Plane Coutte-Poiseuille Flow of Power-Law Non

NAOSITE: Nagasaki University's Academic Output SITE
Title
Plane Coutte-Poiseuille Flow of Power-Law Non-Newtonian Fluids
Author(s)
Davaa, Ganbat; Shigechi, Toru; Momoki, Satoru
Citation
長崎大学工学部研究報告 Vol.30(54) p.29-36, 2000
Issue Date
2000-01
URL
http://hdl.handle.net/10069/5095
Right
This document is downloaded at: 2016-01-06T21:30:49Z
http://naosite.lb.nagasaki-u.ac.jp
Repor
t
soft
heFa
cul
t
yofEngi
ne
e
r
i
ng,
Naga
s
akiUni
ver
s
i
t
y,
Vol
.
30,No.
54
2
9
Pl
a
neCout
t
e
Poi
s
e
ui
l
l
eFl
owofPowe
r
La
wNonNe
wt
oni
a
nFl
ui
ds
by
Ga
nba
tDAVAA'
,Tor
uSHI
GECHr'a
ndSa
t
or
u MOMOK
r
+
Thef
ul
l
yde
v
e
l
o
pd l
a
i na
m
rno
wo
fanonNe
wt
o
ni
n f
a
l
ui
df
l
o
ingb
w
e
t
we
e
nt
wopa
r
a
l
l
e
lp
l
a
t
e
sw
it
h
l
,t
he
o
nemo
ingp
v
l
a
t
ewa
ss
t
udi
e
da
na
ly
t
i
c
l
al
y.App
l
y
i
ngt
hes
he
a
rs
t
r
e
s
sd
e
s
c
ib
r
e
db
yt
hep
owe
r
l
a
w mo
de
e
x
a
c
ts
o
l
ut
i
onsf
o
rt
hemo
me
nt
um e
qua
t
i
o
nwe
r
eo
bt
ine
a
d.
Thee
f
f
e
c
t
soft
hev
e
l
o
c
i
t
yo
famo
vl
ngp
l
a
t
ea
ndt
hef
lo
wi
n
de
xofano
nNe
wt
o
ni
a
np
o
we
r
l
a
wf
l
ui
d
o
nt
hev
e
l
o
c
i
t
ydi
s
t
ibut
r
i
ona
ndf
ic
r
t
i
onf
a
c
t
o
rha
v
ebe
e
ndi
s
c
us
s
e
d.
I.I
nt
r
oduct
i
on
Pr
obl
emsi
nvol
vi
ngf
l
ui
df
l
ow andheatt
r
ans
f
erwi
t
hanaxi
al
l
ymovi
ngc
or
eofs
ol
i
dbodyor
f
l
ui
di
n an annul
arge
ome
t
r
yc
an be f
ound i
n
many manuf
act
ur
i
ng pr
oc
e
s
s
e
s
,s
uc
h as e
xt
r
us
i
on,dr
awi
ngandhotr
ol
l
i
ng,e
t
c
.Ⅰ
ns
uc
hpr
oc
e
s
s
es
,ahotpl
at
eorc
yl
i
ndr
i
c
alr
odc
ont
i
nuous
l
y
e
xc
hange
sheatwi
t
ht
he s
ur
r
oundi
ng envi
r
onme
nt
.Fors
uc
hcas
e
s
,t
hef
l
ui
di
nvol
ve
dmaybe
Newt
oni
anornonNe
wt
oni
anandt
hef
l
ow s
i
t
uat
i
onsenc
ount
e
r
e
dcan bee
i
t
he
rl
ami
narort
ur
.
bul
ent
I
nt
hepr
e
vi
ousr
e
por
t
(
1
)
,f
ul
l
yde
ve
l
ope
dl
ami
narhe
att
r
ans
f
e
rofa Newt
oni
an f
l
ui
df
l
owi
ng
bet
we
e
nt
wo par
al
l
e
lpl
at
e
s wi
t
h one movi
ng
pl
at
ewasanal
yz
e
dt
aki
ngi
nt
oac
c
ountt
he vi
s
c
ousdi
s
s
i
pat
i
on oft
hef
l
owi
ngf
l
ui
d.
I
ne
ngi
ne
er
i
ng appl
i
c
at
i
onss
uc
h asmanuf
ac
t
ur
i
ngpr
oc
e
s
s
e
s
,manyl
mpOr
t
antf
l
ui
dsar
enonNewt
oni
ani
nt
he
i
rf
l
ow char
a
ct
er
i
s
t
i
c
s
.
I
nt
hi
spape
r
,anexacts
ol
ut
i
onoft
hemoment
um e
quat
i
on i
s obt
ai
ne
df
or f
ul
l
y devel
ope
d
l
ami
narf
l
ow ofa nonNe
wt
oni
an f
l
ui
df
l
owi
ng
ofamovi
ngpl
at
eandt
hef
l
ow i
ndexofapowe
r
-
1
aw f
l
ui
d on t
hevel
oc
i
t
y di
s
t
r
i
but
i
on and f
r
i
c
t
i
onf
ac
t
orhavebe
endi
s
c
us
s
e
d.
Nomencl
at
ur
e
C
i
nt
e
gr
at
i
on c
ons
t
ant
p
pr
e
s
s
ur
e
〟
axi
alve
l
oc
i
t
yoff
l
ui
d
u
.dimensionlessvelocity
um
Ⅳ
U● r
e
l
at
i
veve
l
oc
i
t
y oft
hemovi
ngpl
at
e
y
c
oor
di
nat
enor
malt
ot
hef
i
xedpl
at
e
y' di
me
ns
i
onl
e
s
sc
oor
di
nat
e = y/L
z
axi
alc
oor
di
nat
e
p
エ
de
ns
i
t
y
channelwi
dt
h
m
n
c
ons
i
s
t
enc
yi
ndex
f
l
ow i
ndex
′
f
r
i
c
t
i
onf
act
or
F
di
me
ns
i
onl
e
s
spar
amet
er
Re'gener
al
i
z
e
dRe
ynol
dsnumber
Subs
cr
i
pt
s
Ofixedplate
i
.
e
.
,t
hes
hear
pl
at
e
.Thec
ons
t
i
t
ut
i
veequat
i
on (
s
t
r
e
s
s-s
he
arr
at
er
e
l
at
i
on)f
oranonNe
wt
oni
an
L movi
ngpl
at
e
f
r
e
que
nt
l
yus
edi
nnonNe
wt
oni
anf
l
ui
df
l
ow and
heatt
r
ans
f
e
r
.Theef
f
ec
t
soft
her
el
at
i
veve
l
oc
i
t
y
2.Anal
ys
i
s
Thephys
i
calmodelf
ort
heanal
ys
i
si
ss
hown
i
n Fi
g.
1
.The as
s
umpt
i
onsand c
ondi
t
i
ons us
e
d
Re
c
e
i
ve
donOc
t
ober26,1
999
●Gr
aduat
eSt
ude
nt
,De
par
t
me
ntofMe
c
hani
c
alSys
t
e
msEngi
nee
r
i
ng
…De
par
t
me
ntofMec
hani
c
alSys
t
emsEngi
ne
er
i
ng
u/um
ave
r
a
geve
l
oc
i
t
yoff
l
ui
d
axi
alve
l
oc
i
t
yoft
hemovi
ng pl
at
e
bet
we
en t
wo par
al
l
e
lpl
at
e
s wi
t
h one movi
ng
f
l
ui
di
sde
s
c
r
i
be
dbyt
hepowe
r
l
aw mode
lmos
t
…
3
0
GanbatDAVAA,
Tor
uSHI
GECHI
,Sat
or
uMOMOKI
i
nt
heanal
ys
i
sar
e
:
1.The f
l
ow i
si
nc
ompr
e
s
s
i
bl
e and s
t
e
ady1
ami
nar
,
andhydr
o
dynami
c
a
l
l
yf
ul
l
yde
ve
1
ope
d.
2.Thef
l
ui
di
snonNe
wt
oni
an and t
hes
he
ar
s
t
r
e
ssma
ybede
s
c
r
i
be
dbyt
hepowe
トl
a
w
mode
l
,and phys
i
c
alpr
ope
r
t
i
e
s ar
ec
ons
t
ant
.
3.Ei
t
he
roft
wopar
a
l
l
e
lpl
at
e
si
saxi
al
l
ymovi
ngatac
ons
t
antve
l
oc
i
t
y.
Cas
eI:
Thes
he
ars
t
r
e
s
si
sc
al
c
ul
at
e
da
s
ド -- (普
)
n(o≦ 訂≦ L- )
7-- ト
)n
音
dT =
dy
d
p
dz
Theboundar
yc
ondi
t
i
onsar
e
:
(1)
(
(
2)
0 aty- 0
U at y-L
:
Thes
he
ars
t
r
e
s
sont
hel
e
f
thands
i
deofEq.
(
1)
T,i
sgi
ve
nbyt
hepowe
r
l
aw mode
l
.
u
r
l
d
u
T
=
md
Themome
nt
um e
quat
i
onandi
t
sboundar
yc
ondi
t
i
onsar
er
e
duc
e
dt
o
意
(
普 )
∼-
u
:- 0 at y
ForaNe
wt
oni
anf
l
ui
d,n- I a
nd m c
oi
nc
i
de
s
wi
t
ht
heor
di
nar
yvi
s
c
os
i
t
y.
Thef
r
i
c
t
i
onf
ac
t
or
,∫,andgener
al
i
z
e
dRe
ynol
ds
numbe
r
.Re'
,
ar
ede
f
i
ne
da
s
I -
(
2
L)
A
R
e
'
=pu㌃乃
〝l
LL
udy
(
6)
n
■
h
uーn
H
一円
-1
れ
リー
h
u
7
8
9
0
lHHl
HUIH
Hはd iZ
1
5
i:
l
"
川
■
川
_
エ
:-'L
J
JL
'
),
≡≡≡
●
●
〃
Y 加
L'
W
・
Jd
≡
Thef
ol
l
owi
ng di
me
ns
i
onl
e
s
spar
ame
t
e
r
sar
ei
nt
r
oduc
e
d:
U+
f・Re _-〃
t
+1
-F
(
15)
2
m ・u: (-%
Si
nc
et
heve
l
oc
i
t
ygr
a
di
e
nti
sz
e
r
oatt
hel
oc
at
i
on
ofmaxi
mum ve
l
oc
i
t
y,
)
普
-o
aty'- L㌫
(
16)
∫
Thei
nt
e
gr
at
i
onofEq.
(1
3)t
oge
t
he
rwi
t
hEq.
(
16)
gl
Ve
S
1
郷
1
(17)
(
LL -yり 言
Ⅰ
nt
e
gr
at
i
ng Eq.
(
17) t
oge
t
he
r wi
t
h Eq.
(
1
4)
,we
have
a
:-蓋 貢 [
L
孟 -(LL
宗
(
b)
竿]
-y・)
(18)
L加工≦ y ≦L (
LL,
I≦y
事≦ l)
意 (
一豊
Theave
r
a
gef
lui
dve
l
oc
i
t
y, um ,i
sde
f
i
ne
da
s
u桝 = 7
-0
Themome
nt
um e
quat
i
onandi
t
sboundar
yc
ondi
t
i
onsar
er
e
duc
e
dt
o
意 (
一豊 )
1
(13)
(14)
-F
whe
r
eF i
sapar
ame
t
e
rde
f
i
ne
da
s
豊
(
3)
O≦y●≦L
'
W
(
a) 0≦ y≦L
w
'
Thegove
r
ni
ng mome
nt
um e
quat
i
on t
oge
t
he
r
Wi
t
ht
hea
s
s
umpt
i
onsde
s
c
r
i
be
dabovei
s
(
L- ≦ y≦ L)
Fort
hec
as
ewi
t
hamovi
ngpl
at
e
,t
woki
ndsof
ve
l
oc
i
t
ypr
of
i
l
e
sac
r
os
st
hepar
al
l
e
lpl
at
e
s
'
pas
s
a
ge
maybea
s
s
ume
da
si
l
l
us
t
r
at
e
di
nFi
gs
.
1and2.
The
ve
l
oc
i
t
ypr
of
i
l
es
howni
nFi
g.
1ha
samaxi
mum at
y-L棚 J Wher
e
a
si
thasnomaxi
mum poi
nti
n
Fi
g.
2.
Thet
woc
as
e
sar
er
e
s
pe
c
t
i
ve
l
yr
e
f
e
r
r
e
dt
oas
Ca
s
eIandCa
s
eI
I
.
)A-F
(19)
u言- U' a
t y'- l
(
20)
Si
nc
et
heve
l
oc
i
t
ygr
a
di
e
nti
sz
e
r
o att
hel
oc
at
i
onofmaxi
mum ve
l
oc
i
t
y,
普
(
21)
-o at y・-LL
Fj
x
e
dpl
a
t
e
一
一
■
■
ー
Non
N
O
wt
o
n
i
an
L
■
F
l
u
i
d
F
l
o
w
_ a
ーt
u
y Lma
x
Mov
i
n
gpl
at
e
Fi
g.
1Sc
he
mat
i
cofpar
al
l
e
lpl
a
t
e
swi
t
honemovi
ng pl
at
ef
or t
he c
a
s
e ofve
l
oc
i
t
y pr
of
i
l
e
sa
s
)
s
ume
di
nt
hi
sana
l
ys
i
s(
Cas
ei
Pl
aneCout
te
Poi
s
eui
l
l
eFl
ow ofPower
Law NonNewt
oni
anFl
ui
ds
(1
9)t
oget
he
rwi
t
hEq.
(
21)
Thei
nt
e
gr
at
i
onofEq.
gl
Ve
S
座
星
dy'
ニ ー
1
1
F;(
y
- LL
w)
7
(
22)
I
nt
e
gr
at
i
ng Eq.
(
22) t
oget
he
r wi
t
h Eq.
(
20)
,we
have
F
-
ub
・- U・
.荒
i l(
1- LL
u
)豊
(
23)
L y誓 ]
The val
ue
s of F and L㌫
Jr
ema
in unknown.
(y -
㍍
Theyar
edet
e
r
mi
nedbel
ow.
31
Thei
nt
e
gr
at
i
onofEq.
(
32)gi
ve
s
u書- 荒
F [C誓
i
(
C-
-
y
り崇
(
33)
]
wher
eC i
san i
nt
e
gr
alc
ons
t
ant
.Appl
yi
ng t
he
boundar
yc
ondi
t
i
onsofEq.
(
31)t
o Eq(
33)
,we
have
U・- 荒
Fi[
C豊
-
(
C-I)豊
(
34)
]
Fr
om t
hemas
sbal
anc
ebet
we
ent
wopl
at
es
:
f
l
[
了
宝FH c豊 -(C-打つ誓
)]dy・- 1
(
35)
Fr
om t
hec
ont
i
nui
t
yofvel
oci
t
i
e
satt
he l
ocat
i
onofmaxi
mum vel
oc
i
t
y:
I
nt
e
gr
at
i
ngEq.
(
35)
,wehave
u
a
'-u
b
' at y'- LLa
r
(
24)
Wehave t
he f
i
r
s
tr
el
at
i
ons
hi
p bet
we
e
n F and
荒
く
(
C-1)豊
Fi l
c誓 一
十荒
-C豊
)
]- 1
(
36)
t
hus
,F i
sobt
ai
ne
das
U'
L
L
a
r
)
(
25)
L
ニ
;
{-(1
Fr
om t
hemas
sbal
anc
ebet
we
ent
wopl
at
es
:
L
l L
u・
dy・
L
・
I
L
L・
㌔ =dy・
ub
・
dy - I
(
26)
F -[
l
島
[
C
誓
く
(
C-1)響 -C
苛
]
r
+1荒
(
37)
Combi
ni
ngEq.
(
34)andEq.
(
37)
,wehavet
hef
oL
l
owi
ngr
e
l
at
i
ons
hi
pamong C,n,and U'.
wehavet
hes
ec
ondr
e
l
at
i
ons
hi
pbet
we
en F and
J
i
l
]
/
C誓 -(
C-I)
U・- [
LLZr .
㌫
ェ
)
U'
+(I-LLS
[C誓
1-(I-L
L㌃
㌫
l
owi
ngr
el
at
i
ons
hi
pamong U',L Jand n.
[
L憲
.
)
T]
/
一(卜 LL
1荒
響)
]
く
L憲 吐+(I-LL=)
(
28)
(
i
)
A(0≦ y≦L)
く
(
C
豊 -C豊 )]
- 1)
rf
ort
heCas
eIand
Thenume
r
i
c
alval
uesofLLL
Cf
ort
heCas
eI
Iar
ec
al
cul
at
e
d and gi
ven,r
e
q
'i
sacr
i
t
i
c
al
s
pec
t
i
ve
l
y,i
n Tabl
e
s Iand 2. U
val
uet
hats
howst
hebor
derbet
we
e
nCas
eIand
㌫
J
-1as
Ca
s
eI
I
,andg
iven,f
r
om Eq.
(
28)wi
t
hL
1+2n
U3 l+n
(
39)
Fi
x
edpl
at
e
Cas
eI
I:
Thes
hears
t
r
es
si
sc
al
cul
at
edas
T= -m
了荒
(
38)
Combi
ni
ngEq.
(
25)andEq.
(
27)
,wehavet
hef
or
U・ - [
L憲
.
(
2
9)
Themoment
um e
quat
i
onandi
t
sboundar
yc
ondi
t
i
onsar
er
e
duc
e
dt
o
d
dy (d
d
S r
u
-O
(
二
:
コ
NonNewt
oni
an
L
Fl
ui
dFl
ow
ーy
U
'
Movi
ngpl
at
e
at y'- 0
u'- U'a
t y'- l
'
Fi
g.
2 Vel
oci
t
y pr
of
i
l
ea
s
s
ume
di
nt
hi
s anal
ys
i
s
(
Cas
eI
I
)
I
nt
e
gr
at
i
ngEq.
(
30)
,wehave
du+
面
I
I
= F; (
C y')
言
(
32)
3
2
GanbatDAVAA,
Tor
uSHI
GECHI
,Sat
or
uMOMOKI
Tebl
e1 Di
mens
i
onl
es
sl
oc
at
i
onatt
hemaxi
mum vel
oc
i
t
y,L㌫
ェ
CASE I:L㌫J
n
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
.
0
1
.
1
1
.
2
1
.
3
1
.
4
1
.
5
1
.
6
1
.
7
1
.
8
1
.
9
2.
0
2.
0
0.
4776
0.
4621
0.
4509
0.
4424
0.
4358
0.
4305
0.
4261
0.
4224
0.
41
93
0.
41
67
0.
41
44
0.
41
23
0.
41
06
0.
4090
0.
4076
0.
4063
0.
4051
0.
4041
0.
4031
0.
4022
1
.
5
1
.
0
0.
5
0.
4857 0.
491
6
0.
4756 0.
4856
0.
4681 0.
4811
0.
4624 0.
4777
0.
4578. 0.
4749
0.
4542 0.
4726
0.
4511 0.
4708
0.
4485 0.
4692
0.
4463 0.
4678
0.
4444 0.
4667
0.
4428 0.
4656
0.
441
3 0.
4647
0.
4401 0.
4639
0.
4389 0.
4632
0.
4379 0.
4626
0.
4370 0.
4620
0.
4361
. 0.
4615
0.
4354 0.
461
0
0.
4347 0.
4606
0.
4340 0.
4601
0.
481
2
0.
4681
0.
4585
0.
4511
0.
4454
0.
4407
0.
4369
0.
4337
0.
4309
0.
4286
0.
4265
0.
4247
0.
4231
0.
4217
0.
4205
0.
41
93
0.
41
83
0.
41
74
0.
41
65
0.
41
57
U.
0.
0
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5000
0.
5
0.
51
43
0.
5244
0.
531
9
0.
5376
0.
5422
0.
5458
0.
5489
0.
551
5
0.
5537
0.
5556
0.
5572
0.
5587
0.
5599
0.
5611
0.
5621
0.
5630
0.
5639
0.
5646
0.
5653
0.
5660
1
.
0
0.
5681
0.
5987
0.
61
78
0.
6311
0.
6409
0.
6484
0.
6544
0.
6592
0.
6633
0.
6667
0.
6696
0.
6721
0.
6743
0.
6762
0.
6780
0.
6795
0.
6809
0.
6822
0.
6833
0.
6843
1
.
5
1
.
0000
0.
971
9
0.
9521
0.
9378
0.
9270
0.
91
87
0.
91
21
0.
9068
0.
9024
0.
8987
0.
8956
US
1
.
0909
1
.
1
667
1
.
2308
1
.
2857
1
.
3333
1
.
3750
1
.
411
8
1
.
4444
1
.
4737
1
.
5000
1
.
5238
1
.
5455
1
.
5652
1
.
5833
1
.
6000
1
.
61
54
1
.
6296
1
.
6429
1
.
6552
1
.
6667
Te
bl
e2 I
nt
e
gr
at
i
onc
ons
t
antC f
orCas
eI
I
CASE I
I:C
n
0.
1
0.
2
0.
3
4
0.
0.
5
0.
6
0.
7
0.
8
0.
9
1
.
0
1
.
5
5.
0905
2.
7738
2.
0082
1
.
6306
1
.
4082
1
.
2637
1
.
1
638
1
.
0920
1
.
0391
1
.
0000
1
.
6
6.
8662
3.
6681
2.
6071
2.
0805
1
.
7676
1
.
5617
1
.
41
69
1
.
31
04
1
.
2295
1
.
1
667
U+
1
.
7
1
.
8
1
.
9
1
.
99
9.
7352 1
5.
3693 32.
1
050 332.
1
608
5.
1
075 7.
9285 1
6.
2996 1
66.
3301
3.
5685 5.
4504 ll
.
0322 111
.
0533
2.
801
6 4.
21
30 8.
3993 83.
41
50
2.
3437 3.
4720 6.
8201 66.
8321
2.
0402 2.
9790 5.
7679 55.
7768
1
.
8250 2.
6279 5.
01
68 47.
8803
1
.
6650 2.
3654 4.
4538 41
.
9579
1
.
541
8 2.
1
620 4.
01
63 37.
351
6
1
.
4444 2.
0000 3.
6667 33.
6667
3.Res
ul
t
sandDi
s
cus
s
i
on
I
.
5,0,I
.
0and I
.
5.Thec
as
eof U' - O c
or
r
e-
Fi
gur
e3S
howst
heef
f
e
ct
soft
he r
el
at
i
ve ve-
s
pondst
ot
hatofbot
hpl
at
e
sf
i
xe
d.I
ti
ss
e
eni
n
he vel
oc
i
t
y
l
oc
i
t
yoft
he movi
ng pl
at
e U'On t
pr
of
i
l
e
sac
r
os
st
he par
al
l
e
lpl
at
esf
ort
he c
as
es
of n - 0.
2,0.
5,I
.
0and 1
.
5.Thec
as
eof n - l
t
hef
i
gur
e
st
hatf
orU'<0t
hevel
oc
i
t
ypr
of
i
l
ei
s
par
abol
i
chavi
ngal
ar
germaxi
mum val
ue wi
t
h
c
or
r
e
s
pondst
ot
hatofa Newt
oni
an f
l
ui
d.I
ti
s
s
t
r
ongl
yaf
f
e
ct
e
dbyt
hef
l
ow i
ndex n.For U'
>0thevel
oc
i
t
ypr
of
i
l
e
sbec
omel
i
ne
arast
hee
f
-
s
e
en c
l
ear
l
yi
nt
he f
i
gur
e
st
hatt
he pr
of
i
l
e
sof
i
ncr
e
as
i
ngva
lue
sofn.Thevel
oc
i
t
ypr
of
i
l
e
sar
e
pl
at
ewi
t
har
e
l
at
i
vevel
oc
i
t
yU
f
ectoft
he axi
alpr
e
s
s
ur
egr
adi
enti
nt
hef
l
ui
d
di
mi
ni
s
hesandt
hef
l
ui
df
l
ow i
sgove
r
ned onl
y
Fi
gur
e4S
howst
hee
f
f
e
c
t
soft
hef
l
ow i
ndex
n oft
hepowe
r
l
aw f
l
ui
dont
hevel
oci
t
ypr
of
i
l
es
byt
hes
he
arnow i
nduc
e
d byt
hemovi
ngpl
at
e.
I
nt
hi
sc
as
e
,t
hee
f
f
e
c
tofn i
sr
at
herwe
ak.
acr
os
st
hepar
al
l
e
lpl
at
e
sf
ort
hecas
e
sof U'-
Thepr
e
di
ct
e
df
r
i
ct
i
on f
act
or
si
nt
er
msof,
t
hef
l
ui
dvel
oc
i
t
y ar
e de
f
or
med by t
hemovi
ng
' .
pl
aneCout
t
e
Poi
s
eui
l
l
eFl
ow ofPowe
r
Law NonNewt
oni
anFl
ui
ds
3
3
ゴ
ゴ
\∋
\⊃
(
U
一
〇
α
3γ
'
q
!
Q
0
.
70
.
8 0
.
9 7
クー
∫
0
.
70
.
80
,
9 1
QT.
4
α
(
∫
ハ
肌
クー
α
一
丁
一
0.
β
ハ
U
◆
●
人
肌
7
α
6
α
n
V
6
Ⅵ化
St
y
/
3'
0
.
3
●
(
〟
0 0.1 0.
2
ゴ
\⊃
ゴ \⊃
0
■
ハ
U
n
J
ハ
肌
クー
∩
肌
一
T
l
α
A
U
ー
Y
.
∧
U
3
α
クー
α
■
一
▼
∧
肌
n
V
Fi
g.3Ve
l
oc
i
t
ypr
of
i
l
e
0
.
70
.
8 0
.
9 7
3
4
Ga
nb
a
tDAVAA,
To
r
uSHI
GECHI
,
Sa
t
o
r
uMOMOKI
∧U
ゴ \⊃
ゴ \∋
0
.
70
.
8 0
.
9 1
.
70
.
8 0
.
9 1
0
ゴ \⊃
l
n/n
∧
U
ハ
∨
6
ハ
肌
y
Fi
g.4Ve
l
o
c
i
t
ypr
o
f
i
l
e
Sl
J
∧
U
A
J
n
肌
クー
l
仇
r
H
u
n
肌
∧
U
0
.
70
.
8 0
.
9 1
0
.
70
.
8 0
.
9 1
Pl
aneCout
t
ePoi
s
e
ui
l
l
eFl
ow ofPowe
r
Law NonNe
wt
oni
anFl
ui
ds
3
5
fRe' ar
es
hown i
n Fi
g.
5.Thee
f
f
e
ctof n i
st
o
mal
i
z
e
dbyt
heval
ueoff
Re'
(
U・- o) f
ort
hec
as
e
i
nc
r
ea
s
et
heval
ueofJ
Re' wi
t
h an i
ncr
e
as
ei
n
ofU' -0.ForU'>0,t
her
at
i
oJ
7
2
e'
/
J
伊e'
(U
・ = o)
n.
i
sal
waysl
e
s
st
hanuni
t
y.Thee
f
f
e
c
tof U bec
omess
t
r
onge
ri
nt
her
e
gl
OnOfl
ar
ge
rval
ue
sof
'
Fi
gur
e6s
howst
hee
f
f
ectofn on f
Re',nor
-
L
E
)
4
4
L
L
)
3
C
J
L
L
)
2
u
JJ.au
(
00..・
n
.J
a
1.
5
n
Fi
g.5Fr
i
c
t
i
onf
ac
t
or
2_
0
L
L
)
I.
1
.
0
クー
J
0.
5
0.
1
7
0.
5
1
.
0
n
1
.
5
Fi
g.6Fr
i
ct
i
onf
ac
t
orr
at
i
o
Re'
Te
bl
e3 Numer
i
calval
ue
soff
n
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
.
0
1
.
1
1
.
2
1
.
3
1
.
4
1
.
5
1
.
6
1
.
7
1
.
8
1
.
9
2.
0
U*
2.
0
1
.
5
1
.
0
0.
5
0.
0
0.
5
1
.
0
3.
1
241 3.
091
9 3.
0540 3.
0073 2.
9455 2.
8495 2.
5503
4.
4048 4.
3075 4.
1
959 4.
0629 3.
8946 3.
6527 3.
1
007
6.
0599 5.
8503 5.
61
46 5.
341
6 5.
0090 4.
5605 3.
7205
8.
2406 7.
8496 7.
41
81 6.
9300 6.
3553 5.
621
8 4.
4333
ll
.
1
321 1
0.
4591 9.
7291 8.
921
8 8.
0000 6.
8795 5.
2599
4294 1
0.
01
91 8.
3793 6.
2228
1
4.
9754 1
3.
8747 1
2.
7006 ll.
20.
0886 1
8.
3505 1
6.
5268 1
4.
5924 1
2.
5041 1
0.
1
735 7.
3471
26.
8932 24.
21
85 21
.
4569 1
8.
5856 1
5.
5663 1
2.
3238 8.
661
5
35.
9491 31
.
91
24 27.
81
08 23.
6291 1
9.
3423 1
4.
9035 1
0.
1
995
48.
0000 ・
42.
0000 36.
0000 30.
0000 24.
0000 1
8.
0000 1
2.
0000
64.
0339 55.
2245 46.
5538 38.
0477 29.
7460 21
.
71
81 1
4.
1
085
85.
3638 72.
5590 60.
1
535 48.
21
29 36.
8349 26.
1
833 1
6.
5782
11
3.
7338 95.
2770 77.
6759 61
.
051
5 45.
5801 31
.
5462 1
9.
471
2
1
51
.
461
7 125.
0460 1
00.
2492 77.
2647 56.
3679 37.
9873 22.
8602
201
.
6265 1
64.
0486 1
29.
3253 97.
7373 69.
6744 45.
7234 26.
8305
268.
31
8421
5.
1
240 1
66.
7728 1
23.
5849 86.
0861 55.
01
45 31
.
481
8
356.
971
0282.
065821
4.
9959 1
56.
21
511
06.
3257 66.
1
727 36.
9308
474.
801
9369.
71
45277.
0880 1
97.
40311
31
.
2839 79.
5726 43.
31
43
631
.
3978484.
4938357.
0297249.
3883 1
62.
0580 95.
6637 50.
7923
839.
491
8634.
7873459.
942031
4.
9947 200.
000 11
4.
9855 59.
5522
1
.
5
0.
2480
0.
5378
0.
8858
1
.
3037
1
.
8042
2.
4003
3.
1
057
3.
9336
4.
8958
6.
0000
7.
2492
8.
6596
1
0.
261
9
1
2.
0926
1
4.
1
928
1
6.
6084
1
9.
391
2
22.
6007
26.
3046
30.
581
0
3
6
GanbatDAVAA,Tor
uSHI
GECHI
,Sat
or
uMOMOKI
n(n >I.
0)
.Thenumer
i
c
alval
ue
sofJ
7
2
e' ar
e
gl
Ve
ni
nTabl
e3.
4.Concl
us
i
on
Thepl
aneCout
t
ePoi
s
eui
l
l
ef
l
ow ofpower
l
aw
nonNe
wt
oni
anf
l
ui
dwasanal
ys
e
d.
Thepr
e
s
e
nts
t
udys
howe
dt
hatf
ore
qualc
ondi
t
i
ons
:
1.Theve
l
oc
i
t
ypr
of
i
l
e
sar
es
t
r
ongl
yaf
f
e
ct
e
dby
t
hef
l
ow i
ndex,n,f
ort
hec
a
s
eof U'<0.
1
nt
hi
sc
as
e
,t
hevel
oci
t
ypr
of
i
l
ei
spar
abol
i
c
havi
ng a l
ar
ger maxi
mum val
ue wi
t
hi
nc
r
e
as
l
ngVa
lue
sof n.Fort
hec
as
eof U'>
0,t
hee
f
f
e
ctof n on t
heve
l
oci
t
yi
ss
mal
l
andt
hepr
of
i
l
ebe
c
omesl
i
ne
ar
.
2.The f
r
i
ct
i
on f
act
or i
nt
er
ms of J
Re' deC
r
ea
s
e
swi
t
hi
ncr
e
as
i
ngval
uesof U'.
Ref
er
ence
.
,Re
po
r
t
so
ft
heFac
ul
t
yo
f
1.T.Shi
gec
hi
,etal
En
g
i
n
e
m.
n
g
,Na
gas
akiUni
v
e
r
s
i
t
y
,29,(1
999
1
7)
,1
53.