D - 日本金属学会

ú{à®wï æ 66 ª æ 7 †(2002)784_791
½ž«nËÉæ邻¨±qªU`^“A‹~iChî
¡‡çŒÌì»
¯ R N m1,Þ
O î G a2
º 㠒 ™3
† ˆ p Y3
1Ö¼åwåw@Hw¤†È
2Ö¼åwHw”Þ¿HwÈ
3åãåwYÆÈw¤†Š
J. Japan Inst. Metals, Vol. 66, No. 7 (2002), pp. 784_
791
Ý 2002 The Japan Institute of Metals
Titanium Aluminide_Based Composite Deposits with Dispersed Nitride Particles Produced
by Reactive Thermal Spraying
Yasuhiro Hoshiyama1,Þ
, Hidekazu Miyake2, Kenji Murakami3 and Hideo Nakajima3
1Graduate
School of Engineering, Kansai University, Suita 564_
0073
2Department
3The
of Materials Science and Engineering, Faculty of Engineering, Kansai University, Suita 564_
0073
Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567_
0047
A composite powder is produced by ball_milling of elemental titanium, aluminum and aluminum nitride powders in an argon
atmosphere, and is plasma_
sprayed in an argon atmosphere, yielding titanium aluminide_
based deposits. The constituents of
sprayed deposit results in the formation of
the as_
sprayed deposit are Ti3Al (a2), TiAl (g) and Ti2N. Heat treatment of the as_
Ti2Al(C, N). The carbon in Ti2Al(C, N) is incorporated into the composite powder during ball_milling due to decomposition of
methanol which is used as process controlling agent. There is little difference in hardness between the as_
sprayed deposit and the
deposits heat_
treated at temperatures up to 1473 K. Hardness of the as_
sprayed deposit and the heat_
treated deposits are higher
than that of the cast titanium_aluminum binary alloy whose titanium and aluminum contents are similar to those of the sprayed
deposit.
(Received March 1, 2002; Accepted May 30, 2002)
Keywords: titanium aluminides, ball_
milling, reactive plasma spraying, composite powder, nitride
½žMÉæèn˱qªÇÁÁM³êé½ßC½žðºíÈ
1.

¾
¢ÊíÌv‰Y}nËÌê‡Éä×ÄîÞÉÕ˵½²–±
qÌG½»ª£i³êCæèk§ÅG½±qÔª­Åɋ‡
ßNCà®Ô»‡¨ª‚·Þ¿ÆµÄÚ³êĨèC»
µ½Þ¿Ì컪úÒÅ«é3)D±Ì½ž«v‰Y}nË@
ÌêÂÉ`^“A‹~iChà®Ô»‡¨ª éD`^“A
ÉÍC2 íÞÌû@ª éD1 Âͽž«Ì év‰Y}K
‹~iChÍCyÊł·­xÆÏ_»«ªDêÄ¢é½
XÆnËÞ¿Æ𽞳¹éû@Å èCठ1 ÂÍCÝ
ßCqóEFˆpâ©®ÔpG“W“”iÈÇÉgp·éŸ
¢É½žðN±·´¿©ç¡‡²–ð컵C±êðnË·
¢ãÌyÊÏM޿ƵÄúÒ³êÄ¢é1)Dµ©µC`^
éû@Å éDãÒÌáƵÄCºãçÍ`^“²–CA‹
“A‹~iChÍí·tßÅ̄«ªá¢½ßÉC]ˆÌ³
~jE€²–¨æÑ{“²–𢱵½¡‡²–ð¸³v
„@ÅÍÁHÅ«È¢ïÁH«Þ¿Å éD±êÜÅCA‹
‰Y}n˵C÷×È TiB2 ±qðªUµ½`^“A‹~i
~jE€ÜLÊ̲®âæO³fÌYÁÉæÁĄ«â‚·
Ch޿ð컵Ģé4)D
­xÉDê½`^“A‹~iChð¾éŽÝ2)ªÈ³êÄ«
`^“A‹~iChÌÏNŠ[vÁ«ðüP·é½ßÉC
½ªC³çÉVµ¢`^“A‹~iChÌ»¢vZXðm
d¿ÅÏM«Ì é TiB2 ±qð`^“A‹~iCh}gŠ
§·éKv«ª©ÎêÄ¢éD±Ìæ¤ÈvZXÌêÂ
bNX†Én»@ŪU³¹éŽÝªÈ³êÄ¢é5_11) D
ÉCÞ¿ðv‰Y}WFbgÉæÁÄÁMCnZCÁ¬µî
Hyman ç6)Í{“ð 0.1 mass÷ðÜÞ`^“_A‹~jE
ÞãÉçŒðì»·év‰Y}nË@ª èC±êÍo‹N
€‡àòð컵C10`20 mm ÌubNóÌ TiB2 ±qª
ÞðìéXvŒ[tH[~“OÉàgíêÄ¢éDÁÉ»¡
‰»ÆµÄ`¬³êÄ¢é±ÆðñµÄ¢éDܽCXD
[¢ÌÍCnËÞ¿†Ì»w½žÉæÁÄ»‡¨ð‡¬·é
vZXÅͽž¶¬µ½ 1 mm ÈãÌ TiB2 ±qª`^“
½ž«v‰Y}nË@Å éD½ž«v‰Y}nË@ÅÍC
A‹~iChɪUµÄ¢é10,11)D±êç̱qÌ嫳É
ä×Cºãç̤†Å`^“A‹~iCh޿ɪU
ÞÖ¼åwåw@¶(Graduate Student, Kansai University)
µ½ TiB2 ±qÍC‡àÌ{“ÜLʪ 2 mass÷Ƃ¢É
7
æ
†
785
½ž«nËÉæ邻¨±qªU`^“A‹~iChçŒÌì»
à©©íç¸ÉßÄ÷×Å é4) D½ž«v‰Y}nËÅ
̬‡ðÍCTi_Al_N Ì 3 ³nóÔ}17)©çC®( 1 )Ì
ÍCîÂÉÕ˵½tHÌâp¬xªÉßÄå«¢Ì
½žÉæÁÄCTi3Al(a2 Š)¨æÑ TiAl(g Š)©çÈé}g
Å12) C½ž«v‰Y}nËÍC»Ì궬µ½÷×ÈZ‰
ŠbNX†É Ti2AlN ±qðªU³¹½çŒª¾çêéð
~bNX±qð`^“A‹~iCh}gŠbNX†ÉªU³
Ƶ½D·Èí¿Cì»·éçŒÌ}gŠbNXg¬ª`^
¹½¡‡Þ¿ðì»·é£ÍIÈvZXÅ éD
“ 67 mass÷CA‹~jE€ 33 mass÷Å èC‚fÜLÊ
‚fÍ`^“¨æÑA‹~jE€Æ½žµÄd¢‚»¨ð
ª 1 mass÷ÆÈéæ¤z‡µ½DTi_Al_N ¡‡²–ðnË
¶¬·éD˜ÒçÍC`^“¨æÑA‹~jE€²–ð‚f
µ½ÛCA‹~jE€ª‚·xÌv‰Y}tŒ[€†Åê”
µÍC†Å{[‹~Š“OµÄ¾½¡‡²–(ȺCTi_Al_
ö­µCçŒÌA‹~jE€ÜLʪ²–Ì»êÉä׸­
N ¡‡²–ÆÌ·)ðv‰Y}n˵C`^“A‹~iCh
µ½13) D{À±ÅÍC±ÌA‹~jE€Ì¸­ðl¶µC
îÌú¢¡‡çŒð컵½13) DçŒðì»·éÛCnË
¡‡²–Ì컞Éz‡Êð]ªÉ 7 mass÷½­µ½DÜ
†Ì猷xÌᢪ컵½çŒÌgD¨æÑÁ«ÉyÚ
½C¡‡²–ðì»·éÛC~Š“O•ÜƵÄp¢½^
·e¿ðŸ¢·é½ßCîÂͼڅâ·éê‡ÆÔÚIÉ
m[‹ªªðµ²–†Éæè±ÜêéYfÌe¿Íl¶µÄ
…â·éê‡Ì 2 íÞƵ½D¼Ú…âµ½îÂãÉì»
¢È¢D컵½¡‡²–ð Ti_Al_AlN ¡‡²–ÆÌ·D
µ½çŒÌ\¬ŠÍnËvZXÉÁ¥IÈ}âÃÅÉæÁ
Table 1 É{[‹~Š“Oðð¦·D¾ç꽡‡²–ð
Ăf¨æÑYfªßOaÉÅnµ½ Ti3Al Å èC±ÌÞ
32`53 mm ÉÓ颪¯µCX üñÜ(CuKa ü)ÉæéŠÌ
¿ðMˆ·éÆ TiAlCTi2N ¨æÑ Ti2AlC ª¶¬µ½D
¯è¨æÑ SEM ÉæéÏ@ðsÁ½D
çŒÉÜÜêéYfÍC~Š“O•ÜƵÄp¢½^m[
‹ªªðµ²–†Éæè±Üê½àÌÅ é14_16) DÔÚI
2.2
½ž«v‰Y}nË
Ʌ⵽îÂãÉ컵½çŒÌ\¬ŠÍ Ti3AlCTiAl
A‹~iÅOŠbgu‰Xgµ½ 8 ‡Ìc 50 mm~¡ 60
¨æÑ Ti2N Å Á½D±êç컵½çŒÌ\¬Šðl¶
mm ~ ú ³ 3 mm Ì SS400 î  ð ñ ] V ƒ t g É æ è t
µC¡‡²–Ì‚fÜLÊðÁ³¹ÄCn˵½ÜÜÌó
¯CeR 7MT ^v‰Y}K“ðp¢ÄC40 kPa ÌA‹
ÔÅ Ti2AlN ðªU³¹½`^“A‹~iChçŒð
S“µÍC†Å¡‡²–ð¸³v‰Y}n˵½D±ÌÛC
ì»·é±ÆðŽÝ½D
K“ÍÅèµ½ÜÜÅ èCîÂðæ诽Vƒtgðñ
˜Òç13) ªì»µ½ Ti_Al_N ¡‡²–Ì‚fÜLÊÍ
]³¹½Dºãç18_21)C¨æÑ Hoshiyama ç13)̤†Éæ
0.1 mass÷Å Á½D»±ÅC`^“¨æÑA‹~jE€²
éÆCnˆÌ猷xðK–È‚·ÉÛÂÆCE¦ªá
–ð‚fµÍC†Å 75.6~103 s ~Š“OµCÄxCeíà
­Cܽ÷×ÈÍo±qª½­ªUµ½çŒðì»·é±Æ
ɂfKXð±üµ~Š“O·éÆ¢¤Höð 4 ñ(‡v
ªÅ«éDµ½ªÁÄ{¤†É¨¢ÄàCnˆÉîÂÌâ
302.4~103 s)JèÔµC¡‡²–†Ì‚fÜLÊðÁ³
pðsÁĢȢDTable 2 Év‰Y}nËðð¦·Dn
¹é±ÆðŽÝ½Dµ©µC»Ìê‡Åà‚fÜLÊÍ 0.1
mass÷ÆÏíçÈ©Á½D±Ìæ¤ÉC‚fÜLʪϻ
µÈ©Á½½ßC{¤†ÅÍC‚f̟‹¹ÆµÄ‚fKX
Table 1
Ball_
milling conditions.
æèࡇ²–Ì‚fÜLÊðeÕɲ߷é±ÆªÂ\È
Milling vial
AlN ²–ðp¢½DAlN ÍC¡‡²–ðì»·éÛ̳f
Ball pestle
Cr steel, 12.7 mm dia, 7 kg
Starting powders
Ti(100.5~10|3 kg){Al(64.1~10|3 kg)
{AlN(4.4~10|3 kg)
Rotation speed of vial
1.5 s|1
Milling time
3.02~105 s
Process control agent
methanol, 3.0~10|6 m3
Atmosphere
Ar
²–Å éA‹~jE€Ì‚»¨Å é½ßC²–¨æÑç
ŒÌg¬Ée¿ðyڳȢD`^“CA‹~jE€¨æÑ
AlN ²–©ç컵½¡‡²–ðp¢Äv‰Y}n˵C
6Ti{2Al{AlN¨Ti3Al{TiAl{Ti2AlN
(1)
̽žð˜pµ¡‡çŒÌì»ðŽÝ½D·Èí¿CAlN
ªnˆÉZðµA‹~jE€¨æтfɪðµC`^“
SUS304, 2.6~10|3 m3
¨æÑA‹~jE€Æ‹‡·é±ÆÉæÁĶ¬·é
Ti2AlN ±qðªU³¹½`^“A‹~iChçŒÌ
gDÆÁ«ð]¿µ½D
2.
À
2.1
±
û @
¡‡²–Ìì»
ƒx 99.4 mass÷űa 45 mm ȺÌ`^“²–(100.5~
10|3 kgjCƒx 99.9 mass÷űa 45 mm ȺÌA‹~jE
€²–(64.1~10|3 kg)¨æѱa 1 mm ÈºÌ AlN ²–
(4.4~10|3 kg)ðA‹S“µÍC†Å{[‹~Š“OµC¡
‡²–ð컵½D±ÌÛC~Š“O•ÜƵā^m[‹
(3.0~10|6 m3)ðÁ¦½D¡‡²–ðì»·éÛÌ´¿²–
Table 2
Plasma spraying conditions.
Plasma gases
Primary gas, Ar
4.9~10|4 m3/s
Secondary gas, H2
1.5~10|4 m3/s
Voltage_current
60 V_500 A
Chamber
Gas
Ar
Pressure
40 kPa
Spraying distance
0.3 m
Substrate rotation
1 s|1
Spraying time
90 s, 150 s~3
786
æ
ú { à ® w ï (2002)
66
ª
ˆÌ猷xÌᢪG½±qÔ̧…ÍâÍo±q̶
­©¦éA‹~jE€ªwó\¢ðȵĢéDAlN Íñ
¬ÉyÚ·e¿ðŸ¢·é½ßCn˞Ôð 90 s ¨æÑ
íÉ÷×Ȳ–Å é½ß Fig. 1 ÅÍ©çêÈ¢D
450 s Ì 2 íÞƵ½D»ê¼êÌn˞ÔÅ컵½çŒ
ðCçŒ A ¨æÑçŒ B Æ»ê¼êÌµC»ê¼êÌ
3.2
¡‡²–©ç컵½çŒ
as_
sprayed çŒðçŒ A0 ¨æÑ B0 ÆÌ·DçŒ B Ìê‡C
Table 3 ÉçŒ B0 Ì»wg¬ð¦·DçŒÌA‹~jE
450 s ÔA±ÅnËðs¤ÆCîªÔMóÔÉÈèc£·
€ÜLÊÍ¡‡²–Æä×Äñ 8.4 mass÷á¢D±êÍC
é±ÆÉæÁÄçŒÉžÍªW†µ„ꪶ¶éÂ\«ª ¡‡²–ª‚·xÌv‰Y}tŒ[€†ðòsµÄ¢éÔ
é½ßC150 s n˵ 300 s âp·éÆ¢¤Höð 3 ñs
ÉCA‹~jE€ªê”ö­µ½½ßÅ éÆl¦çêéD
¢C‡vn˞Ôð 450 s Ƶ½DçŒ A0 Ìú³Íñ 400
Fig. 2 Æ Fig. 3 ÉçŒ A ¨æÑçŒ B Ì X üñÜ}`ð»
mm Å èCçŒ B0 Ìú³Íñ 2000 mm Å éDîÂðæ
ê¼ê¦·DçŒ A0CB0 ÆàÉC\¬ŠÍ Ti3Al(a2 ŠjC
诽Vƒtgªñ]·éÌÅnˆÉMdÎÅî·x
TiAl(g Š)¨æÑ Ti2N ŠÅ éDçŒ A0CB0 ÆàÉ 873
ðªè·é±ÆªÅ«È¢D»±ÅCî Ê̆›”ªÉ
`1473 K ÅMˆ·é±ÆÉæÁÄCTi2Al(C, N)ÌñÜ
¼a 7.0 mmC[³ 1.0 mm ̊ð 4 –Š ¯C»±ÉZ_
s[NªŸo³ê½D±±ÅCTi2AlC ¨æÑ Ti2AlN ͋
ÌÙÈéà®Ðð»ê¼ê•UãCîÂ\ÊÉv‰Y}nË
»\¢ª¯¶Åiqè”àÉßÄߢÌÅñÜpªÝ¢ÉÙ
µCeà®ÐÌnZÉæé`óÏ»©çî·xðªèµ
Ú¯¶Å é±ÆC¨æÑãq·é EPMA ªÍÅÍo¨©
½DçŒ B ðì»·éÛÌłî·xÍñ 873 K Å éD
2.3
çYfƂfª¯žÉŸo³ê½±Æ©çCãLÌñÜs[
Nð Ti2AlC ÌYfÌê”ð‚fªu··é±ÆÉæÁĶ
çŒÌ]¿
¬·é Ti2Al(C, N)22) Å éƵ½DFig. 2 Æ Fig. 3 Ì X
çŒðî©ç@BIɪ£µCÎpÇÉ^ó•üµC
üñÜ}`ɨ¢ÄCMˆ·xÌã¸ÆÆàÉ a2 ŠÌ„
873 K, 1073 K, 1273 K é¢Í 1473 K Å 7.2 ks ۝ãC
‡ª¸­µCg ŠÌ„‡ªÁµÄ¢éD±êÍCnËÉÁ
Fâµ½DçŒ A0 ð±êçÌ·xÅMˆµ½çŒð»ê
¥IÈ}âÃÅÅ`¬³ê½€ÀèÈ a2 ŠªMˆð{·
¼êçŒ A1, A2, A3, A4 Æ̵CçŒ B0 ð±êçÌ·x
±ÆÉæÁÄꔪðµÄ g Šª¶¬·é23,24)½ßÅ éD
ÅM ˆ µ ½ç Œð » ê¼ ê B1, B2, B3, B4 ÆÌ · DÜ
çŒ A0 ¨æÑçŒ B0 ÆàÉCv‰Y}tŒ[€†ÈçÑ
½CçŒ B0 ð 1473 K Å 216 ks ۝ãCFâµ½çŒðç
ÉçŒÌ}âÃÅɺ¤ñ½tóÔºÅCTi2N Šª`¬µ
Œ B5 ÆÌ·DçŒfÊð¤ãCtb»…f_(3.0~10|6
½Æl¦çêéDµ½ªÁÄC®( 1 )ÌEÓÍȺÌæ¤
m3 ){É_(2.0~10|5 m3 ){…(7.7~10|5 m3 )̅Htðp
ɦ³êéD
¢Äº·Å 1`3 s ԅHµCSEM Ï@¨æÑ EPMA ªÍ
ðsÁ½DܽCX üñÜ(CuKa ü)Ŋ̯èðs¢C}
¨Ti3Al{TiAl{Ti2N{N{C
(2)
±±ÅC®( 2 )Ì N ¨æÑ C ÍCn蠃 a2 Š¨æÑ g
gŠbNX†ÌÍo¨É墀 TEM Ï@ðs¢CçŒfÊ
Š©çÈé}gŠbNX†É­§Ån³ê½‚f¨æÑYf
ãÅ 2.94 N Ì×dðp¢Ä}CNrbJ[Xd³ðªè
Å éD®( 2 )Ŧ³êé as_sprayed çŒðMˆ·éÆ
a2 ŠÌê”Í g ŠÉªðµC}gŠbNX†É­§Ån³
µ½D
꽂f¨æÑYfª`^“¨æÑA‹~jE€Æ‹‡µC
3.
‹ Ê Æ l @
3.1
®( 3 )ɦ·æ¤É Ti2Al(C, N)ª¶¬µ½Æl¦çêéD
¨Ti3Al{TiAl{Ti2N{Ti2Al(C, N)
¡‡²–
(3)
Table 3 É¡‡²–Ì»wg¬ð¦·D‚f̟‹¹Æµ
Ä AlN ²–ðp¢½±ÆÅCŸ‹¹ÆµÄ‚fKXðp¢
½ê‡Ì‚fÜLÊ(0.1 mass÷)13) æè 0.99 mass÷Ƃ
¢DȨCYfÌÜLÊÍ 0.61 mass÷Å éD±ÌYf
ÍC~Š“OÌÛC•ÜƵÄp¢½^m[‹ªªðµÄ
²–†ÉæèžÜê½àÌÅ é14_16)DFig. 1 Ì SEM Ê^
ɦ·æ¤ÉC¡‡²–ÌfÊÉ;魩¦é`^“ÆÃ
Table 3 Chemical compositions of the composite powder and
the deposit B0.
(mass÷)
Composite powder
Deposit B0
Ti
59.1
67.4
Al
39.3
30.9
N
0.99
1.0
C
0.61
0.70
Fig. 1 Scanning electron micrograph of cross_section of com­
posite powder.
æ
7
†
½ž«nËÉæ邻¨±qªU`^“A‹~iChçŒÌì»
787
ȨCçŒ ACçŒ B ÆàÉCas_sprayed çŒÉÍ Ti2N
æéàÌÅ éDYfÌÅnÀÍC1023 K Å 0.3 mass÷Å
Šª¶¬µCTi2Al(C, N)Ͷ¬µÄ¢È¢D±êÍCa2 Š
è‚fæèà‚¢17,25)D»Ì½ßCYf͂fæèà a2
¨æÑ g Š©ç¬éÌæÉηé‚fÆYfÌÅnÀÌ·É
Š¨æÑ g Š©ç¬é}gŠbNXÉÅnµâ·¢DæÁÄC
Fig. 2 X_ray diffraction patterns of deposit A.
(a) deposit A0; (b) deposit A1; (c) deposit A2; (d) deposit A3;
(e) deposit A4.
Fig. 3 X_ray diffraction patterns of deposit B.
(a) deposit B0; (b) deposit B1; (c) deposit B2; (d) deposit B3;
(e) deposit B4; (f) deposit B5.
Fig. 4 Scanning electron micrographs of cross_sections of
deposit A.
(a) deposit A0; (b) deposit A1; (c) deposit A2; (d) deposit A3;
(e) deposit A4.
788
ú { à ® w ï (2002)
æ
66
ª
Fig. 5 Scanning electron micrographs of cross_sections of
deposit B.
(a) deposit B0; (b) deposit B1; (c) deposit B2; (d) deposit B3;
(e) deposit B4.
as_sprayed çŒÉÍ Ti2Al(C, N)Ͷ¬µÄ¢È¢Æl¦ç
2 mm Ìeåȱqª¬ÝµÄ¢éDçŒ A4 ¨æÑçŒ B4
êéD
ÆàÉÍo±qª½¢ÌæÆ­È¢Ìæª éD±êÍCç
Fig. 4 Æ Fig. 5 ÉçŒ A ¨æÑçŒ B ÌfÊÌ SEM Ê
ŒðMˆ·éÆ Ti2Al(C, N)ª`^“Zx̂¢Ìæɽ
^ð¦·DçŒ A0 ÅÍñ 0.1 mm Æñ 0.5 mm ÌÍo±qª
­¶¬·é17,22,25)½ßÅ éD®( 2 )Æ®( 3 )̽žÉæÁ
¬ÝµCçŒ B0 ÅÍñ 0.5 mm ÌÍo±qª©çêéD±
ÄCas_sprayed çŒ é¢ÍMˆçŒÅ Ti2N Š¨æÑ
êçÌÍo±qÍCFig. 2 Æ Fig. 3 É»ê¼ê¦µ½ X ü
Ti2Al(C, N)ª¶¬µ½±Æ©çC‚f̟‹¹ÆµÄp¢
ñ܋ʩç Ti2N ŠÅ éDçŒ A0 ¨æÑçŒ B0 Æà
½ AlN ÍnˆÉZðµC‚fÍ`^“Æ‹‡µÄ Ti2N Š
ÉCSEM Ê^ɨ¢ÄC}gŠbNXɾ魩¦éÌæ
𶬷éC൭Í}âÃÅÉæÁÄçŒÌ}gŠbNX
(G½±q)Æí©¦éÌæª èC¾é­©¦éÌæÉ
†É­§Ån³êéÆl¦çêéD±ÌçŒðMˆ·é±
Ti2N Šª½­¶¬µÄ¢éD±êÍçŒàÌg¬ÌsÏê
ÆÉæÁÄ Ti2AlC ÌYfÌꔪ‚fÆu·µ½ Ti2Al(C,
«ÉæéàÌÅ éDçŒàÌg¬ÌsÏê«ÍC¡‡²–
N)ª¶¬·éDçŒ A ÆçŒ B ðär·éÆCçŒ A Ì
Ìg¬ÌsÏꫪe¿µÄ¢éD³çÉv‰Y}tŒ[€
ûª÷×ÈÍo±qª½¢D±êÍCçŒ B0 ÌûªçŒ
†Å̲–ÌòsoHÌᢩçCÂX̲–±qŬª³
A0 æèànˆÌ猷xª‚·Å é½ßÅ éD
fÌö­ÊªÙÈé±ÆÉæèçŒàÌg¬ÌsÏꫪ¶
Fig. 6 É ç Œ B Ì EPMA ü ª Í ‹ Ê ð ¦ · D ç Œ B0
¶éDí©¦éÌææèà¾é­©¦éÌæÌûª`^“
ÅCîóŦµ½Ío±qÌA‹~jE€ZxÍ}gŠbN
Zx͂¢13) D»Ì½ßCas_sprayed çŒÅÍC®( 1 )Ì
XÌ»êÉä×Äá­C‚fZx¨æÑYfZxª‚¢D±
½žÅͶ¬µÈ¢ Ti2N Š17)ª¾é­©¦éÌæɽ­¶
̋ʨæѱÌçŒÌ X üñÜÅÍÍo¨ÆµÄ Ti2N Š
¬·éDMˆ·xÌã¸Éº¢CÍo±q̔ªÁµC
¾¯ªŸo³ê½±Æ©çCçŒ B0 ÉÍoµÄ¢é±qÍ
çŒ A4 ÅÍñ 0.1 mm Ì÷×ȱqÆñ 1.5 mm Ìeåȱ
YfðÅnµ½ Ti2N ŠÅ é±Æªí©éDçŒ B4 ÅC
qª¬ÝµCçŒ B4 ÅÍñ 0.3 mm Ì÷×ȱqÆñ 1.5`
îóŦµ½Ío±qÌA‹~jE€ZxÍ}gŠbNXÌ
æ
7
†
½ž«nËÉæ邻¨±qªU`^“A‹~iChçŒÌì»
Fig. 6 EPMA (line) analysis of deposit B.
(a) deposit B0; (b) deposit B4; (c) deposit B5.
789
Fig. 7 TEM micrographs of deposit B.
(a) deposit B0; (b) deposit B4.
»êÉä×Ä­µ¾¯á­C‚fZx¨æÑYfZxª‚
¢D±Ì‹Ê¨æѱÌçŒÌ X üñÜÅÍ Ti2Al(C, N)
ª Ÿ o ³ ê ½ ± Æ © ç C ç Œ B4 É Í o µ Ä ¢ é ± q Í
Ti2Al(C, N)Å éÆl¦çêéDçŒ B5 ɨ¢ÄC2 mm
ÈãÌeåȱqÍCYfðÅnµ½ Ti2N ŠÅ èCñ
0.5`0.8 mm Ì÷×ȱqÍ Ti2Al(C, N)Å éD
Fig. 7 ÉçŒ B Ì TEM Ê^ð¦·DFig. 7(a)ÌîóÅ
¦µ½ñ 1 mm ̱qͳû»Ì Ti2N ŠÅ éDFig. 7(b)
ÌîóŦµ½ñ 0.3 mm ̱qÍZû»Ì Ti2Al(C, N)Å
éDFig. 3 Ì X üñ܋ÊCFig. 6 Ì EPMA üªÍ‹Ê
ÈçÑÉ Fig. 7 Ì TEM Ï@‹Ê©çCçŒ B ÌMˆµ
Fig. 8 Dependence of Vickers microhardness of deposits on
heat treatment temperature.
½çŒÉ¨¢ÄCärIeåȱqÍ Ti2N ŠÅ è÷×È
±qÍ Ti2Al(C, N)Å éÆl¦çêéD
Fig. 8 ɦ·æ¤ÉCçŒ ACçŒ B ÆàÉCn˵½
ÜÜÌçŒÆMˆµ½çŒÌd³ÍÝ¢ÉÙÆñǯ¶Å
¶¬Éº¤}gŠbNXî»Ìh~CÂÜèC}gŠbNX
©ÌÌ­»ªKvÅ éÆl¦çêéD
éDd³ðÁ³¹éöqƵÄCÍo±q̶¬Éº¤
çŒ ACçŒ B ÆàÉC±êçÆ}gŠbNXª¯¶g¬
Íod»ª èCd³ð¸­³¹éöqƵÄCÍo±q¶
̒¢ Ti_Al ñ³‡à24)æèàñ 150`200 ‚¢d³ðL·
¬Éº¤}gŠbNXÌßOaÅnÌÁ¸CMˆ·xã¸
éDçŒ ACçŒ B ÆàÉ as_sprayed çŒÅÍC}gŠb
23) ̝Á
ɺ¤Ío±qÌeå»C¨æÑd³Ìᢠg Š
NX†Ì‚f¨æÑYfÌßOaÅnÉæéÅnd»C¨æ
ª éD±êçÌöqªg݇í³ÁÄd³ªÏíçÈ©Á
Ñ÷×È Ti2N ±qÉæéÍod»ª éDܽCTi2N ±
½Æ„@³êéDæ肢d³ðL·éçŒð¾éÉÍC
q¨æÑ Ti2Al(C, N)±q̶¬Éº¢C}gŠbNXÖÌ
in_situ ¶¬±qÉæéªU­»¾¯ÅÍÈ­C±Ì±qÌ
‚f¨æÑYfÌßOaÅnªÁ¸·é 1473 K ÅMˆµ
790
æ
ú { à ® w ï (2002)
½çŒÅàCÍo±qÉæéÍod»ª éD±Ìæ¤È
66
ª
꽋ÊðȺɦ·D
RÅCçŒ A ¨æÑçŒ B Ìûªd³ª‚¢Æl¦çêéD
P
ò
nˆÌ猷xªÙÈénËžÔ 90 s ¨æÑ 450 s
çŒ A0 ÆçŒ B0 ðär·éÆCçŒ B0 ÌûªçŒ A0
Å컵½çŒÌ\¬ŠÍCÆàÉnˆÌ}âÃÅÉæÁ
æèí¸©Éd¢DçŒ B0 ÌûªnˆÌ猷xª‚¢
ÄYfƂfðßOaÉÅnµ½ Ti3Al(a2 ŠjCTiAl(g Š)
½ßCn˳ê½tHªçŒãÉLªéÆ«ÉçŒÆÌÔÅ
¨æÑYfðÅnµ½ Ti2N ŠÅ éD±±ÅCYfÍ~Š
ÌgUª£i³êG½±qÔ̧…ͪ­­d³ª‚¢18)
“O•Ǘ^m[‹ªªðµÄ¡‡²–†ÉæèžÜê½
Æl¦çêéD˜Òç13)ª Ti_Al_N ¡‡²–ðn˵ļ
àÌÅ éD
څ⵽îÂãÉ컵½çŒÉä×ÔÚIɅ⵽î
Q
ò
nËžÔ 90 s ¨æÑ 450 s Å컵½çŒÆàÉC
ÂãÉ컵½çŒÌd³ªñ 200 ‚©Á½Æ¢¤‹Ê
873`1473 K ÅMˆ·é±ÆÉæÁÄ÷×È Ti2Al(C, N)
àCG½±qÔ̧…ÍÌ­³ªd³Ée¿µ½½ßÅ éD
ªÍo·éD
3.3
Ti_Al_N ¡‡²–©ç컵½çŒÆÌär
˜Òç13)ª Ti_Al_N ¡‡²–𽞫v‰Y}n˵Ä
R
ò
¸Éº¢ Ti2N ±qÍe廵C¯žÉ÷×È Ti2Al(C, N)
±qªÍo·éD
컵½`^“A‹~iChçŒÌ‚fÜLÊÍ
0.15 mass÷Å éD±ÌçŒðMˆµÄ¶¬µ½Ío±
nËžÔ 90 s Å컵½çŒÅÍCMˆ·xÌã
S
ò
nËžÔ 450 s Å컵½çŒÅÍCMˆ·xÌã
¸ÉºÁÄ Ti2N ¨æÑ Ti2Al(C, N)±qÍeå»·éD
qÍCas_sprayed çŒÅ}gŠbNX†ÉßOaÅnµÄ
T
ò
nËžÔ 90 s ¨æÑ 450 s Å컵½çŒÆàÉC
¢½‚f¨æÑYfª`^“¨æÑA‹~jE€Æ‹‡µ¶
n˵½ÜÜÌçŒÆ 873`1473 K ÅMˆµ½çŒÌd
¬µ½ Ti2N ¨æÑ Ti2AlC Å Á½DTi2AlC ÌYfÍ~Š
³ÍÝ¢ÉÙÆñǯ¶Å éD
“O•Ǘ^m[‹ªªðµÄ¡‡²–†ÉæèžÜê½
àÌÅ éD±êÉεÄC{¤†Å Ti_Al_AlN ¡‡²–
U
ò
nËžÔ 90 s Å컵½çŒæèànËžÔ 450 s
Å컵½çŒÌûªd³ª‚¢D
©ç컵½çŒðMˆµÄ¶¬µ½Ío±qÍYfðÅ
EPMA ̪èÉÍåãåwڇÈw¤†ŠZpâ²õÌ
nµ½ Ti2N ŠC¨æÑ Ti2Al(C, N)Å éDܽCTi_Al_
N ¡‡²–ðp¢Ä컵½ as_sprayed çŒðMˆµ½
†ËqYÉ¨¢bÉÈèCTEM Ï@ÉÍåãåwYÆÈ
çŒÉÍ Ti2AlC ª¶¬µCTi_Al_AlN ¡‡²–ðp¢Äì
w¤†ŠZ¯Ìδ
»µ½ as_sprayed çŒðMˆ·éÆ Ti2Al(C, N)ª¶¬
Óð\·D
É¨¢bÉÈÁ½D±±É[­Ó
µ½D±Ìæ¤Èá¢ÍCTi_Al_N ¡‡²–ðp¢Äì»
µ½çŒÉä×C{¤†Å컵½çŒÌ‚fÜLʪ 1.0
¶
£
mass÷Ƃ¢½ßCTi2AlC ÌYfÌê”ð‚fªu·µ½
½ßÆl¦çêéDܽC}gŠbNXÖ̂fÌßOaÅ
nªÁ¸·é 1473 K ÅMˆµ½çŒÌÍo±qÍCTi_
Al_AlN ¡‡²–ðp¢Ä컵½çŒÌûª Ti_Al_N ¡
‡²–©ç컵½çŒÉäµÄ½¢D±êàܽCçŒÌ
‚fÜLÊÌá¢ÉæéàÌÅ éDTi_Al_N ¡‡²–©
çÔÚIɅ⵽îÂãÉ컵½çŒÌd³ÆçŒ B0
Ìd³ÍÙÆñǯ¶Å éªCTi_Al_N ¡‡²–©ç¼
څ⵽îÂãÉ컵½çŒÉä×çŒ A0 Åñ 130C
çŒ B0 Åñ 180 d³ª‚¢D±êÍCçŒ A0 ÆçŒ B0
ðì»·éÛCîÂðâpµÄ¢È¢½ßÉG½±qÔ̧
…ͪ­­C³çÉCas_sprayed óÔÅ÷×±qªªUµ
Ä¢é½ßÅ éÆl¦çêéD
{¤†ÅÍC‚f̟‹¹ÆµÄ‚fKXðp¢éæèà
‚fÜLÊð‚­·é±ÆªÅ«é AlN ²–ðp¢Äì»
µ½¡‡²–ð¸³v‰Y}n˵C½­Ì÷×Ȃ»¨¨
æÑY‚»¨±qðªU³¹½`^“A‹~iChç
Œðì»·é±ÆªÅ«½D
4.
‹
¾
`^“²–CA‹~jE€²–¨æÑ AlN ²–ðA‹S
“µÍC†Å{[‹~Š“O·é±ÆÉæÁÄ컵½¡‡
²–ð¸³v‰Y}n˵C÷×Ȃ»¨¨æÑY‚»¨ð
Ío³¹½`^“A‹~iChînËçŒð컵½D¾ç
1) Y. Tunekawa: J. High Temp. Soc. 23(1997) 209_215.
2) C. Ouchi: Kinzoku 10(1992) 40_45.
3) A. Y. Kulic, U. S. Borisov, A. S. Minuhin and M. D. Nikitin:
Gas_
thermal metal spray coating of composite powders, (Mashinos­
troenie Leningrad section, Leningrad, 1985) 33_44.
4) K. Murakami, T. Kawanaka, T. Kujime and H. Nakajima: J.
High Temp. Soc. 24(1998) 200_207.
5) C. R. Feng, D. J. Michel and C. R. Crowe: Scr. Metall. 23(1989)
1707_1712.
6) M. E. Hyman, C. McCullough, J. J. Valencia, C. G. Levi and R.
Mehrabian: Metall. Trans. 20A(1989) 1847_1859.
7) C. R. Feng, D. J. Michel and C. R. Crowe: Scr. Metall. 24(1990)
1297_
1301.
8) D. S. Shih and R. A. Amato: Scr. Metall. 24(1990) 2053_2058.
9) M. E. Hyman, C. McCullough, C. G. Levi and R. Mehrabian:
Metall. Trans. 22A(1991) 1647_1662.
10) M. Saqib, I. Weiss, G. M. Mehrotra, E. Clevenger, A. G.
Jackson and H. A. Lipsitt: Metall. Trans. 22A(1991) 1721_
1728.
11) S. L. Kampe, P. Sadler, L. Christodoulou and D. E. Larsen:
Metall. Trans. 25A(1994) 2181_2197.
12.
12) K. Takeda: Yousha 35(1998) 4_
13) Y. Hoshiyama, H. Miyake, K. Murakami and H. Nakajima:
Mater. Sci. Eng. A, in press.
14) S. Srinivasan, S. R. Chen and R. B. Schwarz: Mater. Sci. Eng.
A153(1992) 691_695.
15) T. Suzuki and M. Nagumo: Scr. Metall. Mater. 27(1992) 1413_
1418.
16) J. Keskinen, A. Pogany, J. Rubin and P. Ruuskanen: Mater. Sci.
211.
Eng. A196(1995) 205_
17) G. Petzow and G. Effenberg: Ternary Alloys 7, (VCH Verlag­
sageselschaft, Weinhein, and VCH Publications New York, NY,
1993) 305_316.
18) K. Murakami, N. Takuno, T. Okamoto, H. Matsumoto, Y.
Miyamoto and T. Irisawa: Yousha 29(1992) 113_119.
19) K. Murakami, T. Okamoto, H. Matsumoto, Y. Miyamoto and
æ
7
†
½ž«nËÉæ邻¨±qªU`^“A‹~iChçŒÌì»
T. Irisawa: Mater. Sci. Eng. A160(1983) 181_187.
20) K. Murakami, J. Imazu, Y. Fujii, T. Okamoto, T. Kawai, H.
Matsumoto, T. Irisawa, K. Niihara and Y. Miyamoto: Mater.
Sci. Eng. A174(1994) 85_94.
21) K. Murakami, Y. Fujii, H. Matsumoto, T. Irisawa, T. Okamoto,
T. Kawai, J. Imazu, K. Niihara and Y. Miyamoto: Mater. Sci.
Eng. A186(1994) 105_112.
22) Markus A. Pietzka and Julius C. Schuster: J. Am. Ceram. Soc.
79(1996) 2321_
2330.
791
23) J. A. Graves, J. H. Perepezko, C. H. Ward and F. H. Froes: Scr.
572.
Metall. 21(1987) 567_
24) D. Vujic, Z. Li and S. H. Whang: Metall. Trans. 19A(1988)
2445_
2455.
25) G. Petzow and G. Effenberg: Ternary Alloys 3, (VCH Verlag­
sageselschaft, Weinhein, and VCH Publications New York, NY,
1993) 557_566.