p
a
r
a
m
e
t
e
rl
o
g
i
s
t
i
cmodel(3PLM)withandw
i
t
h
o
u
tm.m. wheret
h
eitemparame
t
e
r
sareassumedt
obeknowno
re
s
t
i
m
a
t
e
dundert
h
ec
o
n
d
i
t
i
o
no
fN = O
(
η
5
/
2
)
.
Asymptoticands
i
m
u
l
a
t
e
de
s
t
i
m
a
t
i
o
ne
r
r
o
r
si
nan
u
m
e
r
i
c
a
li
l
l
u
s
t
r
a
t
i
o
nshowt
h
a
tt
h
e
l
o
w
e
rboundo
b
t
a
i
n
e
dundert
h
eLMEi
sr
e
a
s
o
n
a
b
l
eeveni
nt
h
ec
a
s
eo
ft
h
e3PLMwith
andw
i
t
h
o
u
tm.m.
う
う
う
2
. Estimationusingpseudocounts
L
e
tUm(m= 1,・・・ぅ η
)bet
h
edichotomousv
a
r
i
a
b
l
et
a
k
i
n
gv
a
l
u
e
so
f1and0f
o
r
c
o
r
r
e
c
tandi
n
c
o
r
r
e
c
tr
e
s
p
o
n
s
e
s,
r
e
s
p
e
c
t
i
v
e
l
yt
ot
h
em-thitembyanexamineewith
a
b
i
l
i
t
y8
.I
nt
h
ec
a
s
eo
ft
h
e3PLM
)=Cm十イ
Pm三 P
r
(
U
1
8αm,
b
r Cm
m=1
ぅ
川
1C
m
/n
Qm三 1-Pm (m= 1ぅ・・・ ,n)
(
2
.
1
)
whereD =1
.7
;andαm,
b
ndCm a
r
et
h
eitemp
a
r
a
m
e
t
e
r
sf
o
rt
h
em-thi
t
e
m
. The
ma
う
mainr
e
s
u
l
t
si
nt
h
i
spapera
l
s
oh
o
l
dwhent
h
eitemp
a
r
a
m
e
t
e
r
sa
r
er
e
p
l
a
c
e
dbyt
h
esam(
η
5
/
2
)(Ogasawara,
2
0
1
3
b
)
.Then
o
t
a
t
i
o
n
p
l
ec
o
u
n
t
e
r
p
a
r
t
sundert
h
ec
o
n
d
i
t
i
o
nN = O
e
.
g
.う
五xedαmr
a
t
h
e
rthane
s
t
i
m
a
t
e
dam i
sf
o
rs
i
m
p
l
i
c
i
t
y
.Undermodelm
i
s
s
p
e
c
i
f
i
c
a
t
i
o
n
(
m
.
m
.
),
ana
l
t
e
r
n
a
t
i
v
ep
r
o
b
a
b
i
l
i
t
yP
tm f
o
rc
o
r
r
e
c
tr
e
s
p
o
n
s
ei
sd
e
f
i
n
e
d部
PT
ぅ QTm三 1
-PTm (m= 1,・・・ぅ η)ぅ
m三 ET(U
m)
(
2
.
2
)
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
3
3
whereE
T
(
'
)i
st
h
ee
x
p
e
c
t
a
t
i
o
nu
s
i
n
gt
h
et
r
u
ed
i
s
t
r
i
b
u
t
i
o
no
fUma
teandPTmチPm
f
o
ra
tl
e
a
s
tanitem(
E
(
.
)willbeusedundercorrectmodelspeci五cation(c.m.s.)).
De
五ne♂ a
st
h
et
o
t
a
lnumbero
ft
h
epseudocountsf
o
rt
h
e2x1c
o
1
1
a
p
s
e
dc
o
n
t
i
n
*i
sn
o
tn
e
c
e
s
s
a
r
i
l
yi
n
t
e
g
e
r
v
a
l
u
e
d
. Thati
s,
e
a
c
hc
e
1
1has0
.
5
c
*
gencyt
a
b
l
eぅ wherec
f
o
ri
t
spseudocoUI
止 I
nt
h
ec
a
s
eo
ft
h
eb
i
n
o
m
i
a
lpropo
凶 o
n, ♂ = 1(
0
.
5f
o
re
a
c
h
19
5
6
)andAnscombe(
1
9
5
6
)s
u
c
ht
h
a
tt
h
ea
s
y
m
p
t
o
t
i
c
c
e
1
1
)wasd
e
r
i
v
e
dbyHaldane(
b
i
a
so
fo
r
d
e
r0(n-1)f
o
rt
h
esamplel
o
g
i
tv
a
n
i
s
h
e
s
. Thev
a
l
u
ec
*= 0
.
5(
0
.
2
5f
o
re
a
c
h
c
e
1
1
)i
susedbyH
i
t
c
h
c
o
c
k(
1
9
6
2
)i
nt
h
ec
a
s
eo
fl
o
g
i
s
t
i
cr
e
g
r
e
s
s
i
o
n
.A
g
r
e
s
t
iandC
o
u
1
1
(
1
9
9
8
)(
s
e
ea
l
s
oAg
1
'e
凶 &C
a
f
f
o,
2
0
0
0
)proposed♂ =4(
2f
o1' e
a
c
hc
e
1
1
)f
o
ri
n
t
e1'v
a
l
ぅ
:
yt
h
ev
a
l
u
e0
.
1o
ft
h
epseudocountf
o
r
e
s
t
i
m
a
t
i
o
no
ft
h
eb
i
n
o
m
i
a
lp
r
o
p
o
r
t
i
o
n
.R
e
c
e
n
t
l
c
e(
2
0
0
7
)
.
e
a
c
hc
e
1
1o
ft
h
e2x2t
a
b
l
ewasuse
dbyBonettandP1'i
Fo1' t
h
e3PLMwithg
e
n
e
r
a
1
1
yd
i
s
t
i
n
c
ti
t
e
m
st
h
et
o
t
a
lnumbe1' o
fp
s
e
u
d
o
c
o
u
n
t
si
s
もob
ee
q
u
a
1
1
yd
i
s
t
r
i
b
u
t
e
dt
on i
t
e
m
sa
si
nt
h
eabovec
a
s
e
s
.Thati
s,
i
nt
h
e2x'
nt
a
b
l
e,
1
e
a
c
hc
e
1
1h
a
sn-0
.
5
c
*f
o1' i
t
sp
s
e
u
d
o
c
o
u
n
t
.L
e
tLpcbet
h
e(
p
s
e
u
d
o
)l
i
k
e
l
i
h
o
o
do
fe
whent
h
epseudocounti
su
s
e
d
.Then,
Lpci
sf
o
r
m
a
1
1
yw1'i
t
t
e
na
s
う
2
1111/111
nJ
り
5
n
n
u
ハw
pm
n
H
M
,f /
EBBEES
山
/lE
ノ
、111
、、、‘
V
トm
山
ハJFm
n
//1111¥
日
目
vb
一
一
n
u
十
トm
九
ハw
nu
目
十
7fAσ
JrL
nH何日
一一一一一
p
c
L
二
日
whe1'eL=
=
1
P
J
1
7
7
3
Q
U
U
mi
st
h
e田 工 叫 l
i
k
e
l
i
h
o
o
d01' Lpcwithc
*= 0
;f
(
e
)= 0(1)
i
ss
e
e
na
s ap
r
i
o
rd
e
n
s
i
t
yo
ri
t
sp
r
o
p
o
r
t
i
o
n
a
l from B
a
y
e
s
i
a
np
o
i
n
to
fv
i
e
w
; and
f
m
(
e
)三 (P
Q
m
)
O
.
5
c
*
i
s
a
l
s
o
s
e
e
n
a
s
a
n
i
n
d
e
p
e
n
d
e
n
t
p
r
i
o
r
f
o
r
t
h
e
m
t
h
i
t
e
m
.
Note
m
t
h
a
tf
(
e
)i
st
h
eg
e
o
m
e
t
r
i
cmeano
ff
m
(
e
)(m= 1ぅ・・・ぅ T仏 andbecomese
q
u
a
lt
of
m(
e
)
wheni
t
e
m
sa
r
ee
q
u
i
v
a
l
e
n
te
.
g
,・ under吐1
eLME.
凶l
y
ぅf
m
(
e
)becomest
y
p
i
c
a
lp
r
i
o
r
si
nsomec
a
s
e
s
.Whent
h
e2
p
a
r
a
m
e
t
e
rl
o
g
i
s
Actl
t
i
cmodel(2PLM)h
o
l
d
s,
D 2 α ~PmQm i
st
h
eF
i
s
h
e
ro
ritemi
n
f
o
r
m
a
t
i
o
nf
o
rt
h
em自由
i
t
e
m
. Then,
(
P
m
Q
m
)
O
.
5withc
*= 1i
sp
r
o
p
o
r
t
i
o
n
a
lt
ot
h
eJ
e
f
f
r
e
y
s(
1
9
4
6
;1
9
6
1ぅ S
e
c
t
i
o
n3
.
1
0
)n
o
n
i
n
f
o
r
m
a
t
i
v
ep
r
i
o
rf
o
rt
h
em-thi
t
e
m
. Thati
sぅ ♂ =1i
n(
2
.
3
)g
i
v
e
st
h
e
g
e
o
m
e
t
r
i
cmeano
ft
h
ei
n
d
e
p
e
n
d
e
n
tJ
e
f
f
r
e
y
sp
r
i
o
r
swhereast
h
eu
s
u
a
lJ
e
f
f
r
e
y
sp
r
i
o
ri
s
h
esumo
ft
h
eηitemi
n
f
o
r
m
a
t
i
o
n
sa
v
e
r
a
g
e
do
v
e
r
g
i
v
e
nfromt
h
et
e
s
ti
n
f
o
r
m
a
t
i
o
ni
.e
.t
i
t
e
m
so
rt
h
ea
r
i
t
h
m
e
t
i
cmeano
ft
h
eitemi
n
f
o
r
m
a
t
i
o
n
s
:
う
LPm'2/(
Z三 η 1
(
2.
4
)
whereP
m
'= θPm/δe
.Underthe2PLMう (
2.
4
)becomes
I=n- 1 D 2
乞 α ~PmQm
(
2
.
5
)
I
ti
s known t
h
a
tt
h
eJ
e
f
f
r
e
y
s Bayes modal e
s
t
i
m
a
t
o
r (JME) under c
a
n
o
n
i
c
a
l
p
a
r
a
m
e
t
r
i
z
a
t
i
o
ni
nt
h
ee
x
p
o
n
e
n
t
i
a
lf
a
m
i
l
yhasz
e
r
oa
s
y
m
p
t
o
t
i
cb
i
a
so
fo
r
d
e
rO(η1)
1
9
9
3
;i
nt
h
ec
u
r
r
e
n
tpaper,
t
h
eBMEr
e
f
e
r
st
oo
n
l
yt
h
e
whent
h
emodelh
o
l
d
s(
F
i
r
t
h,
H
.O
g
a
s
a
w
a
r
a
1
3
4
e
s
t
i
m
a
t
o
ru
s
i
n
gt
h
es
t
a
n
d
a
r
dnormalp
r
i
o
r
)
.Thea
b
i
l
i
t
ye
s
t
i
m
a
t
o
rwithf
i
x
e
ditemp
a
t
h
ec
o
r
r
e
s
p
o
n
d
i
n
ge
s
t
i
m
a
t
o
r
r
a
m
e
t
e
r
si
nt
h
e2PLMb
e
l
o
n
g
st
ot
h
i
sf
a
m
i
l
y
. However,
WarmsWLEundert
h
e2PLMbecomes
i
nt
h
e3PLMd
o
e
sn
o
tb
e
l
o
n
gt
oi
t
. Thati
s,
i
d
e
n
t
i
c
a
lt
ot
h
eJM
E
.S
i
n
c
eundert
h
eLMEぅ f
(
8
)with♂ =1becomesproportionalt
o
i
a
sr
e
d
u
c
七i
o
nf
o
rt
h
ea
b
i
l
i
t
ye
s
t
i
m
a
t
o
re
v
e
nundert
h
e3PLM
t
h
eu
s
u
a
lJe
f
f
r
e
y
sp
r
i
o
rぅ b
宜
'
e
r
e
n
ti
t
e
m
si
se
x
p
e
c
t
e
dt
osomee
x
t
e
n
twhenc
* 1i
su
s
e
d,
whichw
i
l
lbe
withd
i
r
.
n
u
m
e
r
i
c
a
l
l
yi
l
l
u
s
t
r
a
t
e
dl
a
t
e
I
ti
sknownt
h
a
tt
h
eb
i
a
so
ft
h
eMLEo
fa
b
i
l
i
t
yi
sp
o
s
i
t
i
v
e
l
yc
o
r
r
e
l
a
t
e
dwitht
h
e
p
o
p
u
l
a
t
i
o
na
b
i
l
i
t
y8
L
o
r
d,
1
9
8
3
; Ogasawara,
2
0
1
2
a
)
. Thati
sぅ whenD
oi
sp
o
s
i
t
i
v
e
0(
t
h
eMLEt
e
n
d
st
obel
a
r
g
e
r(
s
m
a
l
l
e
r
)thanD
o・ Equalp
seudocountsf
o
r
(
n
e
g
a
t
i
v
e
),
t
h
etwoc
e
l
l
so
fc
o
r
r
e
c
tandi
n
c
o
r
r
e
c
tr
e
s
p
o
n
s
e
shavet
h
ee
f
f
e
c
to
fc
e
n
t
e
r
i
n
gt
h
eMLE
t
o
w
a
r
d
sO
.
Whenc
* 2,f
m
(
D
) PmQmwhichi
sp
r
o
p
o
r
t
i
o
n
a
lt
ot
h
ei
n
f
o
r
m
a
t
i
v
el
o
g
i
s
t
i
c
whosec
u
m
u
l
a
t
i
v
ed
i
s
t
r
i
b
u
t
i
o
nf
u
n
c
t
i
o
ni
sPmundert
h
e2PLM.I
t
p
r
i
o
rDαmPmQm,
ithD = 1
.7,
I
P
m
(
D
)-φ
(
D
)
I <0
.
0
1
i
sknownt
h
a
twhenαm=lぅ b
m = 0w
m= 0andc
v
i
c
l
王
ぅ 1
9
6
8ぅ I
n
e
q
l
凶i
七y (
1
7
.
2
.
2
)
)ぅ whereφ
(
)i
st
h
ec
u
m
u
l
a
t
i
v
e
f
o
ra
l
lD (
L
o
r
d& No
(
D
)withc
*= 2i
sreducedt
o
d
i
s
t
r
i
b
u
t
i
o
nf
u
n
c
t
i
o
no
ft
h
estandardnorma
l
. Thus f
anapproximateg
e
o
m
e
t
r
i
cmeano
fv
a
r
i
o
u
sindependentnormalp
r
i
o
r
s
.I
nt
h
ec
a
s
eo
f
t
h
eb
i
n
o
m
i
a
lp
r
o
p
o
r
t
i
o
n,♂=2c
o
r
r
e
s
p
o
n
d
st
ot
h
ef
i
a
tb
e
t
ap
r
i
o
r wheret
h
ep
o
s
t
e
)
/
(
η十2
)withp b
e
i
n
gt
h
e
r
i
o
rmeano
ft
h
eb
i
n
o
m
i
a
lp
r
o
p
o
r
t
i
o
ni
sg
i
v
e
nby(叩+1
u
n
b
i
a
s
e
dsamplep
r
o
p
o
r
t
i
o
n,
whichi
sa
l
s
od
e
r
i
v
e
dbyL
a
p
l
a
c
e
'
sr
u
l
eo
fs
u
c
c
e
s
s
i
o
n(
s
e
e
e
.
g
,・ Wilson,1927ぅ p.210).
f
m
(
8
)ヲswithotherc
*
'
sa
r
es
e
e
na
sp
r
i
o
r
so
rp
e
n
a
l
t
yf
u
n
c
t
i
o
n
s
I
ns
i
m
i
l
a
rmanners,
f
o
rs
h
r
i
n
k
a
g
ee
s
t
i
m
a
t
o
r
s(
s
e
ee
.
g・う Gruberぅ 1998,Chapter1
;Lehmann& C加 e
l
l
a,1
9
9
8,
Chapter5 S
e
c
t
i
o
n5
) whosee
f
f
e
c
ti
ss
t
r
o
時 e
ra
sc
*becomesl
a
r
g
e
r
.
De
五nelpca
s
う
う
う
う
う
らc 三 η110gLpc= n-11ogL+η110gf
(
8
)
叫
三
J
ι
+山
三
l+η 10.5c
♂
埼*
l
o
g己
人
(
2
.
6
)
k
ぽ
刷
*
つl
O
う
st
h
eg
e
o
m
e
t
r
i
cmeano
fPmQm(m= 1ぅ・・・ ?
η
)mentionede
a
rl
i
e
r
whereh= 0(1)i
(compareio
f(
2
.
5
) undert
h
e2PLM). Thee
s
t
i
m
a
t
o
rD
s
i
n
gt
h
ep
s
e
凶 o
count
pc u
rlpc,
whichi
so
b
t
a
i
n
e
dbyt
h
es
o
l
u
t
i
o
no
ft
h
e
(PCE)i
sg
i
v
e
nbymaximizingLpco
f
o
l
l
o
w
i
n
ge
q
u
a
t
i
o
n
:
βl
pρ θ
h
'
ーニニェ一一一 +η 0
.
5
c
*.
:
θDpc θDpc
ゅ
一上
会式{九一日
=η-1
1
0
.
5
c
*ー)}凡, =0, 仰 )
whereh
'= θh/θD
2
.
7
),
i
ti
ss
e
e
nt
h
a
tt
h
enormale
q
u
a
t
i
o
nf
o
rt
h
eMLE
pc.From(
sm
o
d
i
f
i
e
df
o
rD
e
p
l
a
c
i
n
gt
h
ea
c
t
u
a
lo
b
s
e
r
v
a
t
i
o
nUm with
denotedbyDML i
pc byr
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
3
5
Um+n-10
.
5
♂(
1-2P
rbyr
e
p
l
a
c
i
n
gPmi
n{
・
}withPm-n-10
.
5♂ (1-2
P
m
)
.Unm)o
d
e
rm.m. withPTm(m= 1
,
・
・
・
川
)
, thepopulation80 i
sd
e
f
i
n
e
da
st
h
es
o
l
u
t
i
o
no
f
(l
/δ8pc)= 0withoutj
(
8
)
.
ETθ
3
. Pseudocountsreducingtheasymptoticmeansquareerror
.
5
c
叩 /
hi
sas
p
e
c
i
a
lc
a
s
eo
ft
h
eg
e
n
e
r
a
lw
e
i
g
h
tg
(
8
)f
o
r
I
n(
2
.
7
)i
ti
sfoundt
h
a
tO
pc
t
h
ew
e
i
g
h
t
e
ds
c
o
r
ed
e
a
l
twithbyOgasawara(
2
0
1
3
a
)when8= 8
. Thew
e
i
g
h
t
sf
o
r
BME,
JME WLEandPCEa
r
esummarized邸
t
h
eMLE,
う
g
(
8
)= 0 f
o
rML g
(
8
)= -8 f
o
rB M,
g
(
8
)=1
//
(
2
I
) f
o
rJM,
g
(
8
)=j
/
(
2
i
) f
o
rW Landg
(
8
)= c
*
h
'
/
(
2
h
) f
o
rPC,
ぅ
(
3
.
1
)
where
2P
θ
Z 一一 1十 (
3i ~
m'Pm" (
1-2Pm)Pm'
. . 一 一 一
U M - K 1 1凡 Q m ( P m Q m ) 2 y J
ヲ
日
__-1 ~
P
m
'Pm"
-jt1 凡 Qm
(
3
.
2
)
β2p~
andP〓 一 一 子 工
δ8'2
Denotet
h
em-thcumulanto
ft
h
eg
e
n
e
r
i
ce
s
t
i
m
a
t
o
r8GWu
s
i
n
gt
h
eg
e
n
e
r
a
lw
e
i
g
h
t
g
(
8
)byκm(
8GW)
.Then,
t
h
e
i
ra
s
y
m
p
t
o
t
i
ccumulantsupt
ot
h
es
e
c
o
n
do
r
d
e
ra
r
eg
i
v
e
n
a
s
κl
(
e
α1十 O(η-2),
GW-80)= n-1
(
3
.
3
)
κ2
(
eGw)= η1α2+η-2α ム2+ O(η-3)(α2=αML2)ぅ
川
whereη一1
α
1i
st
h
ea
s
y
m
p
t
o
t
i
cb
i
a
so
fo
r
d
e
r0(
n-1);η-1α2i
st
h
eu
s
u
a
la
s
y
m
p
t
o
t
i
c
1
2
η
1
ぅ
) whichi
se
q
l
凶 t
on-αML2byML;andn-αム2i
st
h
eadded
v
a
r
i
a
n
c
eo
fo
r
d
e
r0(
h
i
g
h
e
r
o
r
d
e
ra
s
y
m
p
t
o
t
i
cv
a
r
i
a
n
c
eo
f8GW,
r
e
s
p
e
c
t
i
v
e
l
y
.Thea
c
t
u
a
le
x
p
r
e
s
s
i
o
n
so
ft
h
e
Equation(
3.
4
)
,
a
s
y
m
p
t
o
t
i
ccumulantsunderp.m.m.a
r
eg
i
v
e
nbyOgasawara(
2
0
1
3
a,
AppendixA
.
2
)
t
h
eMSEo
f8GWi
sg
i
v
e
nby
From(
3
.
3
),
ET{(eGW-8
2
}= {κ1(OGW-Oo)}2十 κ2
(
e
0)
Gw)
(
3.
4
)
=η1αML2十 η-2(αi+αム2
)+ O(η3)
三
MSEO(n-2)(
e
Gw)+ O(η3)ぅ
whereMSE
η
2
)
(
'
)i
st
h
eAMSEupt
oo
r
d
e
rO
(
η
2
)
. Thea
c
t
u
a
le
x
p
r
e
s
s
i
o
no
f
o(
MSEO(n-2)(8Gw)underp.m.m.i
sg
i
v
e
nbyOgasawara(
20
l3a,
Equation(
3
.
1
3
)
)a
s
口 2
)川
MSE
o(
[
…
二 η川 L 2+η2
+αLL1
(θJθ2[¥
1 ¥
明 18=8~8; 1
日)
(-
'>-
2
.
¥l
g
'
(
8
ML2-2
g
(
80) 入 句T
0)α
T
(
手18=8
一円
0)
0
(
3
.
5
)
H
.O
g
a
s
a
w
a
r
a
1
3
6
where αMLム2and αML1 a
r
ed
e
f
i
n
e
ds
i
m
i
l
a
r
l
yt
o αML2; 入 = ET(
θ
2
[
/
θ
821ニ 1
1
0
)
;
g
'
(
8
)= θg
(
8
)
/θ
8
1向 。
0
Underc
.且 S
ぅ
・ u
s
i
n
gαML2=Z
u1
,
whereZ
oi
sZg
i
v
e
nby8
.
1
0
/
(
2
z
O
)(
L
o
r
dぅ
0ぅ αML1=1
9
8
3
;Warm,
1
9
8
9
)andt
h
eB
a
r
t
l
e
t
ti
d
e
n
t
i
t
y
ぅ (
3
.
5
)becomes
MSEo(n-2)
(
eGw)= η一1
7
6
1十η2[αMLム2十α弘
L
1十2
z
u
2
g
'
(
8
0
)
3
2
z
_ZU (2
.
o
)
g
(
8
ug
(
80
?
L
0
'+1
0)+z
(
3
.
6
)
wherez
o
'and]
0a
r
ed
e
f
i
n
e
ds
i
m
i
l
a
r
l
yt
oZ
o・Notet
h
a
tn-1α2+η-2(αMLム2十 αむ
L
1
)i
n
1
1
η
n(
3
.
6
)a
r
eMSEo(n-2
)(
e
M
L
)
'
S,
thoughαML
ム2
(
3
.
5
)andn- zü 十 2(αMLム2 十 α~L1) i
e
s
p
e
c
t
i
v
e
l
y
.
andα1i
n(
3
.
5
)a
r
eg
e
n
e
r
a
l
l
yd
i
f
f
e
r
e
n
tfromt
h
o
s
ei
n(
3
.
6
)r
Wheng
(
80)= c
*
h
o
'/
(
2
h
)
,
whereh
o
'andh
oa
r
ep
o
p
u
l
a
t
i
o
nc
o
u
n
t
e
r
p
a
r
t
sぱ
0fh
'仙an
o
う
九
e
s
p
e
c
t
i
v
e
l
y
,
(
3
.
6
)underc
.
m
.
s
.i
sw
r
i
t
t
e
na
s
hr
う
MSEO(n-2)(
e
pc)= MSEO(n-2)(
e
ML)
f
ぺ
式
.
.
:
2
θ
f
d
L11
L2
3
z
2
布 房 副 f)=f)o- Z
U (2
0
'+]
0
) jH-2C4262ziz'
十 η2
(
3
.
7
)
whichi
sminimizedwhenc
*i
s
一車/五三 日 ¥
ι豆
旦(
z
n
'+]0)
c
:
'
:
_
・
h
O
'
2¥h
o
mm
h
O) ,i
o
h
o
'¥
"
U , 2)
.
目
・
(
3
.
8
)
?
1
4
什す j
hnh円"
2
h
n
= -2
右子十 2十万
(~.
I
'
n¥
whereh
o
'チo
i
sassumedandi
o>0duet
oa
n
o
t
h
e
rassumptiono
f五n
i
t
e8
0・
I
n(
3
.
7
)and(
3
.
8
),
2
g
(
8
) h
o
' ~~-1 十 1- 2P
mn ,
0
c
*
h。 一 山 白 凡 Qm m
(
3
.
9
)
.L
(
s
e
e(
2
.
7
)
)and
2
g
'
(
80
)
θh
O
'
1
f
ニ
1
τ石 山
δ一一 1÷1-2Rnn/l
つ * 弱E
J│0=Oozr
f
)
=
f
)o
I
一一J 十 f
一2
仇九
P
凡
?
灯
r
m
J
7
η
J
f
Z
J
f
斗
2+
(
ο
1一
-2P,
削
川)~凡町
m
mJfH(ρ1
一
-2P灯~r )2
一
… tF
自二コ~ l
PmQr
(
3
.
1
0
)
.
一
唱
Then,
(
3
.
8
)i
sr
e
w
r
i
t
t
e
na
s
合 in
十名古凡'
f
一
生
( 〉
吋 η
(合云許可 や+
き
)
η
r
2U2 fcJ2Mff一 (1;zr12)
0
'
(
3
.
1
1
)
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
3
7
+
Undert
h
e3PLMぅ l
e
t申m三 1
/
[
1 exp{-Dαm(8-b
}
]
. Thenぅ i
n(
3
.
1
1
),
m)
Pm'=Dαm(
1
一 cm)
宙m(
1-¥
[
1m
)
う
2
Pmf/ 二 D α ~(1 一 cm )(l
(
3
.
1
2
)
-2雪m)守m(
1一世m
)
'
;
巾 i
n
c
l
u
d
e
su此 nown8
sn
o
to
b
t
a
i
n
e
di
np
r
a
c
t
i
c
e
.HowI
n(
3
.
8
)o
r(
3
.
1
1
)ぅ C
0andi
undert
h
eLME,
where
e
v
e
r,
Pm= P =
1
1+exp{-D
α(8-b)}'
Q =1-P (m=17・
・
・
ぅn
)ぅ
一
¥
/
702ho=PG/(PQ)=D2dPQ?(3.13)
i
o
'=h
o
'=j
o
withP'de
五ned邸 Pmf?a五xedl
o
w
e
rboundf
o
rCU
:
i
ri
sfounda
sf
o
l
l
o
w
s
.
. Undert
h
eLMEo
f(
3
.
1
3
)witht
h
ea
s
s
u
m
p
t
i
o
n
so
f,10
'=1
]
。
チ
Theorem1
f
i
n
i
t
e8
al
o
w
e
rboundo
fc
U
:
i
ri
s3
.
0,
f
.Using(
3
.
1
3
),
c
U
:
i
ni
n(
3
.
8
)becomes
Proo
t
o
t
o
H
I
:
'
n
i
n -2士 一
十5
'
2
,
/
'0
oand
(
3
.
1
4
)
う
4 4
'= D3
a3
"=θ2
,1/δ82
8
1
ニ 8= D a (
1-6P+ 6P2)PQ.
where,10
(
1-2P)PQand,10
0
Thenぅ (
3
.
1
4
)i
s
PQ){D4a4(
(
D2
a2
1-6P+6P2)PQ} ,
" ,, 1-6P+6P2
c L 1 i I 1 = - 2 + 5 = 2 + 5
{D3a3(1-2P)PQP
- (1-2P)2
(
1-2P)
2-2P(1-P) ," "
.
4PQ
2
十 5= 3+(1 --"-;¥2 >3
. Q
.E
.D.
(
1-2P)
(
3
.
1
5
)
I
nTheorem1,
t
h
el
o
w
e
rbound3c
o
r
r
e
s
p
o
n
d
i
n
gt
o8
sn
o
ta
t
t
a
i
n
e
dby
0 土∞ i
nt
h
el
a
s
ti
n
e
q
l
凶i
t
yi
n(
3
.
1
5
)becomesi
n
f
i
n
i
t
e
l
y
f
i
n
i
t
e8
0・ Theterm4PQ/(1-2P)2i
a
t
8
=
O
.
I
t
l
a
r
g
ea
s8
a
p
p
r
o
a
c
h
e
s
O
.
T
h
i
s
c
o
r
r
e
s
p
o
n
d
s
t
o
t
h
e
z
e
r
o
b
i
a
s
o
f
8
ML
0
0
i
so
fi
n
t
e
r
e
s
t七o五ndt
h
a
tt
h
el
o
w
e
rbound3i
st
h
emidpointo
ft
h
ep
s
e
u
d
o
c
o
u
n
t
sby
u
l
eandA
g
r
e
s
t
iandC
o
u
l
l(
1
9
9
8
)
.
L
a
p
l
a
c
eうsr
h
eLMEi
sseldomu
s
e
d
.
I
nc
u
r
r
e
n
ta
b
i
l
i
t
yt
e
s
t
sf
o
ra
c
h
i
e
v
e
m
e
n
t
sbasedonIRT t
t
h
ef
a
m
i
l
i
a
r3PLMu
s
e
df
r
e
q
u
e
n
t
l
yi
np
r
a
c
t
i
c
ei
ss
i
m
i
l
a
rt
ot
h
eLMEi
na
However,
七h
el
o
w
e
rboundi
nTheorem1i
se
x
p
e
c
t
e
dt
obeo
fp
r
a
c
t
i
c
a
lu
s
e
c
r
u
d
es
e
n
s
e
. Thusぅ
sn
u
m
e
r
i
c
a
l
l
yi
l
l
u
s
七r
a
t
e
dwithand
t
osomee
x
t
e
n
ti
nt
h
ec
a
s
eo
ft
h
e3PLM whichi
w
i
t
h
o
u
tm.m.i
nt
h
en
e
x
ts
e
c
t
i
o
n
.
二 一
九
う
う
4
. Numericalillustrationunderthe3・-parameterl
o
g
i
s
t
i
cmodel
五c
i
a
litemp
a
r
a
m
e
t
e
r
so
ft
h
e3PLM,
which
Numericali
l
l
u
s
t
r
a
t
i
o
ni
sg
i
v
e
nu
s
i
n
ga
r
t
i
吋 O宜
m
a
r
er
a
p
r
a
c
t
i
c
e(
L
o
r
d,1
9
7
5ぅF
i
g
u
r
e
s1
4
;Kolen& Brennan,2004,T
a
b
l
e6
.
5
)
.Thep
r
o
b
a
b
i
l
i
・
・
・9
η
)underm.m. a
r
eg
i
v
e
nbyp
e
r
t
u
r
b
i
時 t
h
eterm-Dαm(8-b
t
i
e
sPTm(m= 1,
m)
均 ム
1
3
8
H.Ogasawara
T
a
b
l
e1
:V
a
l
u
e
so
fC
;
'
;
1
inm
i
n
i
m
i
z
i
n
gt
h
ea
s
y
m
p
t
o
t
i
cmeans
q
u
a
r
ee
r
r
o
rf
o
rt
h
e3PLM
。
O
1
2
2
-1
-3
3
n
9
.
6
8 1
3
.
9
1 1
.
6
9
2
0 4
0
.
8
1 1
4
7
.
9
0 6.
4
6 3
.
3
5 2
.7
8 1
9.
4
8 1
8
.
0
9 9
6
.
2
7 4
.
0
7 2
.
6
5 2
.
6
0
5
0 41
2
3
.
5
2
2
5
.
6
3
3
.
0
7
2
.
8
3
3
8
.
4
8
6
8
.
4
0
3
.
9
8
1
0
0
T
a
b
l
e2
:Asymptoticands
i
m
u
l
a
t
e
de
r
r
o
r
si
ne
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
ywhent
h
e3PLM1
叫 出 (η=2
0
)
(Numbero
f
ML B M W L PC(l) PC(2)
d
e
l
e
t
e
dc
a
s
e
s
)
(
1
1
)
;
'
;
1
in= 6
.
4
6
1, C
ml
ASE
ml
ml
ml
.
3
7
7
9
3
7
9
6 .
3
7
8
9 .
HASE
.
3
9
8
9 .
3
3
9
9 .
3
5
7
8
.
3
7
8
3
.
3
8
0
9
.
3
5
9
2
Sim
吐a
t
e
d(
S
D
) .
4
0
7
5 .
3
4
0
6
.
3 -5.9
.
5
6
.
5 -10.9
αム2
.
1
.
9 -5.5
S
i
m
u
l
a
t
e
d
9
.
3 1
0
.
7
。
=
α?
S
i
m
u
l
a
t
e
d
HRMSE
S
i
m
u
l
a
t
e
d
PC(3) PC(4) PC(8) P
C
(
c
;
'
;
1
in
)
ml
.
3
3
5
3
.
3
4
0
7
1
2
.
1
-10.7
ml
.
3
1
1
3
.
3
2
4
6
-18.
4
-15.0
ml
.
1
8
6
3
.
2
7
5
5
-43.2
-26.8
.
1
1
.1
3
.
2
6
.
1
O
.
0
.
1
1
.1
2
.
9
5.
4
3
6
1
8 .
3
7
9
6 .
3
7
9
3 .
3
6
1
7 .
3
4
7
1
.
3
9
9
3 .
3
8
1
4 .
3
6
3
1 .
.
4
0
8
1 .
3
5
9
9 .
3
7
8
3 .
3
5
1
0
=2, C~in = 3
.
3
5
6
.
3
5
.
1
2
9
.
3
1
7
.
0
.
3
2
8
5
.
3
4
4
0
.
1
.
2
。
.
3
3
5
8
.
3
4
3
7
ml
.
2
4
2
3
.
2
9
2
1
-33.6
2
3
.
0
1
8
.
5
1
2
.
1
.
3
2
3
8
.
3
3
9
8
(
5
1
8
8
)
ml
ml
ml
ml
ml
ml
ASE
.
5
0
0
3
ml
ml
5
3
3
2 .
5
2
9
2 .
4
2
8
1 .
2
9
4
0
.
2
2
8
9
HASE
.
6
1
3
9 .
0
6
2
7 .
S
i
m
u
l
a
t
e
d(
S
D
) .
2
8
5
2 .
4
0
5
9 .
4
006 .
3
4
1
2 .
3
0
1
0 .
2
7
1
5 .
2
0
2
9
.
2
8
9
6
5
0
1
5 .
3
5
.
6 11
.9 26.8 -65.6 1
0
4
.
3 2
5
0
.
6 9
8
.
6 1
5
9
.
2
-79.2
αム2
S
i
m
u
l
a
t
e
d
4
.
2 -36.0 -53.6 -63.9
6
6
.
6
.
5 -67.6 3
7
0
.
7 -83.7
O
.
0
9
.
3 3
4
7
5
.
5 3
9
9
.
2
4
7
.
1
6
.
8 5
5
.
0
4.
αi
2
.
2
3
.
3
1
8
.
0 3
4
6
.
1
S
i
m
u
l
a
t
e
d
2
.
1 5
0
.
2
8
.
3
61
.0 1
5
5
.
7
HRMSE
3
7
5
9 .
5
3
3
2 .
5
2
9
3 .
4
5
4
4 .
41
5
3 .
4
224 .
7
7
4
8
.
41
2
4
.
6
2
7
5 .
41
2
8 .
41
0
7 .
S
i
m
u
l
a
t
e
d
45
4
7 .
4
018 .
43
1
6 .
4
756 .
6
5
6
0
.
4
462
.
5
0
6
7 .
N
o
t
e
.ASE=η-1/2α泣2;HASE=(η一1
α lvIL
2
+
η 2
αム2
)ゆ ;HRMSE= {n-1αlvIL
2十n-2(αム2十
α
i
)
}
1
/
2
;ML:maximuml
i
k
e
l
i
h
o
o
d
;BM:Bayesmodal;WL:w
e
i
g
h
t
e
dl
i
k
e
l
i
h
o
o
d
;PC(c*): e
s
t
i
mationu
s
i
n
gp
s
e
u
d
o
c
o
u
n
t♂. Thes
i
g
n“
ml"i
n
d
i
c
a
t
e
st
h
a
tt
h
ev
a
l
u
ei
si
d
e
n
t
i
c
a
lt
ot
h
a
tby
ML.Thes
i
g
n“
"i
n
d
i
c前 田 t
h
凶 t
h
ev
a
l
u
ei
si
m
a
g
i
n
a
r
y
.
←
【
withanaddedindependentv
a
r
i
a
b
l
ef
o
l
l
o
w
i
n
gN(O
ぅD
2)andkeepingET([) = O
. The
generateditemparametersared
e
a
l
twitha
sknowno
n
e
s
. Samples
i
z
e
sn= 20,
50
and100areu
s
e
d
.
Table1g
i
v
e
sc i
nunderthe3PLMf
o
r = -3,
-2,
・
・
・
,3
.When = 0ぅ thevalues
a
r
er
e
l
a
t
i
v
e
l
yl
a
r
g
ewhichi
sexpectedfrom (
3
.
1
5
)
. Wef
i
n
dthatc~由 as afunction
o
f i
sr
e
f
l
e
c
t
e
dN-shapedratherthanunimoda
l
. Someofthevaluesaresomewhat
smallerthanthelowerbound3f
o
rtheLME.Sincemostofthevaluesarel
a
r
g
e
rthan
3o
rapproximately3 thelowerboundseemstobepromising.
i
v
easymptoticandsimulatede
r
r
o
r
so
festimationぅ whenM L,
B M,
Tables2to6g
n
:
e
う
e
e
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
3
9
T
a
b
l
e3
:Asymptoticands
i
m
u
l
a
t
e
de
r
r
o
r
si
ne
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
ywhent
h
e3PLMd
o
e
sn
o
th
o
l
d
(
n= 2
0
)
(Numbero
f
ML B M W L PC(1) PC(2) PC(3) PC(4) PC(8) PC(C
,
;
'
;i
n
)
d
e
l
e
t
e
dc
a
s
e
s
)
Pm)= .
7
6
2
(
2
)
e= 1, C
,
;
'
;i
n= 6.
46
, Cor(PTm,
ml
ml
ASE
ml
ml
ml
ml
.
3
0
5
7
ml
ml
3
0
4
2 .
2
8
6
9 .
HASE
.
3
2
0
5 .
2
7
1
6 .
3
0
5
0 .
2
6
8
6 .
2
4
8
9 .
1
4
5
5
.
1
9
2
1
3
0
5
9 .
S
i
m
u
l
a
t
e
d(
S
D
) .
3
0
4
5 .
2
8
9
2 .
2
6
2
2 .
3
2
5
9 .
2
7
5
6 .
2
7
4
8 .
2
2
3
3
.
2
3
6
5
4
.
4
3
.
7
7
.
9
8
.
5
1
2
.
6
2
8
.
9
2
2
.
6
一
.
2
一.4
αム2
.
3
.
1
4
S
i
m
u
l
a
t
e
d
5
.
1
7
.
0
3
.
9 -7.2
9
.
9 -17.
1
5
.
0
.
0
.
2
.
1
6
.
1
1
.2
3
.
3
6
.
3
2
8
.
2
1
7
.
9
α
?
.
0
1
.2
2
.
8
4
.
9
S
i
m
u
l
a
t
e
d
.
2
4
1
6
.
1
1
1.
.
1
5
.
2
3
0
4
8 .
HRMSE
.
3
2
0
8 .
2
9
8
4 .
3
0
5
0 .
2
9
2
2 .
2
8
3
4 .
2
7
8
7 .
3
0
2
9
.
2
8
5
8
3
0
4
6 .
3
0
6
7 .
2
9
4
2 .
S
i
m
u
l
a
t
e
d
.
3
2
6
3 .
2
9
8
4 .
2
8
7
3 .
2
8
4
8 .
3
0
0
1
.
2
9
0
8
=2, C
Pm)= .
2
9
0
(
8
1
8
5
)
2
山 =3
.
3
5, Cor(PTm,
ml
ml
ml
皿l
ml
皿l
ml
ml
ASE
.
4
8
7
8
5
4
2
6 .
5
3
8
8 .
HASE
.
6
1
9
9 .
1
5
0
5 .
4
4
3
1 .
3
2
0
0 .
0
9
1
9
.
2
6
3
3
3
5
6
7 .
3
0
5
6 .
2
4
3
5 .
S
i
m
u
l
a
t
e
d(
S
D
) .
4
3
8
7 .
2
5
6
5 .
3
5
9
9 .
2
7
0
0 .
1
8
0
6
.
2
5
9
9
2
.
6 2
8
6
.
1 2
0
.
9 1
6
.
7 5
4
.
2 -91
.8 2
4
2
.
1
6
7
.
5
5
8
.
5 αム2
4 4
4
.
3 5
S
i
m
u
l
a
t
e
d
1
8
.
2 6
8
.
9 -43.
.5 8
2
.
1
6
8
.
2
7
.
8 6
6
.
0 -71
2
.
0
.
1
4
9
.
3
6
.
3
5
7
.
5
1
0
.
1
3
6
.
3
7
8
.
6
4
1
0
.
2
α
1
S
i
m
u
l
a
t
e
d
5
.
0
6
.
3 2
3
.
0 4
4
.
3 67.
4 1
6
2
.
0
5
2
.
3
.
2 5
6
.
2
5
4
2
6 .
5
3
9
0 .
HRMSE
.
6
3
2
5 .
4
0
7
8 .
47
0
7 .
4
394 .
4
5
2
8 .
8
1
1
2
.
43
8
9
3
7
8
3 .
3
8
8
6 .
.
4
4
5
2
S
i
m
u
l
a
t
e
d
.
4
3
9
3 .
4
5
4
1 .
3
7
6
8 .
42
8
5 .
4
7
7
4 .
6
6
1
5
12
1
N
o
t
e
.ASE= n-/ α昨2
;HASE= (η1αML2十η2αム2
)
1
/
2
;HRMSE= {n-αML2十η
2
(
αム2
十
a
i
)
}中 ;ML:maximuml
i
k
e
l
i
h
o
o
d
;BM:B
a
y
e
sm
o
d
a
l
;WL:w
e
i
g
h
t
e
dl
i
k
e
l
i
h
o
o
d
;PC(C
t
i
*
. Thes
i
g
n“
m
l
"i
n
d
i
c
a
t
e
st
h
a
tt
h
ev
a
l
u
ei
si
d
e
n
t
i
c
a
lt
ot
h
a
tby
mationu
s
i
n
gp
s
e
u
d
o
c
o
u
n
tc
n
d
i
c
a
t
e
st
h
a
tt
h
ev
a
l
u
ei
si
m
a
g
i
n
a
r
y
.
ML.Thes
i
g
nり i
。
つ
:
国
W L,
andPC(♂)i
.
e
.,
PCwith♂ a
r
eused,
where♂ =1,
2,
3ぅ 4andc
U
:
i
n
' Inaddition,
♂ =5o
r8i
susedi
nTables2,
3and5tohavec
*
'
sg
r
e
a
t
e
rthanc~巾 when c~巾 is not
0
)
. No七ethattheresultsby
s
ol
a
r
g
e
.I
ti
se
a
s
i
l
yseenthatM Li
se
q
u
i
v
a
l
e
n
ttoPC(
:
Uin)areforcomparisonぅ wherec:
Ui
ngivenby8
sa
v
a
i
l
a
b
l
ei
ntheexperimental
PC(
c
0i
t
吋
at
吐
h
削O
仇u
ghuna
,
v
刊
a
厄
叩i
l
油
a
剥
b
l
ei
r
叩
d瓜
a
standarde
r
r
o
r,
whichi
srobustunderm.m.;HASE=
(n-1αML2+ n-2αム2
)ゆ i
sthe
2
η
)1/2
higher-orderASE;HRMSE={η1αML2十 η2(αム2+αi)}1/2= (HASE 十 2
αi
i
sthehigher-orderasymptoticrootMSEuptoorderO(η-3/2). Notethattheasympt
o
t
i
crootMSEuptoorderO(η-1/2)i
si
d
e
n
t
i
c
a
ltotheASE
.
ThesimulatedSEdenotedbySDcorrespondingtoASEandHASEi
sthesquare
5
root o
ftheunbiasedvarianceo
f1
0 estimates f
o
r eache
s
t
i
m
a
t
o
r
. The simulated
sn2(SD2- n-1α2
)
' Thesimulatedαii
sポ timesthesquareo
fthesimulated
αム2i
b
i
a
s
. ThesimulatedrootMSEi
sgivenbythesquareroot o
fthesimulatedmean
o
f(
e
2
. When8三一 2(
8三 f
o
rη =2
0
)and8= 3,
m出 l
yc
a
s
e
so
fnonG W- 8
0)
convergencei
nestimationo
c
c
u
r
r
e
d
. Thesec
a
s
e
swerenotemployed. Inthet
a
b
l
e
s,
o
1
4
0
H
.Ogasawara
七
ywhent
h
e3PLMh
o
l
d
日(
n=5
0
)
T
a
b
l
e4
:A
s
y
m
p
t
o
t
i
ca
n
ds
i
m
u
l
a
t
e
de
r
r
o
r
si
ne
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
(Numbero
f
d
e
l
e
t
e
dc
a
s
e
s
)
(
5
9
1
)
ASE
HASE
S
i
m
u
l
a
t
e
d(
S
D
)
αム2
S
i
m
u
l
a
t
e
d
2
α
1
S
i
m
u
l
a
t
e
d
HRMSE
S
i
m
u
l
a
t
e
d
(
0
)
ASE
HASE
S
i
m
u
l
a
t
e
d(
S
D
)
αム2
S
i
m
u
l
a
t
e
d
ML
。
=
BM
WL P
C
(
l
) P
C
(
2
) P
C
(
3
) P
C
(
4
)
PC(C~in)
8
.
0
9
-1. C~.tin = 1
.
3
6
0
1
ml
ml
ml
ml
ml
ml
ml
.
3
9
1
5 .
3
6
4
0 .
3
8
4
7 .
3
0
2
3 .
3
7
7
9 .
3
7
0
9 .
3
6
3
8
.
2
4
2
2
3
8
3
2 .
.
3
9
7
1 .
2
9
7
4 .
3
4
6
3 .
3
7
1
8 .
3
6
1
7 .
3
5
2
7
.
2
6
9
7
7
.
1 4
5
.
8 3
5
8
.
9
9
5
.
7
2
.
7 1
9
.
6
6
.
6 1
7
7
.
6
4
4
2
.
9 21
.3
2
.
9 1
3
.
3 1
4
2
.
3
7
0
.
0 1
0
3
.
0 -24.
O
.
7
2
.
1
2
5
.
3
1
.3
.
0
.
2
1
0
3
.
5
.
4
.
7
2
.
6
2
7
.
2
.
4
1
.7
71
.3
.
0
3
6
4
0 .
3
8
5
1 .
.
3
9
2
5 .
3
1
8
7 .
3
7
7
9 .
3
7
1
0 .
3
6
4
4
3
1
6
3
.
3
9
8
4 .
3
4
6
5 .
3
8
3
6 .
3
6
1
9 .
3
1
5
2 .
3
7
1
8 .
3
5
3
6
.
3
1
8
2
=0, c
9
6
.
2
7
E
出
ml
ml
ml
.
2
8
3
3
ml
ml
ml
ml
.
2
8
7
2 .
2
6
3
8 .
2
8
4
0 .
2
8
2
8 .
2
7
3
7 .
2
7
8
3 .
2
6
9
1
2
8
3
9 .
2
8
3
0 .
.
2
8
7
5 .
2
6
5
0 .
2
7
8
6 .
2
7
4
3 .
2
7
0
1
.
1
1
4
0
1
.
.
8
7
.
1
1
3
5
.
5
2
6
.
7
0
.
4 1
9
.
7 -601
.1
一
5
2
5
.
2
6
.
7 1
2
.
6 1
8
.
2 1
6
8
.
2
6
.
0 .
7
一.
.
0
.
0
.
0
.
4
.
6
.
2
O
3
0
4
.
0
α
i
.
0
.
4
S
i
m
u
l
a
t
e
d
.
0
.
0
.
0
.
1
.
2
4
8
.
0
HRMSE
.
2
8
7
2 .
2
8
4
0 .
2
8
2
8 .
2
6
3
8 .
2
7
8
4 .
2
7
4
0 .
2
6
9
5
S
i
m
t
u
a
t
e
d
.
2
8
7
5 .
2
6
5
0 .
2
8
3
9 .
2
8
3
0 .
2
7
8
6 .
2
7
4
4 .
2
7
0
4
.
1
7
9
4
1
2
2
/
n
N
o
t
e
.ASE= n- α;jL;EASE=(n-1αML2+ αム2)1/2;HRMSE={η1向 山 十
n-2(αL
i
)
}
1
/
2
;ML:maximuml
i
k
e
l
i
h
o
o
d
;BM:B
a
y
e
sm
o
d
a
l
;WL:w
e
i
g
h
t
e
dl
i
k
e
十α
l
.2
s
i
n
g
p
s
e
u
d
o
c
o
u
n
t
♂
l
i
h
o
o
d
;PC(c
e
s
t
i
m
a
t
i
o
nu
T
h
e
s
i
g
n
m
l
"
i
n
d
i
c
a
t
e
s
t
h
a
t
t
h
e
“
つ
i
g
n“
v
a
l
u
ei
si
d
e
n
t
i
c
a
lt
ot
h
a
tbyML.Thes
n
d
i
c
a
t
e
st
h
a
tt
h
ev
m
a
g
i
n
a
r
y
.
a
l
u
ei
si
"i
。
=
thenumberso
e
l
e
t
e
dc
n
t
i
l1
05 regularobservationswereobtaineda
fd
a
s
e
su
r
eshown.
z
e
r
onumberso
fthed
e
l
e
t
e
dc
a
s
e
swhene
2
ThenOlト.
1
a
r
e
a
l
l
d
u
e
t
o
p
e
r
f
e
c
ts
c
o
r
e
s,
= ,
i
n
i
t
eeML i
a
s
e
sa
wheref
su日a
v
a
i
l
a
b
l
eandt
h
e
s
ec
r
enotusedf
o
ro
t
h
e
re
s
t
i
m
a
t
o
r
s
.
Tables2 4and5a
r
eg
i
v
e
nunderc
.
m
.
s
. whileTables3and6underm.m.,
where
x
t
e
n
to
o
r
r
e
l
a
t
i
o
no
i
t
e
m
s
.
T
a
ble2
t
h
ee
fm.m. i
sshownbythec
fPTmandPmo
v
e
r
g
i
v
e
sther
e
s
u
l
t
sunderc
ss
m
a
l
la
0
. Whene
.
m
.
s
. withnbeinga
theasymps2
= 1,
a
l
u
e
sa
t
o
t
i
cv
r
ereasonablys
i
m
i
l
a
rt
ot
h
e
i
rcorrespondingsimulatedv
a
l
u
e
s
. TheSDi
s
othecorrespondingHASEthantheASE.Ther
r
er
e
a
s
o
n
a
b
l
e
c
l
o
s
e
rt
e
s
u
l
t
sbyW La
i
nt
h
a
tnotonlytheasymptoticb
i
a
si
sz
e
r
obyc
o
n
s
t
r
u
c
t
i
o
n (denotedby0i
nthe
a
s
s
o
c
i
a
t
e
dt
a
t
h
e
rthan.
o
ro
t
h
e
rroundednumbers) buta
a
b
l
e
sr
0f
l
s
o
αム2i
ss
m
a
l
l
e
r
h
a
tbyM Lwiths
a
l
u
e
s
. Ther
thant
i
m
i
l
a
rsimulatedv
e
s
u
l
t
sbyPC(
r
es
i
m
i
l
a
r
1
)a
t
ot
h
o
s
ebyW L,
whichi
sexpectedt
osomee
x
t
e
n
ts
i
n
c
etheya
r
ei
d
e
n
t
i
c
a
lunderthe
LM
ti
h
a
tther
e
s
u
l
t
sbyPC(
E
.I
o
r
so
fi
n
t
e
r
e
s
tt
o五吋 t
3
)usingthelowerbound3f
4
)i
ss
m
a
l
l
e
rthant
h
o
s
e
theLMEa
r
es
i
m
i
l
a
rt
ot
h
o
s
ebyBM.TheHRMSEbyPC(
由
s
i
m
i
l
a
r
w
i
t
h
s
i
m
l
3
)andB MandgreaterthanbyPC(
t
e
dt
e
n
d
e
n
c
i
e
s
.
byPC(
C
;
;
:
l
i
n
)
う
う
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
4
1
T
a
b
l
e5
:A
s
y
m
p
t
o
t
i
cands
i
m
u
l
a
t
e
de
r
r
o
r
si
ne
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
ywhent
h
e3PLMh
o
l
d
s(η=5
0
)
(Numbero
f
d
e
l
e
t
e
dc
a
s
e
s
)
(
0
)
ASE
HASE
S
i
m
u
l
a
t
e
d(
S
D
)
αム2
S
i
m
u
l
a
t
e
d
ML
BM
W L PC(l) PC(2) PC(3) PC(4) PC(5) P
C
(
C
;
'
;
u
n
)
=4.07
8= 1
,c
E
山
ml
ml
ml
.
2
7
3
3
ml
ml
ml
ml
ml
2
7
4
3 .
2
7
1
7 .
.
2
7
7
8 .
2
5
4
5 .
2
6
5
5 .
2
5
9
1 .
2
5
2
5 .
2
4
5
8
.
2
5
2
1
2
7
3
5 .
2
7
1
4 .
2
6
5
3 .
2
5
4
0 .
.
2
7
7
9 .
2
5
5
3 .
2
5
9
5 .
2
4
8
7
.
2
5
3
6
1
.4 2
.
2 1
0
.
6 1
9
.
0 2
7.
4 3
5
.
8
2
7
.
9
6
.
2 2
4
.
8
.
3
2
.
7
1
0
.
9
1
8
.
5
6
.
3 2
3
.
9
2
5
.
5 3
2
.
1
2
6
.
0
O
.
3
2
.
6
4
.
3
.
3 1
0
.
0
7
.
3 1
2
3
.
7
1
4
.
9
α
i
.
0
.
2
S
i
m
u
l
a
t
e
d
.
4
4 1
2.
4
2
0
.
0
1
2
.
9
2
.
3
8
.
7
6.
2
7
4
3 .
2
7
1
9 .
2
6
7
4 .
HRMSE
.
2
7
8
1 .
2
6
2
3 .
2
6
4
6 .
2
6
3
6 .
2
6
4
4
.
2
6
3
6
S
i
m
u
l
a
t
e
d
.
2
7
8
2 .
2
7
3
5 .
2
7
1
5 .
2
6
7
0 .
2
6
3
5 .
2
6
2
0 .
2
6
4
4 .
2
6
4
3
.
2
6
3
6
.
6
5
(
2
6
)
=2 C~in =2
ml
ml
ml
ASE
.
3
2
9
0
ml
ml
ml
ml
ml
.
3
5
1
5 .
3
3
4
4 .
3
3
2
1 .
3
1
1
6 .
2
6
5
7 .
HASE
2
6
1
7 .
2
8
9
6 .
2
3
9
6
.
2
9
7
4
3
3
1
3 .
S
i
m
u
l
a
t
e
d(
S
D
) .
3
5
9
0 .
2
7
4
0 .
3
3
4
3 .
3
0
9
5 .
2
9
1
4 .
2
7
6
1 .
2
6
2
8
.
2
9
7
3
αム2
8
.
8
5
.
1 2
9
4
.
1 8
.
0 -61
4
.1 1
2
7
.
2
4
9
.
6
3
8
.
1 -99.
.
8
3
.
8 31
S
i
m
u
l
a
t
e
d
.6 .3 -58.
4 8
0
.
1 9
8
.
0
4
9
.
7
'
8
3
.
0 8
51
O
.
7 1
4
.
1 4
4
.
6 9
2
.
0 1
3
2
.
1
4
.
3 7
5
6
.
5
6
.
6
α
i
S
i
m
u
l
a
t
e
d
.
0
.
8 1
4.
4 41
5.
4 6
7.
4
.8 8
0
.
0 1
2
6
.
7
3
0
.
9
3
3
2
5 .
HRMSE
.
3
5
3
9 .
3
1
4
9 .
3
3
4
4 .
3
2
0
5 .
3
1
8
9 .
3
2
7
8 .
3
4
6
4
.
3
1
8
2
S
i
m
u
l
a
t
e
d
3
3
1
8 .
3
1
8
6 .
.
3
6
2
0 .
3
1
9
4 .
3
3
4
3 .
3
1
8
8 .
3
2
9
0 .
3
4
6
1
.
3
1
7
4
2
αム2
)
1
/
2
; HRMSE
{
n
-1αML2+
N
o
t
e
. ASEη-1/2αL22;HASE=(η1αML2十 η
η2(αL
i
)
}
1
/
2
;ML:maximuml
i
k
e
l
i
h
o
o
d
;BM:B
a
y
e
sm
o
d
a
l
;WL:w
e
i
g
h
t
e
dl
i
k
e
l
i
h
o
o
d
;
十α
l
.2
e
s
t
i
m
a
t
i
o
nu
s
e
u
d
o
c
o
u
n
t♂. Thes
i
g
n“
PC(C
s
i
m
l
"i
n
d
i
c
a
t
e
st
h
a
tt
h
ev
a
l
u
ei
si
d
e
n
t
i
c
a
l
時 p
つby
t
ot
h
a
t ML.
。
う
o
rPC(
Inthet
a
b
l
e,
i
ti
sseenthatαム2andαif
c
*
)aremonotonicallydecreasingand
r
e
s
p
e
c
t
i
v
e
l
yi
f♂ withs
i
m
i
l
a
rsimulatedv
i
n
d
i
n
c
r
e
a
s
i
n
g,
ntermso
a
l
u
e
s
.Howeverぅ wef
a
l
u
ea
r
enotmonotonicwithr
thatHRMSEandi
t
ssimulatedv
e
s
p
e
c
tt
o♂.
i
s
c
r
e
p
a
n
c
i
e
sappeare
When = 2 somed
s
p
e
c
i
a
l
l
yi
nther
e
s
u
l
t
sbyM L,
whichi
s
sa
p
r
i
m
a
r
i
l
yduet
othel
a
r
g
enumbero
fd
e
l
e
t
e
dc
a
s
e
s whichi
smanya
s5%o
fthe
a
s
e
s
.I
B Mg
i
v
e
sthes
m
a
l
l
e
s
tHRMSE
r
e
g
u
l
a
rc
ti
sseeni
nTable2thatwhen = 2,
2
)yieldsthesmallestsimulatedRMSE.
40
1
8
.
.
3
7
5
9whilePC(
e
a
l
i
s
t
i
cconditioni
Table3g
i
v
e
sr
e
s
u
l
t
sunderar
e
s
s
nthatthe3PLMi
smoreo
rl
ti
sencouragingt
m
i
s
s
p
e
c
i
f
i
e
di
np
b
i
l
i
t
yt
e
s
t
s
.I
os
e
ethatther
r
e,
r
a
c
t
i
c
ef
o
ra
e
s
u
l
t
sa
nTable2
i
nacrudes
e
n
s
eぅ s
i
m
i
l
a
rt
. Noteagainthatwhen = 2,
othosei
a
smany
a
s
e
scorrespondingt
fther
e
g
u
l
a
rc
a
s8185c
o8%o
a
s
e
swerediscardedduet
e
r
f
e
c
t
op
m
a
l
l
e
s
tHRMSEandsimulatedRMSEa
r
egivenbyPC(
4
)
s
c
o
r
e
s
. When = 1ぅ thes
w
h
i
l
e
t
h
e
y
a
r
e
刊
PC
om.m
g
i nbyB MandW L,
notby
r
e
s
p
e
c
t
i
v
e
l
y
(
c
,・
n
)owingt
:
'
ni
.
when = 2
Tables4and5showther
e
s
u
l
t
swithn= 50underc
.
m
.
s
. when = -1 0,1 2
.
e
う
e
う
e
e
e
e
う
う
1
4
2
H
.Ogasawara
T
a
b
l
e6
:A
s
y
m
p
t
o
t
i
cands
i
m
u
l
a
t
e
de
r
r
o
r
si
ne
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
ywhent
h
e3PLMd
o
e
sn
o
th
o
l
d
0
)
(η=,5
(Numbero
f
ML
B M W L PC(l) PC(2) PC(3) PC(4) PC(C~in)
d
e
l
e
t
e
dc
a
s
e
s
)
(
8
3
)
o
r
(
P
T
,
m
- Pm
)= .
5
0
1
-1, C~in = 1
8
.
0
9, c
ASE
.
3
6
0
8
ml
ml
ml
ml
ml
ml
ml
HASE
.
2
8
1
2
.
3
4
9
0
.
3
7
1
8
.
3
7
9
0
.
3
6
4
4 .
3
5
6
9 .
3
4
9
2
.
2
1
3
0
S
i
m
u
l
a
t
e
d(
S
D
) .
3
8
4
2 .
2
9
7
1 .
3
4
3
3 .
3
7
3
7 .
3
6
4
2 .
3
5
5
5 .
3
4
7
4
.
2
6
7
9
2
0
.
9 2
0
.
2
3
3
.
8 -127.7 6
.
6 7
.
0 2
0
.
6
2
1
2
.
0
αム2
S
i
m
u
l
a
t
e
d
4
3
.
7 1
0
4
.
7 -30.7 2
3
.
8
6
.
3 -9.4 2
3
.
7 1
4
6
.
0
3
3
.
9
.
2
.
2
.
1
1
.3
.
9
2
.
7
1
2
8.
4
α?
S
i
m
u
l
a
t
e
d
1
.7
31
.2
.
7
.
3
.
0
.
8
2
.
6
7
9
.
7
HRMSE
3
0
4
4 .
3
4
9
1 .
3
7
1
9 .
.
3
7
9
7 .
3
6
4
4 .
3
5
7
4 .
3
5
0
7
.
3
1
1
0
S
i
m
u
l
a
t
e
d
.
3
8
5
1 .
3
1
7
4 .
3
4
3
7 .
3
7
3
8 .
3
6
4
2 .
3
5
6
0 .
3
4
8
8
.
3
2
1
9
(
1
3
)
o
r
(
P
T
,
m
- Pm
)= .
47
0
2, cLin=2.657 c
ASE
ml
ml
ml
.
2
9
5
3
ml
ml
ml
ml
HASE
.
3
1
2
6 .
2
3
1
7 .
2
9
7
2 .
2
9
5
2 .
2
7
6
7 .
2
5
6
9 .
2
3
5
5
.
2
6
3
9
2
9
7
4 .
2
9
5
0 .
S
i
m
u
l
a
t
e
d(
S
D
) .
3
1
8
1 .
2
4
5
9 .
2
7
6
4 .
2
6
0
8 .
2
4
7
6
.
2
6
5
9
8
3
.
8
2
.
9
2
6
.
5
2
6
.
3
.
4
4
3
.
8
5
2
.
9
7
9
一
.
1
αム2
7
.
0 4
7
.
9 6
4
.
7
-41
.2
S
i
m
u
l
a
t
e
d
3
5
.
0
6
6
.
7
3
.
2
一.4 2
8
7
.
1
.
2
2
.
6
1
.8
1
8
.
4 5
2
.
3 1
0
3
.
7
3
8
.
6
αi
1
.7
1
7
.
6 4
S
i
m
u
l
a
t
e
d
3
.
3
7
2
.
9
.
2
4
6
.
8 8
6
.
6
3
5.
2
9
6
4 .
HRMSE
.
3
1
4
2 .
2
9
7
5 .
2
9
7
3 .
2
8
9
7 .
2
9
4
9 .
3
1
1
3
.
2
9
1
7
S
i
m
u
l
a
t
e
d
2
9
9
4 .
2
9
7
6 .
2
9
6
1 .
2
8
8
8 .
.
3
2
0
1 .
2
9
4
6 .
3
0
9
8
.
2
9
1
3
;HASE= (η1αML2十 η
2
α ム2
)
1
/
2
;HRMSE= {
η一1
向山十
N
o
t
e
.ASE=η-1/2αば2
n-2(αム2十 α
i
)
}ゆ ;ML:皿 aximuml
i
k
e
l
i
h
o
o
d
;BM:B
a
y
e
sm
o
d
a
l
;WL:w
e
i
g
h
t
e
dl
i
k
e
i
g
n“
m
l
"i
n
d
i
c
a
t
e
st
h
a
tt
h
e
l
i
h
o
o
d
;P
C
(
c
*
)
:e
s
t
i
m
a
t
i
o
nu
s
i
n
gp
s
e
u
d
o
c
o
u
n
t♂. Thes
h
a
tbyML.
v
a
l
u
ei
si
d
e
n
t
i
c
a
l七ot
。
=
。
=
rPC(
C
:
Uin)' When
Thes
m
a
l
l
e
s
tHRMSEandsimulatedRMSEa
r
egivenbyB Mo
8= -1and0,
thevalueo
f♂ i
nPC(
c
*
)correspondingtoB MinTable4seemsto
e
f
i
e
c
t
i
n
gther
e
l
a
t
i
v
e
l
yl
a
r
g
ec
:
Uin' Table6showstheresultsunder
beg
r
e
a
t
e
rthan4r
m.m. when8= -1and2
,
whicha
r
efoundtobes
i
m
i
l
a
rt
othecorrespondingresu
1
ts
i
nTables4and5
.
5
. Remarks
Ther
e
s
u
l
t
si
nthenumericali
1
l
u
s
t
r
a
t
i
o
nshowthatthelowerbound3i
sreasonable
e
s
p
e
c
i
a
l
l
ywhen8
sa
sl
a
r
g
ea
s2i
ndatas
i
m
i
l
a
rtothosei
nt
h
i
spape
r
. When80 i
s
0i
e
a
s
o
n
a
b
l
e
. Int
h
i
scase,l
a
r
g
ec
*'
s
s
m
a
l
l
e
rthano
requalto0,♂=4maybemorer
r
e
c
o
m
m
e
n
d
e
d
f
o
r
maynot alwaysbe
usei
np
r
a
c
t
i
c
ethoughc
i
v
e
sthe
加 C
L
巾
:
U
i
ng
*a
s
m
a
l
l
e
s
tHRMSEunderc
.
m
.
s
.i
nthed
a
t
a
. Thisi
sbecausethel
a
r
g
ec
l
s
og
i
v
e
s
r
e
l
a
t
i
v
e
l
yl
a
r
g
e
rb
i
a
s
e
sthanthosebye
.
g
sfoundt
og
i
v
e
,・ BM. Inthetables,B Mi
c
*
a
s
e
scomparabler
e
s
u
l
t
sbyPC(
smallMSEsandi
nma
.
c
*
)with = 3and4
可 c
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
4
3
However whenr
e
l
a
t
i
v
e
l
ys
m
a
l
lb
i
a
si
sd
e
s
i
r
e
d,
W LandPC(
c
*
)with♂ =1and2
maybeu
s
e
d
.
,i
ti
sp
o
s
s
i
b
l
et
ohavel
e
s
sb
i
a
s
e
dBMEsbyu
s
i
n
gmorer
e
l
a
t
i
v
e
l
yvague
Probably
l
.However,
t
h
ep
r
i
o
ro
ft
h
eBMEi
sani
n
f
o
r
m
a
p
r
i
o
r
si
np
l
a
c
eo
ft
h
es
t
a
n
d
a
r
dnorma
t
i
v
eonebasedont
h
es
u
b
j
e
c
t
i
v
ep
r
o
b
a
b
i
l
i
t
yo
f80 fromapureB
a
y
e
s
i
a
np
o
i
n
to
fview,
whoser
e
a
s
o
n
a
b
l
eonei
sn
o
ta
l
w
a
y
se
a
s
i
l
yo
b
t
a
i
n
e
d
. Thes
t
a
n
d
a
r
dnormalp
r
i
o
rf
o
r
t
h
eBMEi
sr
e
a
s
o
n
a
b
l
ei
nmanyc
a
s
e
si
nt
h
a
titemp
a
r
a
m
e
t
e
r
sa
r
ee
s
t
i
m
a
t
e
dt
y
p
i
c
a
l
l
y
bym
a
r
g
i
n
a
lMLassumingt
h
es
t
a
n
d
a
r
dnormalf
o
rt
h
ed
i
s
t
r
i
b
u
t
i
o
no
fa
b
i
l
i
t
y
. The
U
:
i
nf
o
rt
h
e
a
u
t
h
o
rh
a
st
r
i
e
dt
oo
b
t
a
i
naf
i
x
e
dl
o
w
e
rboundf
o
rt
h
eBMEs
i
m
i
l
a
rt
oc
PCE.Sof
a
r,
howeverぅ
七h
el
o
w
e
rboundi
sn
o
ta
v
a
i
l
a
b
l
e
. Probablymethodsd
i
百
'
e
r
e
n
t
,・ empiricalBayesshouldbeinvestigated.
fromt
h
a
tu
s
i
n
gt
h
eMSEf
o
r8GWe
.
g
I
nt
h
et
a
b
l
e
st
h
es
q
u
a
r
e
da
s
y
m
p
t
o
t
i
cb
i
a
si
sshowna
sav
a
l
u
ei
n
d
e
p
e
n
d
e
n
to
fn
.The
c
o
r
r
e
s
p
o
n
d
i
n
gb
i
a
so
fo
r
d
e
rO
(
η 1
)i
sg
i
v
e
nbye
.
g・う (
α
i
)
1
/
2
/
η =(
2
5
.
3
)山 /
5
0土 0
.
1
f
o
rB Mwhen8= -1andn = 5
0i
nT
a
b
l
e4withas
i
m
i
l
a
rs
i
m
u
l
a
t
e
dv
a
l
u
e
. The
v
a
l
u
e0
.
1maybea
c
c
e
p
t
e
dbymanyr
e
s
e
a
r
c
h
e
r
se
s
p
e
c
i
a
l
l
ywhenwec
o
n
s
i
d
e
rt
h
el
a
r
g
e
2
土
t
h
ec
o
r
r
e
s
p
o
n
d
i
n
gs
q
u
a
r
e
dasympr
e
d
u
c
t
i
o
no
ft
h
ev
a
r
i
a
n
c
eby-95.7/50 -0.038(
2
土
0
.
0
1
0
)whichr
e
d
u
c
e
sHASE= 0
.
3
9
1
5byMLt
oHASE=
t
o
t
i
cb
i
a
si
s2
5
.
3
/
5
0
1
tsbyc~lin when
0
.
3
0
2
3byB Mwiths
i
m
i
l
a
rs
i
m
u
l
a
t
e
dv
a
l
u
e
s
.Thec
o
r
r
e
s
p
o
n
d
i
n
gr
e
s
u
8= -1andη =5
0i
nT
a
b
l
e4a
r
eα
(i
)1/2η=(103.5)1/2/50と 0.2andthereduction
o
ft
h
eHASE= 0
.
3
9
1
5byMLt
oHASE= 0
.
2
4
2
2byPC(
c
U
:
i
n
)withs
i
m
i
l
a
rs
i
m
u
l
a
t
e
d
sc
U
:
i
nweren
o
ta
l
w
a
y
srecommendede
a
r
l
i
e
rbyt
h
e
v
a
l
u
e
s
. Thought
h
el
a
r
g
ec sa
a
u
t
h
o
rt
h
ev
a
l
u
eo
ft
h
eb
i
a
s0
.
2maybet
o
l
e
r
a
b
l
ef
o
rsomer
e
s
e
a
r
c
h
e
r
sc
o
n
s
i
d
e
r
i
n
gt
h
e
国i
a
l
l
ys
m
a
l
lv
a
r
i
a
n
c
e
.
c
o
r
r
e
s
p
o
n
d
i
n
gs
u
b
s
t
a
Themethodo
fe
s
t
i
m
a
t
i
o
nu
s
i
n
gt
h
epseudocounti
sa
l
m
o
s
ta
ss
i
m
p
l
ea
st
h
a
tby
ML(
r
e
c
a
l
l(
2
.
7
)
)
. Ont
h
eo
t
h
e
rhand,
M
S
E
O
(
n
2
)
(
8
p
c
)(
s
e
e(
3
.
7
)
)i
sa
sc
o
m
p
l
i
c
a
t
e
d
a
st
h
o
s
ef
o
ro
t
h
e
re
s
t
i
m
a
t
o
r
swithv
a
r
i
o
u
sg
(
8
)
'
s(
s
e
e(
3
.
6
)
)
.I
tcanbeshownt
h
a
tan
e
s
t
i
m
a
t
o
rwitht
h
esamea
s
y
m
p
t
o
t
i
ccumulantsupt
ot
h
ef
o
u
r
t
ho
r
d
e
randt
h
esame
addedh
i
g
h
e
r
o
r
d
e
ra
s
y
m
p
t
o
t
i
cv
a
r
i
a
n
c
ea
st
h
o
s
eo
f8
i
s
g
i
v
e
n
b
y
c
o
r
r
e
c
t
i
o
n
o
f8
GW
I
v
IL
a
sf
o
l
l
o
w
s
:
う
う
う
判
う
。
(
_δIvIL
C-GW三 8
-1
2
g
)ぅ
η1aML29(0ML)三 eI
I
v
IL+
v
IL-n
(
5
.
1
)
where&IvIL
2i
st
h
esamplev
e
r
s
i
o
no
f
αI
v
IL
2
.At
y
p
i
c
a
lexampleo
f-&IvIL2gi
s&IvIL
1ぅ
whichi
st
h
esamplev
e
r
s
i
o
no
f
αI
v
IL
1byML,
y
i
e
l
d
i
n
gt
h
ea
s
y
m
p
t
o
t
i
c
a
l
l
yb
i
a
s
c
o
r
r
e
c
t
e
d
1
e
s
t
i
m
a
t
o
re
n
&
I
v
I
L
1
・
R
e
c
a
l
l
t
h
a
t
g
(
8
)
=
3
/
(
2
I
)
f
o
r
W
L
ぅ
w
h
i
c
h
u
n
d
e
r
c
.
m
.
s
.
g
i
v
e
s
I
v
IL
一αI
v
IL
2
g
(
8
)=
3
/
(
2
I
2=αIvIL
1
).
TheAMSEo
f8
n(
5
.
1
)i
smoree
a
s
i
l
yob
切i
n
e
dthant
h
a
to
f8Gw. Fors
i
m
cGWi
p
l
i
c
i
t
y
,
wec
o
n
s
i
d
e
rt
h
ec
a
s
eunderc
.
m
.
s
.i
.
e
,・ 8ιGW= 8IvIL+η 1,i-lg,
where,i i
st
h
e
samplev
e
r
s
i
o
no
fi
.Then
う
E{(e
}
cGW-80?
“
=v
a
r
(
e
)+η-22ηacov(0MLJ19)+{E(dc-GW)Oo}2+0(η-3)
I
v
IL
1
=η-1
%
0 +η 2
[
αI
v
IL
ム2
+2ηacov(8I
v
IL
,
I
1
g
)十 {
αI
v
IL
1+
記
長1
9
(
80)
P
l+O(η 3
)ぅ
(
5
.
2
)
H
.O
g
a
s
a
w
a
r
a
1
4
4
wherea
c
o
v
(・
ぅ
・
)i
st
h
ea
s
y
m
p
t
o
t
i
cc
o
v
a
r
i
a
n
c
eo
fo
r
d
e
rO
(
η一1
)f
o
rt
h
etwov
a
r
i
a
b
l
e
s
.
Using
:
;
'
19
I
u
3
I
O
'
g
(
8
0
)+I
ぷ2
g
'
(
80
)
,
ηacov(e
)= (
5
.
3
)
ML,
(
5
.
2
)becomes
む
1
η-Qu +η2{αMLム2十 α L1十
2
I
u
2
g
'
(
8
0
)-Iu3(
2
九+30)g(80)+ I
u2
g
(
8
)
2
}
0
十O
(η-3)
(
5
.
4
)
=M8EO(n-2)(
e
(
η
3
)
.
Gw)十 O
Thee
s
t
i
m
a
t
o
r8
n(
5
.
1
)wasi
n
t
r
o
d
u
c
e
dt
ohavesomei
n
s
i
g
h
ti
nt
h
ei
n
v
o
l
v
e
d
cGWi
e
x
p
r
e
s
s
i
o
no
f(
3
.
6
)
. ThoughM8Eo(η2)(-)'S a
r
et
h
esamef
o
r8GWand8
t
h
cGWぅ e
伍c
u
l
t
yi
nt
h
ec
a
s
e
so
fz
e
r
oandp
e
r
f
e
c
ts
c
o
r
e
s wherea
b
i
l
i
t
ye
s
t
i
m
a
t
i
o
n
l
a
t
t
e
rhasad
i
o
e
sn
o
tg
i
v
e五n
i
t
e8
. Ont
h
eo
t
h
e
rhand 8GW a
r
e
byMLr
e
q
u
i
r
e
df
o
r8cGWd
MLs
a
v
a
i
l
a
b
l
ei
nt
h
e
s
ec
a
s
e
s
.
Asa
d
d
r
e
s
s
e
de
a
r
l
i
e
r,
s
i
n
c
ec
U
:
i
ndependsonunknown80,
c~巾 is n
o
ta
v
a
i
l
a
b
l
ei
n
p
r
a
c
t
i
c
e
. I
no
r
d
e
rt
oovercmnet
h
ed
i
伍c
u
l
t
yananonymousr
e
v
i
e
w
e
rs
u
g
g
e
s
t
e
da
methodt
h
a
tt
a
k
e
st
h
ee
x
p
e
c
t
a
t
i
o
nぱ
0
fc
山
U
:
i
d
e
n
s
i
t
y(
t
h
ea
u
t
h
o
ri
si
n
d
e
b
t
e
dt
ot
h
er
e
v
i
e
w
e
rf
o
rt
h
es
u
g
g
e
s
t
i
o
nanda
s
s
o
c
i
a
t
e
dr
e
s
u
l
t
s
)
.I
np
r
a
c
t
i
c
eぅ itemparametersa
r
et
y
p
i
c
a
l
l
yc
a
l
i
b
r
a
t
e
dbyu
s
i
n
g8rv N(O1
)t
o
五c
a
t
i
o
n
.80,
i
ti
sq
u
i
t
er
e
a
s
o
n
a
b
l
et
ou
s
et
h
es
t
a
n
d
a
r
dnormal
o
b
t
a
i
nt
h
emodeli
d
e
n
t
i
d
e
n
s
i
t
y(
d
e
n
o
t
e
dbyゆ(
8
)
)f
o
rグ(
8
)a
si
susedf
o
rt
h
ep
r
i
o
ro
ft
h
eB ME
.Thati
s,
t
h
e
e
x
p
e
c
t
a
t
i
o
ni
sf
o
r
m
e
r
l
yg
i
v
e
na
s
う
う
う
【
う
同
う
出
に
=ω。
(
5
.
5
)
n
(
8
)
}
whichcanbeapproximatedbyu
s
i
n
gGaussianq
u
a
d
r
a
t
u
r
e
:
土
去
芝
山山
則合i
n
(
8
)
}
n
(
5
.
6
)
Aiう
st
h
ei
t
hq
u
a
d
r
a
t
u
r
ep
o
i
n
t,
Ai i
st
h
ei
七hq
u
a
d
r
a
t
u
r
ew
e
i
g
h
tandl
V
Ji
st
h
e
whereXi i
む
r
剖
a
,
t
Ul町 p
o
i
n
t
s(
s
e
e8troud& 8
e
c
h
r
e
s
t1
9
6
6T
a
b
l
eF
i
v
e,
pp.217
numbero
ft
h
equa
d
2012b,
P
a
r
tA,
8
u
b
s
e
c
t
i
o
n3
.
1
)
.
2
5
2
;Ogasawara,
01
5and2
0
. However,
(
5
.
6
)becomes
Thea
u
t
h
o
rt
r
i
e
dt
h
i
smethodwithM = 1
ぅ・ g
r
e
a
t
e
rthan50,
andt
e
n
d
st
obeu
n
s
t
a
b
l
e
.Thisi
sduet
ot
h
el
a
r
g
e
r
e
l
a
t
i
v
e
l
yl
a
r
g
ee
.
g
o
ri
n
f
i
叫t
e
l
yl
a
r
g
ev
a
l
u
eo
fc
:
U
i
n(
8
)with8b
e
i
n
garoundo
.Theinstabilitycomesfrom
(
5
.
6
)becomes
t
h
ef
a
c
tt
h
a
twhenaq
u
a
d
r
a
t
u
r
ep
o
i
n
thappenst
obec
l
o
s
et
ot
h
i
sv
a
l
u
e,
l
a
r
g
e
. 80ぅ somemethodst
oremovet
h
ei
n
s
t
a
b
i
l
i
t
ya
r
er
e
q
u
i
r
e
d
.A s
i
m
p
l
emethodi
s
:
U
i
n
(
O
)s
i
n
c
e0i
st
h
emeano
fN(O,
1
)thought
h
i
sa
g
a
i
ng
i
v
e
sal
a
r
g
ev
a
l
u
e
t
ou
s
ec
U
:i
n(
-1)
(
r
e
c
a
l
lT
a
b
l
e1
)
.Anothers
i
m
p
l
emethodi
st
ot
a
k
et
h
emeano
rminimumo
fc
andc
U
:
i
n(
1
)s
i
n
c
e土 1a
r
evah
悶
awayfromt
h
emeanbyas
t
a
n
d
a
r
dd
e
v
i
a
t
i
o
n
.When
wehave3
.
9
8rv6.
46fromT
able1
. Whensomei
n
f
o
r
m
a
t
i
o
n
t
h
eminimumi
sused,
aboutt
h
ep
o
s
s
i
b
l
ev
a
l
u
e
so
fc~巾 is a
v
a
i
l
a
b
l
e amethods
i
n
u
l
a
rt
oぅ b
u
td
i
f
f
e
r
e
n
tfrom
う
う
う
う
ESTIMATIONOFABILITYUSINGPSEUDOCOUNTSI
NITEMRESPONSETHEORY
1
4
5
thatsuggestedbytherevieweri
stousetheh
i
e
r
a
r
c
h
i
c
a
lBayesianmode
l
.Inthe五rst
;
;
:
l
i
ni
sseenas a power ofa p
r
i
o
r(
s
e
e(
2
.
3
)
)
. Then,usi時 thehigher-order
stageぅ C
n
: n
:
p
r
i
o
rrepresentingtheinformationa
v
a
i
l
a
b
l
ef
o
rc i
n
'c i
ni
sintegratedoutoverthe
d
i
s
t
r
i
b
u
t
i
o
n,
whichcanavoidthei
n
s
t
a
b
i
l
i
t
ymentionedabove.
Alternatively
,we are tempted to use estimates of80 e.g
,・ 8ML. Howeverぅ this
由
n
:
i
sdangerousbecausetheformulaofMSE
)forc i
o(η2)(・
ω
M
白
L
L
L
註
1
i
n
ゆ
(
九
6
C
4
4
仏
C
L
L
4
i
泊
n(
伊
向
0
削
0
ω
)=O
p(η一1
ν
/
2
勺
)
.
REFERENCES
A.,& C
a
f
f
o,
B
.(
2
0
0
0
)
.S
i
m
p
l
eande
f
f
e
c
t
i
v
ec
o
凶 d
encei
n
t
e
r
v
a
l
sf
o
rp
r
o
p
o
r
t
i
o
n
sand
A
g
r
e
s
t
i,
d
i
f
f
e
r
e
n
c
e
so
fp
r
o
p
o
r
t
i
o
n
sr
e
s
u
l
tfromaddingtwos
u
c
c
e
s
s
e
sandtwof
a
i
l
u
r
e
s
.TheAmeric
αn
S
t
αt
i
s
t
i
c
iα
nぅ 54,
2
8
0
2
8
8
.
七i
,
A.,
&C
o
u
l
l,
B
.A.(
1
9
9
8
)
.Approximatei
sb
e
t
t
e
rthan“
e
x
a
c
t
"f
o
ri
n
t
e
r
v
a
le
s
t
i
m
a
t
i
o
no
f
Agres
z
c
α
ηS
t
αt
i
s
t
i
c
i
αn,
52,
1
1
9
1
2
6
.
b
i
n
o
m
i
a
lp
r
o
p
o
r
t
i
o
n
s
. TheAm巴r
Anscombe,
F
.J
.(
1
9
5
6
)
.One
s
t
i
m
a
t
i
n
gb
i
n
o
m
i
a
lr
田p
onser
e
l
a
t
i
o
n
s
.B
i
o
m
e
t
r
i
k
α,
43,
4
6
1
4
6
4
.
出 a
u
肌 A
.(
1
9
6
9
)
.S
t
a
t
i
s
t
i
c
a
lt
h
e
o
r
yf
o
rl
o
g
i
s
t
i
cmentalt
e
s
tmodelswithap
r
i
o
rd
i
s
t
r
i
b
u
t
i
o
n
B
i
r
o
u
r
n
a
lo
fM
a
t
h
e
m
a
t
i
c
a
lP
s
y
c
h
o
l
o
g
y,
6,
2
5
8
2
7
6
.
o
fa
b
i
l
i
t
y
.J
Bock,
R
.D.,
& Ai
t
1
山
, M.(1981).Marginalmaximumlikelihoodestimationofitemparameters:
A
p
p
l
i
c
a
t
i
o
no
fanE Ma
l
g
o
r
i
t
h
m
.P
sychometrik
α,
46,
4
4
3
4
5
9
.
.,
&P
r
i
c
e,
R
.M.(
2
0
0
7
)
.S
t
a
t
i
s
t
i
c
a
li
n
f
e
r
e
n
c
ef
o
rg
e
n
e
r
a
l
i
z
e
dYulec
o
e
f
f
i
c
i
e
n
t
si
n2x2
Bonett D.G
七i
n
g
e
n
c
yt
a
b
l
e
s
.S
o
c
i
o
l
o
g
i
c
αlMethodsα
η dRese
αr
c
h
,35,
4
2
9
4
4
6
.
con
F
i
川 1ぅ D
.(
1
9
9
3
)
.B
i
a
sr
e
d
u
c
t
i
o
no
fmaximuml
i
k
e
l
i
h
o
o
de
s
t
i
m
a
t
e
s
.B
i
o
m
e
t
r
i
k
a
,
80,
2
7
3
8
.
M.H
.J
.(
1
9
9
8
)
.I
m
p
r
o
v
i
吋 e
f
f
i
c
i
e
n
c
yb
ys
h
r
i
n
k
a
g
e
: TheJ
a
m
e
s
S
t
e
i
nandr
i
d
g
er
e
g
r
e
s
s
i
o
n
Gruber,
e
s
t
i
m
a
t
o
r
s
.NewYor
k
:M
arcelDekker
.
Haldane,
J
.B
.S
.(
1
9
5
6
)
.Thee
s
t
i
m
a
t
i
o
nands
i
g
凶f
i
c
a
n
c
eo
ft
h
el
o
g
a
r
i
t
h
mo
far
a
t
i
oo
ff
r
e
q
u
e
n
c
i
e
s
Ann
αl
so
fHum
αnG
e
n
e
t
i
c
s,
20,
309-311
.
H
i
t
c
h
c
o
c
k,
S
.E
.(
1
9
6
2
)
.A n
o
t
eont
h
ee
s
t
i
m
a
t
i
o
no
ft
h
eparameter日 o
ft
h
el
o
g
i
s
t
i
cf
u
n
c
t
i
o
n,
凹
u
日i
出
n
吐
1
imuml
o
g
i
比
tχ2method.B
i
o
m
e
t
r
i
k
α,
49,
2
5
0
2
5
2
.
t
h
emi凶
n
狂r
e
y
sぅ H
.(
1
9
4
6
)
.Ani
町 a
na
凶 f
ormf
o
rt
h
ep巾 rp
r
o
b
a
b
i
l
i
t
yi
ne
s
t
i
m
a
t
i
o
np
r
o
b
l
e
m
s
.P
r
o
c
e
e
d
i
n
g
s
J
e
yo
fLondon
,
S
e
r
i
e
sA,
1
8
6,
453-461
.
o
ft
h
eRoyalS
o
c
i巴t
J
e
f
f
r
e
y
s,
H
.(
1
9
6
1
)
. Th巴O叩 o
fp
r
o
b
a
b
i
l
i
t
y(
3
r
de
d
.
)
.O
x
f
o
r
d
:C
l
a
r
e
n
d
o
n
.
Kolen,
M.J
.,
& Brennan,
R
.L
.(
2
0
0
4
)
.T
e
s
te
q
u
a
t
i
n
g
,s
c
a
l
i
旬 ,
andl
i
n
k
i
n
g
:Methodsαndp
r
a
c
t
i
c
e
s
(2nde
d
.
)
.NewYor
k
:S
p
r
i
n
g
er
.
Lehmann,
E
.Lぅ&Ca
副 l
a,
G.(
1
9
9
8
)
.Theoryo
fp
o
i
n
te
s
t
i
m
a
t
i
o
n(2nde
d
.
)
.NewYor
k
:S
p
r
i
n
g
e
r
.
Lord,
F
.M. (
1
9
5
3
)
.Ana
p
p
l
i
c
a
t
i
o
no
fc
o
n
f
i
d
e
即 ei
n
t
e
r
v
a
l
sando
fmaximuml
i
k
e
l
i
h
o
o
dt
ot
h
e
e
s
t
i
m
a
t
i
o
no
fane
x
a
m
i
n
e
e
'
sa
b
i
l
i
t
y
.Psychometrika
,
1
8,
5
7
7
6
.
Lord,F
. M. (
1
9
7
5
)
. Ev
αl
uαt
i
o
n with αrt~戸cial d
α
t
α o
fαp
r
o
c
巴d
u
r
ef
o
re
s
t
i
m
αt
i
n
ga
b
i
l
i
t
y αηd
i
t巴m cha'T"αc
t巴r
i
s
t
i
cc
u
r
閃
p
αr
a
m
e
t
e
r
s
.(
R
e
s
e
a
r
c
hB
u
l
l
e
t
i
n7
5
3
3
)
.P
r
i
n
c
e
t
o
n,NJ: Educat
i
o
n
a
lT
e
s
t
i
n
gS
e
r
v
i
c
e
.
F
.M. (
1
9
8
3
)
.Unbiasede
s
t
i
m
a
t
o
r
so
fa
b
i
l
i
t
yparameters,
o
ft
h
e
i
rv
a
r
i
a
n
c
e,
ando
ft
h
e
i
r
Lord,
o
r
m
sr
e
l
i
a
b
i
l
i
t
y
.P
sychometrika
,
48,
2
3
3
2
4
5
.
p
a
r
a
l
l
e
lf
Lord,
F
.M.,
&N
o
v
i
c
l
,王 M.R. (1968). Stαt
i
s
t
i
う
】
1
4
6
H.Ogasawara
h
t
t
p
:
/
/
b
a
r
r
el
.
i
h
.
o
t
a
r
u
u
c
.
a
c伊 j
.
Og
回 a
wara,
H.(
2
0
1
3
a
)
.Asymptoticp
r
o
p
e
r
t
i
e
softheBayesandpseudoBayese
s
t
i
m
a
t
o
r
so
fa
b
i
l
i
t
y
七emr
e
s
p
o
n
s
et
h
e
o
r
y
.J
o
u
r
n
a
lo
fM
u
l
t
i
v
αr
i
a
t
eAn
αl
y
s
i
s,
114,
3
5
9
3
7
7
.
i
ni
H.(
2
0
1
3
b
)
.Asymptoticcuml
山 n
t
so
fa
b
i
l
i
t
ye
s
t
i
m
a
t
o
r
su
s
i
n
gf
a
l
l
i
b
l
eitemparameOgasawara,
o
u
r
n
a
lo
fM
u
l
t
i
v
αr
i
a
t
eA
n
a
l
y
s
i
s,
119,
1
4
4
1
6
2
.
t
e
r
s
.J
Sam
吋ima,
F
.(
1
9
6
9
)
.E
s
t
i
m
a
t
i
o
no
fl
a
t
e
n
ta
b
i
l
i
t
yu
s
i
時 ar
e
s
p
o
n
s
ep
a
t
t
e
r
no
fgradeds
c
o
r
e
s
.
P
s
y
c
h
o
m
e
t
r
i
k
αMonogmph
,
N
o
.
1
7
.
Stroud,A. H
.,& Sech
目
前
, D. (1966). Gαussian q切 dmtureformulαs
. Englewood C
l
i
丑s
',NJ:
P
r
e
n
t
i
c
e
-H
a
l
l
.
T
.A
.(
1
9
8
9
)
.Weightedl
i
k
e
l
i
h
o
o
de
s
t
i
m
a
t
i
o
no
fa
b
i
l
i
t
yi
nitemr
e
s
p
o
n
s
et
h
e
o
r
y
.PsychomeWarm,
α,
54,
4
2
7
4
5
0
.
t
r
i
k
E
.B
.(
1
9
2
7
)
.Probablei
n
f
e
r
e
n
c
e,
t
h
elawo
fs
u
c
c
e
s
s
i
o
n,
ands
t
a
t
i
s
t
i
c
a
li
n
f
e
r
e
n
c
e
.J
o
u
r
n
a
l
Wilson,
α
ηS
t
αt
i
s
t
i
c
a
lA
s
s
o
c
i
αt
i
o
n,
22,
2
0
9
2
1
2
.
o
ft
h
eAmeric
(
R
e
c
e
i
v
e
dOctober1
52013ぅ RevisedDecember52
0
1
3
)