NAOSITE: Nagasaki University's Academic Output SITE Title Plane Coutte-Poiseuille Flow of Power-Law Non-Newtonian Fluids Author(s) Davaa, Ganbat; Shigechi, Toru; Momoki, Satoru Citation 長崎大学工学部研究報告 Vol.30(54) p.29-36, 2000 Issue Date 2000-01 URL http://hdl.handle.net/10069/5095 Right This document is downloaded at: 2016-01-06T21:30:49Z http://naosite.lb.nagasaki-u.ac.jp Repor t soft heFa cul t yofEngi ne e r i ng, Naga s akiUni ver s i t y, Vol . 30,No. 54 2 9 Pl a neCout t e Poi s e ui l l eFl owofPowe r La wNonNe wt oni a nFl ui ds by Ga nba tDAVAA' ,Tor uSHI GECHr'a ndSa t or u MOMOK r + Thef ul l yde v e l o pd l a i na m rno wo fanonNe wt o ni n f a l ui df l o ingb w e t we e nt wopa r a l l e lp l a t e sw it h l ,t he o nemo ingp v l a t ewa ss t udi e da na ly t i c l al y.App l y i ngt hes he a rs t r e s sd e s c ib r e db yt hep owe r l a w mo de e x a c ts o l ut i onsf o rt hemo me nt um e qua t i o nwe r eo bt ine a d. Thee f f e c t soft hev e l o c i t yo famo vl ngp l a t ea ndt hef lo wi n de xofano nNe wt o ni a np o we r l a wf l ui d o nt hev e l o c i t ydi s t ibut r i ona ndf ic r t i onf a c t o rha v ebe e ndi s c us s e d. I.I nt r oduct i on Pr obl emsi nvol vi ngf l ui df l ow andheatt r ans f erwi t hanaxi al l ymovi ngc or eofs ol i dbodyor f l ui di n an annul arge ome t r yc an be f ound i n many manuf act ur i ng pr oc e s s e s ,s uc h as e xt r us i on,dr awi ngandhotr ol l i ng,e t c .Ⅰ ns uc hpr oc e s s es ,ahotpl at eorc yl i ndr i c alr odc ont i nuous l y e xc hange sheatwi t ht he s ur r oundi ng envi r onme nt .Fors uc hcas e s ,t hef l ui di nvol ve dmaybe Newt oni anornonNe wt oni anandt hef l ow s i t uat i onsenc ount e r e dcan bee i t he rl ami narort ur . bul ent I nt hepr e vi ousr e por t ( 1 ) ,f ul l yde ve l ope dl ami narhe att r ans f e rofa Newt oni an f l ui df l owi ng bet we e nt wo par al l e lpl at e s wi t h one movi ng pl at ewasanal yz e dt aki ngi nt oac c ountt he vi s c ousdi s s i pat i on oft hef l owi ngf l ui d. I ne ngi ne er i ng appl i c at i onss uc h asmanuf ac t ur i ngpr oc e s s e s ,manyl mpOr t antf l ui dsar enonNewt oni ani nt he i rf l ow char a ct er i s t i c s . I nt hi spape r ,anexacts ol ut i onoft hemoment um e quat i on i s obt ai ne df or f ul l y devel ope d l ami narf l ow ofa nonNe wt oni an f l ui df l owi ng ofamovi ngpl at eandt hef l ow i ndexofapowe r - 1 aw f l ui d on t hevel oc i t y di s t r i but i on and f r i c t i onf ac t orhavebe endi s c us s e d. Nomencl at ur e C i nt e gr at i on c ons t ant p pr e s s ur e 〟 axi alve l oc i t yoff l ui d u .dimensionlessvelocity um Ⅳ U● r e l at i veve l oc i t y oft hemovi ngpl at e y c oor di nat enor malt ot hef i xedpl at e y' di me ns i onl e s sc oor di nat e = y/L z axi alc oor di nat e p エ de ns i t y channelwi dt h m n c ons i s t enc yi ndex f l ow i ndex ′ f r i c t i onf act or F di me ns i onl e s spar amet er Re'gener al i z e dRe ynol dsnumber Subs cr i pt s Ofixedplate i . e . ,t hes hear pl at e .Thec ons t i t ut i veequat i on ( s t r e s s-s he arr at er e l at i on)f oranonNe wt oni an L movi ngpl at e f r e que nt l yus edi nnonNe wt oni anf l ui df l ow and heatt r ans f e r .Theef f ec t soft her el at i veve l oc i t y 2.Anal ys i s Thephys i calmodelf ort heanal ys i si ss hown i n Fi g. 1 .The as s umpt i onsand c ondi t i ons us e d Re c e i ve donOc t ober26,1 999 ●Gr aduat eSt ude nt ,De par t me ntofMe c hani c alSys t e msEngi nee r i ng …De par t me ntofMec hani c alSys t emsEngi ne er i ng u/um ave r a geve l oc i t yoff l ui d axi alve l oc i t yoft hemovi ng pl at e bet we en t wo par al l e lpl at e s wi t h one movi ng f l ui di sde s c r i be dbyt hepowe r l aw mode lmos t … 3 0 GanbatDAVAA, Tor uSHI GECHI ,Sat or uMOMOKI i nt heanal ys i sar e : 1.The f l ow i si nc ompr e s s i bl e and s t e ady1 ami nar , andhydr o dynami c a l l yf ul l yde ve 1 ope d. 2.Thef l ui di snonNe wt oni an and t hes he ar s t r e ssma ybede s c r i be dbyt hepowe トl a w mode l ,and phys i c alpr ope r t i e s ar ec ons t ant . 3.Ei t he roft wopar a l l e lpl at e si saxi al l ymovi ngatac ons t antve l oc i t y. Cas eI: Thes he ars t r e s si sc al c ul at e da s ド -- (普 ) n(o≦ 訂≦ L- ) 7-- ト )n 音 dT = dy d p dz Theboundar yc ondi t i onsar e : (1) ( ( 2) 0 aty- 0 U at y-L : Thes he ars t r e s sont hel e f thands i deofEq. ( 1) T,i sgi ve nbyt hepowe r l aw mode l . u r l d u T = md Themome nt um e quat i onandi t sboundar yc ondi t i onsar er e duc e dt o 意 ( 普 ) ∼- u :- 0 at y ForaNe wt oni anf l ui d,n- I a nd m c oi nc i de s wi t ht heor di nar yvi s c os i t y. Thef r i c t i onf ac t or ,∫,andgener al i z e dRe ynol ds numbe r .Re' , ar ede f i ne da s I - ( 2 L) A R e ' =pu㌃乃 〝l LL udy ( 6) n ■ h uーn H 一円 -1 れ リー h u 7 8 9 0 lHHl HUIH Hはd iZ 1 5 i: l " 川 ■ 川 _ エ :-'L J JL ' ), ≡≡≡ ● ● 〃 Y 加 L' W ・ Jd ≡ Thef ol l owi ng di me ns i onl e s spar ame t e r sar ei nt r oduc e d: U+ f・Re _-〃 t +1 -F ( 15) 2 m ・u: (-% Si nc et heve l oc i t ygr a di e nti sz e r oatt hel oc at i on ofmaxi mum ve l oc i t y, ) 普 -o aty'- L㌫ ( 16) ∫ Thei nt e gr at i onofEq. (1 3)t oge t he rwi t hEq. ( 16) gl Ve S 1 郷 1 (17) ( LL -yり 言 Ⅰ nt e gr at i ng Eq. ( 17) t oge t he r wi t h Eq. ( 1 4) ,we have a :-蓋 貢 [ L 孟 -(LL 宗 ( b) 竿] -y・) (18) L加工≦ y ≦L ( LL, I≦y 事≦ l) 意 ( 一豊 Theave r a gef lui dve l oc i t y, um ,i sde f i ne da s u桝 = 7 -0 Themome nt um e quat i onandi t sboundar yc ondi t i onsar er e duc e dt o 意 ( 一豊 ) 1 (13) (14) -F whe r eF i sapar ame t e rde f i ne da s 豊 ( 3) O≦y●≦L ' W ( a) 0≦ y≦L w ' Thegove r ni ng mome nt um e quat i on t oge t he r Wi t ht hea s s umpt i onsde s c r i be dabovei s ( L- ≦ y≦ L) Fort hec as ewi t hamovi ngpl at e ,t woki ndsof ve l oc i t ypr of i l e sac r os st hepar al l e lpl at e s ' pas s a ge maybea s s ume da si l l us t r at e di nFi gs . 1and2. The ve l oc i t ypr of i l es howni nFi g. 1ha samaxi mum at y-L棚 J Wher e a si thasnomaxi mum poi nti n Fi g. 2. Thet woc as e sar er e s pe c t i ve l yr e f e r r e dt oas Ca s eIandCa s eI I . )A-F (19) u言- U' a t y'- l ( 20) Si nc et heve l oc i t ygr a di e nti sz e r o att hel oc at i onofmaxi mum ve l oc i t y, 普 ( 21) -o at y・-LL Fj x e dpl a t e 一 一 ■ ■ ー Non N O wt o n i an L ■ F l u i d F l o w _ a ーt u y Lma x Mov i n gpl at e Fi g. 1Sc he mat i cofpar al l e lpl a t e swi t honemovi ng pl at ef or t he c a s e ofve l oc i t y pr of i l e sa s ) s ume di nt hi sana l ys i s( Cas ei Pl aneCout te Poi s eui l l eFl ow ofPower Law NonNewt oni anFl ui ds (1 9)t oget he rwi t hEq. ( 21) Thei nt e gr at i onofEq. gl Ve S 座 星 dy' ニ ー 1 1 F;( y - LL w) 7 ( 22) I nt e gr at i ng Eq. ( 22) t oget he r wi t h Eq. ( 20) ,we have F - ub ・- U・ .荒 i l( 1- LL u )豊 ( 23) L y誓 ] The val ue s of F and L㌫ Jr ema in unknown. (y - ㍍ Theyar edet e r mi nedbel ow. 31 Thei nt e gr at i onofEq. ( 32)gi ve s u書- 荒 F [C誓 i ( C- - y り崇 ( 33) ] wher eC i san i nt e gr alc ons t ant .Appl yi ng t he boundar yc ondi t i onsofEq. ( 31)t o Eq( 33) ,we have U・- 荒 Fi[ C豊 - ( C-I)豊 ( 34) ] Fr om t hemas sbal anc ebet we ent wopl at es : f l [ 了 宝FH c豊 -(C-打つ誓 )]dy・- 1 ( 35) Fr om t hec ont i nui t yofvel oci t i e satt he l ocat i onofmaxi mum vel oc i t y: I nt e gr at i ngEq. ( 35) ,wehave u a '-u b ' at y'- LLa r ( 24) Wehave t he f i r s tr el at i ons hi p bet we e n F and 荒 く ( C-1)豊 Fi l c誓 一 十荒 -C豊 ) ]- 1 ( 36) t hus ,F i sobt ai ne das U' L L a r ) ( 25) L ニ ; {-(1 Fr om t hemas sbal anc ebet we ent wopl at es : L l L u・ dy・ L ・ I L L・ ㌔ =dy・ ub ・ dy - I ( 26) F -[ l 島 [ C 誓 く ( C-1)響 -C 苛 ] r +1荒 ( 37) Combi ni ngEq. ( 34)andEq. ( 37) ,wehavet hef oL l owi ngr e l at i ons hi pamong C,n,and U'. wehavet hes ec ondr e l at i ons hi pbet we en F and J i l ] / C誓 -( C-I) U・- [ LLZr . ㌫ ェ ) U' +(I-LLS [C誓 1-(I-L L㌃ ㌫ l owi ngr el at i ons hi pamong U',L Jand n. [ L憲 . ) T] / 一(卜 LL 1荒 響) ] く L憲 吐+(I-LL=) ( 28) ( i ) A(0≦ y≦L) く ( C 豊 -C豊 )] - 1) rf ort heCas eIand Thenume r i c alval uesofLLL Cf ort heCas eI Iar ec al cul at e d and gi ven,r e q 'i sacr i t i c al s pec t i ve l y,i n Tabl e s Iand 2. U val uet hats howst hebor derbet we e nCas eIand ㌫ J -1as Ca s eI I ,andg iven,f r om Eq. ( 28)wi t hL 1+2n U3 l+n ( 39) Fi x edpl at e Cas eI I: Thes hears t r es si sc al cul at edas T= -m 了荒 ( 38) Combi ni ngEq. ( 25)andEq. ( 27) ,wehavet hef or U・ - [ L憲 . ( 2 9) Themoment um e quat i onandi t sboundar yc ondi t i onsar er e duc e dt o d dy (d d S r u -O ( 二 : コ NonNewt oni an L Fl ui dFl ow ーy U ' Movi ngpl at e at y'- 0 u'- U'a t y'- l ' Fi g. 2 Vel oci t y pr of i l ea s s ume di nt hi s anal ys i s ( Cas eI I ) I nt e gr at i ngEq. ( 30) ,wehave du+ 面 I I = F; ( C y') 言 ( 32) 3 2 GanbatDAVAA, Tor uSHI GECHI ,Sat or uMOMOKI Tebl e1 Di mens i onl es sl oc at i onatt hemaxi mum vel oc i t y,L㌫ ェ CASE I:L㌫J n 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2. 0 2. 0 0. 4776 0. 4621 0. 4509 0. 4424 0. 4358 0. 4305 0. 4261 0. 4224 0. 41 93 0. 41 67 0. 41 44 0. 41 23 0. 41 06 0. 4090 0. 4076 0. 4063 0. 4051 0. 4041 0. 4031 0. 4022 1 . 5 1 . 0 0. 5 0. 4857 0. 491 6 0. 4756 0. 4856 0. 4681 0. 4811 0. 4624 0. 4777 0. 4578. 0. 4749 0. 4542 0. 4726 0. 4511 0. 4708 0. 4485 0. 4692 0. 4463 0. 4678 0. 4444 0. 4667 0. 4428 0. 4656 0. 441 3 0. 4647 0. 4401 0. 4639 0. 4389 0. 4632 0. 4379 0. 4626 0. 4370 0. 4620 0. 4361 . 0. 4615 0. 4354 0. 461 0 0. 4347 0. 4606 0. 4340 0. 4601 0. 481 2 0. 4681 0. 4585 0. 4511 0. 4454 0. 4407 0. 4369 0. 4337 0. 4309 0. 4286 0. 4265 0. 4247 0. 4231 0. 4217 0. 4205 0. 41 93 0. 41 83 0. 41 74 0. 41 65 0. 41 57 U. 0. 0 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5 0. 51 43 0. 5244 0. 531 9 0. 5376 0. 5422 0. 5458 0. 5489 0. 551 5 0. 5537 0. 5556 0. 5572 0. 5587 0. 5599 0. 5611 0. 5621 0. 5630 0. 5639 0. 5646 0. 5653 0. 5660 1 . 0 0. 5681 0. 5987 0. 61 78 0. 6311 0. 6409 0. 6484 0. 6544 0. 6592 0. 6633 0. 6667 0. 6696 0. 6721 0. 6743 0. 6762 0. 6780 0. 6795 0. 6809 0. 6822 0. 6833 0. 6843 1 . 5 1 . 0000 0. 971 9 0. 9521 0. 9378 0. 9270 0. 91 87 0. 91 21 0. 9068 0. 9024 0. 8987 0. 8956 US 1 . 0909 1 . 1 667 1 . 2308 1 . 2857 1 . 3333 1 . 3750 1 . 411 8 1 . 4444 1 . 4737 1 . 5000 1 . 5238 1 . 5455 1 . 5652 1 . 5833 1 . 6000 1 . 61 54 1 . 6296 1 . 6429 1 . 6552 1 . 6667 Te bl e2 I nt e gr at i onc ons t antC f orCas eI I CASE I I:C n 0. 1 0. 2 0. 3 4 0. 0. 5 0. 6 0. 7 0. 8 0. 9 1 . 0 1 . 5 5. 0905 2. 7738 2. 0082 1 . 6306 1 . 4082 1 . 2637 1 . 1 638 1 . 0920 1 . 0391 1 . 0000 1 . 6 6. 8662 3. 6681 2. 6071 2. 0805 1 . 7676 1 . 5617 1 . 41 69 1 . 31 04 1 . 2295 1 . 1 667 U+ 1 . 7 1 . 8 1 . 9 1 . 99 9. 7352 1 5. 3693 32. 1 050 332. 1 608 5. 1 075 7. 9285 1 6. 2996 1 66. 3301 3. 5685 5. 4504 ll . 0322 111 . 0533 2. 801 6 4. 21 30 8. 3993 83. 41 50 2. 3437 3. 4720 6. 8201 66. 8321 2. 0402 2. 9790 5. 7679 55. 7768 1 . 8250 2. 6279 5. 01 68 47. 8803 1 . 6650 2. 3654 4. 4538 41 . 9579 1 . 541 8 2. 1 620 4. 01 63 37. 351 6 1 . 4444 2. 0000 3. 6667 33. 6667 3.Res ul t sandDi s cus s i on I . 5,0,I . 0and I . 5.Thec as eof U' - O c or r e- Fi gur e3S howst heef f e ct soft he r el at i ve ve- s pondst ot hatofbot hpl at e sf i xe d.I ti ss e eni n he vel oc i t y l oc i t yoft he movi ng pl at e U'On t pr of i l e sac r os st he par al l e lpl at esf ort he c as es of n - 0. 2,0. 5,I . 0and 1 . 5.Thec as eof n - l t hef i gur e st hatf orU'<0t hevel oc i t ypr of i l ei s par abol i chavi ngal ar germaxi mum val ue wi t h c or r e s pondst ot hatofa Newt oni an f l ui d.I ti s s t r ongl yaf f e ct e dbyt hef l ow i ndex n.For U' >0thevel oc i t ypr of i l e sbec omel i ne arast hee f - s e en c l ear l yi nt he f i gur e st hatt he pr of i l e sof i ncr e as i ngva lue sofn.Thevel oc i t ypr of i l e sar e pl at ewi t har e l at i vevel oc i t yU f ectoft he axi alpr e s s ur egr adi enti nt hef l ui d di mi ni s hesandt hef l ui df l ow i sgove r ned onl y Fi gur e4S howst hee f f e c t soft hef l ow i ndex n oft hepowe r l aw f l ui dont hevel oci t ypr of i l es byt hes he arnow i nduc e d byt hemovi ngpl at e. I nt hi sc as e ,t hee f f e c tofn i sr at herwe ak. acr os st hepar al l e lpl at e sf ort hecas e sof U'- Thepr e di ct e df r i ct i on f act or si nt er msof, t hef l ui dvel oc i t y ar e de f or med by t hemovi ng ' . pl aneCout t e Poi s eui l l eFl ow ofPowe r Law NonNewt oni anFl ui ds 3 3 ゴ ゴ \∋ \⊃ ( U 一 〇 α 3γ ' q ! Q 0 . 70 . 8 0 . 9 7 クー ∫ 0 . 70 . 80 , 9 1 QT. 4 α ( ∫ ハ 肌 クー α 一 丁 一 0. β ハ U ◆ ● 人 肌 7 α 6 α n V 6 Ⅵ化 St y / 3' 0 . 3 ● ( 〟 0 0.1 0. 2 ゴ \⊃ ゴ \⊃ 0 ■ ハ U n J ハ 肌 クー ∩ 肌 一 T l α A U ー Y . ∧ U 3 α クー α ■ 一 ▼ ∧ 肌 n V Fi g.3Ve l oc i t ypr of i l e 0 . 70 . 8 0 . 9 7 3 4 Ga nb a tDAVAA, To r uSHI GECHI , Sa t o r uMOMOKI ∧U ゴ \⊃ ゴ \∋ 0 . 70 . 8 0 . 9 1 . 70 . 8 0 . 9 1 0 ゴ \⊃ l n/n ∧ U ハ ∨ 6 ハ 肌 y Fi g.4Ve l o c i t ypr o f i l e Sl J ∧ U A J n 肌 クー l 仇 r H u n 肌 ∧ U 0 . 70 . 8 0 . 9 1 0 . 70 . 8 0 . 9 1 Pl aneCout t ePoi s e ui l l eFl ow ofPowe r Law NonNe wt oni anFl ui ds 3 5 fRe' ar es hown i n Fi g. 5.Thee f f e ctof n i st o mal i z e dbyt heval ueoff Re' ( U・- o) f ort hec as e i nc r ea s et heval ueofJ Re' wi t h an i ncr e as ei n ofU' -0.ForU'>0,t her at i oJ 7 2 e' / J 伊e' (U ・ = o) n. i sal waysl e s st hanuni t y.Thee f f e c tof U bec omess t r onge ri nt her e gl OnOfl ar ge rval ue sof ' Fi gur e6s howst hee f f ectofn on f Re',nor - L E ) 4 4 L L ) 3 C J L L ) 2 u JJ.au ( 00..・ n .J a 1. 5 n Fi g.5Fr i c t i onf ac t or 2_ 0 L L ) I. 1 . 0 クー J 0. 5 0. 1 7 0. 5 1 . 0 n 1 . 5 Fi g.6Fr i ct i onf ac t orr at i o Re' Te bl e3 Numer i calval ue soff n 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2. 0 U* 2. 0 1 . 5 1 . 0 0. 5 0. 0 0. 5 1 . 0 3. 1 241 3. 091 9 3. 0540 3. 0073 2. 9455 2. 8495 2. 5503 4. 4048 4. 3075 4. 1 959 4. 0629 3. 8946 3. 6527 3. 1 007 6. 0599 5. 8503 5. 61 46 5. 341 6 5. 0090 4. 5605 3. 7205 8. 2406 7. 8496 7. 41 81 6. 9300 6. 3553 5. 621 8 4. 4333 ll . 1 321 1 0. 4591 9. 7291 8. 921 8 8. 0000 6. 8795 5. 2599 4294 1 0. 01 91 8. 3793 6. 2228 1 4. 9754 1 3. 8747 1 2. 7006 ll. 20. 0886 1 8. 3505 1 6. 5268 1 4. 5924 1 2. 5041 1 0. 1 735 7. 3471 26. 8932 24. 21 85 21 . 4569 1 8. 5856 1 5. 5663 1 2. 3238 8. 661 5 35. 9491 31 . 91 24 27. 81 08 23. 6291 1 9. 3423 1 4. 9035 1 0. 1 995 48. 0000 ・ 42. 0000 36. 0000 30. 0000 24. 0000 1 8. 0000 1 2. 0000 64. 0339 55. 2245 46. 5538 38. 0477 29. 7460 21 . 71 81 1 4. 1 085 85. 3638 72. 5590 60. 1 535 48. 21 29 36. 8349 26. 1 833 1 6. 5782 11 3. 7338 95. 2770 77. 6759 61 . 051 5 45. 5801 31 . 5462 1 9. 471 2 1 51 . 461 7 125. 0460 1 00. 2492 77. 2647 56. 3679 37. 9873 22. 8602 201 . 6265 1 64. 0486 1 29. 3253 97. 7373 69. 6744 45. 7234 26. 8305 268. 31 8421 5. 1 240 1 66. 7728 1 23. 5849 86. 0861 55. 01 45 31 . 481 8 356. 971 0282. 065821 4. 9959 1 56. 21 511 06. 3257 66. 1 727 36. 9308 474. 801 9369. 71 45277. 0880 1 97. 40311 31 . 2839 79. 5726 43. 31 43 631 . 3978484. 4938357. 0297249. 3883 1 62. 0580 95. 6637 50. 7923 839. 491 8634. 7873459. 942031 4. 9947 200. 000 11 4. 9855 59. 5522 1 . 5 0. 2480 0. 5378 0. 8858 1 . 3037 1 . 8042 2. 4003 3. 1 057 3. 9336 4. 8958 6. 0000 7. 2492 8. 6596 1 0. 261 9 1 2. 0926 1 4. 1 928 1 6. 6084 1 9. 391 2 22. 6007 26. 3046 30. 581 0 3 6 GanbatDAVAA,Tor uSHI GECHI ,Sat or uMOMOKI n(n >I. 0) .Thenumer i c alval ue sofJ 7 2 e' ar e gl Ve ni nTabl e3. 4.Concl us i on Thepl aneCout t ePoi s eui l l ef l ow ofpower l aw nonNe wt oni anf l ui dwasanal ys e d. Thepr e s e nts t udys howe dt hatf ore qualc ondi t i ons : 1.Theve l oc i t ypr of i l e sar es t r ongl yaf f e ct e dby t hef l ow i ndex,n,f ort hec a s eof U'<0. 1 nt hi sc as e ,t hevel oci t ypr of i l ei spar abol i c havi ng a l ar ger maxi mum val ue wi t hi nc r e as l ngVa lue sof n.Fort hec as eof U'> 0,t hee f f e ctof n on t heve l oci t yi ss mal l andt hepr of i l ebe c omesl i ne ar . 2.The f r i ct i on f act or i nt er ms of J Re' deC r ea s e swi t hi ncr e as i ngval uesof U'. Ref er ence . ,Re po r t so ft heFac ul t yo f 1.T.Shi gec hi ,etal En g i n e m. n g ,Na gas akiUni v e r s i t y ,29,(1 999 1 7) ,1 53.
© Copyright 2024 ExpyDoc