D - 日本金属学会

417
ú{à®wï æ 68 ª æ 6 †(2004)412_
AZ31 }OlVE€‡à³„ÂÌø£Á«ÉyÚ·
1
Mn ÊÌe¿Þ
gc
2
Y1,Þ
™ y d °1
V[U[
¬‡
3
[Œ“X1,Þ
Ö ª ì `1,Þ2
z2
1·ªZpÈwåwHw”@Bn
2·ªZpÈwåw
J. Japan Inst. Metals, Vol. 68, No. 6 (2004), pp. 412_
417
Ý 2004 The Japan Institute of Metals
Effect of Mn Content on Tensile Properties of Rolled AZ31 Magnesium Alloy Sheet
2, Shigeharu Kamado1 and Yo Kojima2
Yu Yoshida1,Þ2, Lawrence Cisar1,Þ3, Takayoshi Sekine1,Þ
1Department
2President,
of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940_
2188
Nagaoka University of Technology, Nagaoka 940_2188
Samples of Mg_3÷Al_1÷Zn(AZ31) alloy containing 0`0.5 mass÷Mn were prepared. They were then hot rolled and sub­
sequently annealed. The effect of the amount of Mn content on their microstructures and deformation behavior during tensile
tests was investigated. As Mn content increases, a large amount of Al_
Mn compounds is crystallized in the alloys. The grain sizes
of hot rolled specimens are significantly reduced but there is only a slight difference in the grain size of each alloy. After annealing
for 1 h, significant grain growth occurs in 0÷Mn alloy. On the other hand, the grain growth is sufficiently suppressed at 0.15÷Mn
content but it is hardly affected by further Mn addition. The tensile strength and 0.2÷ proof stress are improved by Mn addition
of 0.05÷ or more, but those of the 0.1÷`0.5÷Mn alloys are almost the same, because particles of Al_
Mn compounds do not con­
tribute to the strength of the alloys. In the annealed specimens, larger elongations are obtained in 0.15÷Mn_containing alloy than
in other alloys due to activation of non_basal slip and uniform elongation without deformation band.
(Received March 4, 2004; Accepted April 26, 2004)
Keywords: AZ31 magnesium alloy, hot rolling, grain size, tensile property, Hall_Petch relation
¶N_ÆÈéDêûÅÍCMn YÁÉæ豬·ª}§³ê
1.

¾
éÆ·éñ4)à éD±Ìæ¤ÉC}OlVE€ÉYÁµ
½ Mn ÍC»ÌÊÉæÁÄÞ¿Ì«¿ðǻܽͫ»³
}OlVE€†É Fe ª¬ü·éÆCÏH«ª˜µ­áº
¹éDµ©µCMg_Al_Zn n}OlVE€‡àÌeí«¿
·é±Æ©ç1) CMg_Al_Zn n‡àÅÍ 0.2`0.5 mass÷ö
ÉyÚ· Mn ÊÌe¿ÉÖ·é]¿ÍfÐIÅCnIÉ
xÌ Mn YÁÉæèÏH«ðüPµÄ¢éD·Èí¿C‡
²×½¤†Í­È¢D
ASTM Ki5) ÅÍ Mg_3 mass÷Al_1 mass÷Zn(AZ31)‡
à̒¢žÉYÁ³ê½ Mn Ín’†Ì Al ƽžµÄ Al_
Mn »‡¨ð`¬µC³çɻ̆Én’†Ì Fe ªÅn·
àÖÌ Mn YÁÊÍ 0.2 mass÷ÈãÆÈÁĨèCÀÛÌ
éD»Ì»‡¨ðn’ÆÌäd·ÉæèéÂÚêɾϳ
Mn YÁÊÍ»¢[J[ÉÏËçêÄ¢éDµ©µCsÌ
¹CãŸÝðgpµÄn»·é±ÆÉæè 50 ppm ȺÉÜ
ÞÉÍOqµ½eåÈ Al_Mn »‡¨ª¶ÝµÄ¢é±Æð
Å Fe Ê𸭳¹é±ÆªÅ«é2,3)Dµ©µCMn ð½Ê
l¦éÆC»óÅÍ Mn ÜLʪ³„ÂÌ@BI«¿âÁ
ÉYÁ·éƱa”\ mm ÌeåÈ Al_Mn »‡¨ªc¯·
H«ÉyÚ·e¿ª\ªÉl¶³êÄ¢éÆÍ¢¦È¢D
é±Æª èCWLÞÅÍñŸÁHžÌ¬`«Ée¿ðyÚ
»±Å{¤†ÅÍC‚i¿ÅvŒX¬`ÉKµ½}OlV
·±Æª\z³êéDܽzÉ_»ˆðsÁ½ê‡Ceå
E€‡à³„ÂÌì»ðÚIƵÄCMn ÜLÊÌÙÈé
È Al_Mn »‡¨ªCzÉ_»çŒÌ`¬ðW°C»Ì‹Ê
AZ31 }OlVE€‡àðn»µC~NgDâø£Á«™
ÆµÄ Al_Mn »‡¨Ìã”É`¬³ê½sbgª…HÌ­
ÉyÚ· Mn YÁÊÌe¿ð²×½D
Þ1 2002 N 11 Ž 2 úú{à®wïHúåïɨ¢Ä­\
Þ2 · ª Z p È w å w å w @ ¶ ( Graduate Student, Nagaoka
University of Technology)
Þ3 ·ªZpÈwåwåw@¶C»ÝF”®ïÐú¤(Graduate
Student, Nagaoka University of Technology, Present address:
Nikken Corp.)
2.
À
±
û
@
{À±pÅÍ 1 ñÌnðÊð 3 kg ƵÄCMn YÁÊð
0`0.5÷ÉÏ»³¹½ AZ31 }OlVE€‡àðn»µ½D
6
æ
†
AZ31 }OlVE€‡à³„ÂÌø£Á«ÉyÚ· Mn ÊÌe¿
413
Table 1 Chemical compositions of alloys prepared for the
present study.
(mass÷)
Al
Zn
Mn
Fe
Ni
Mg
0÷Mn
Alloy
2.97
0.81
0.002
0.0039
0.0017
bal.
0.05÷Mn
2.87
0.81
0.05
0.0019
0.0002
bal.
0.1÷Mn
2.89
0.82
0.07
0.0024
0.0003
bal.
0.15÷Mn
3.01
0.91
0.12
0.0030
0.0034
bal.
0.25÷Mn
2.98
1.00
0.26
0.0036
0.0001
bal.
0.5÷Mn
2.93
1.10
0.57
0.0035
0.0046
bal.
‡àn»ÍåC†ÉÄCSF6{CO2 ¬‡KXðÛìKXÉp
¢ÄsÁ½DܽCsƒ¨ðœŽ·é½ßÉt‰bNXðS
n’ÊÉ뵀 1 mass÷ŠüµC˜aµ½D10 min ̾Ã
ãC·Îâ­n’ð·³ 190 mmC 40 mmC‚³ 120 mm
Ìà^ɒžñ¾D¾ç꽇àÌ»wg¬ð Table 1 ɦ
·D
C“Sbg©ç 15 mm~15 mm~70 mm Ìp_ðØèo
µCA‹S“µÍC†ÉÄ 653 K_8 h ÌÏ¿»ˆð{µC
³„p̎¿Æµ½D³„OÉCdCïRFðp¢ÄCŽ¿
Fig. 1
Microstructures of as_homogenized specimens.
ð 673 K ÜÅÁMµ½D»ÌãCŽ¿ð¬â©ÉF©çæ
èoµC³„ðsÁ½D1 pX–½è̳º¦Í 5÷C³
º¦Í 80÷ƵCÅIÂúð 3 mm Ƶ½DȨC[‹
éDܽCe‡àÆ཭Ìo»ªÏ@³êéDMn ÜLÊ
ÁMÍsí¸C1 pXˆÉ 673 K ÜÅÄÁMµC³„ðJÔ
̽¢ 0.5÷Mn ‡àÅÍC³„̹ñfûüɈÁÄÑó
µ½D
ÌÌ檶ݷéD±êÍC]ˆ}OlVE€ÅÏ@³êÄ
‹»±aÆø£Á«ÌÖWCܽCMn ÜLÊƋ»±¬
¢é³kÏ`Ñ6,7)ܽ͹ñfÑ8,9)Æl¦çêC‚ Mn Ü
·ÌÖWð²×é½ßÉC473`773 K ÜÅ 50 K ÝÅ 1 h
L‡àÅÍC³„†ÌÏ`ªsÏêÅ é±Æ𦴵Ģ
™žÄÈܵðsÁ½D³çÉCÄÈܵµ½Ž¿Ìî»Á
éD
«ð]¿·é½ßÉCrbJ[Xd³Ž±ðsÁ½D
eŽ¿Ì~NgDÏ@ðõw°÷¾Ï@Éæès¤ÆÆ
àÉC月ðÍÉæè½Ï‹»±aðªèµ½D
³„ãC623 K Å 1 h ™žÄÈܵµ½Ž¿ÅÍC¢¸ê
̎¿ÅàCo»Í®SÉÁÅ·éDܽC0.5÷Mn ‡à
ÅÍC³„žÉ`¬³ê½Ï`ÑÍC623 K_1 h ÌÄÈܵ
eŽ¿Ìø£Á«ÍCC“Xg“^œ\Ž±@ðp¢½
ãC÷×±ÌwÖÆÏ»·éD±ÌwÍ 773 K_1 h ÌÄÈÜ
ø£Ž±Éæè]¿µ½Dø£Ž±Ðͳ„µ½Ž¿ðC
µÉæèÁŵC±aÍÏêÆÈéD0÷Mn ‡àÅͳí
NC ùÕðp¢Ä JIS 14B †äᎱÐÉ@BÁHµ½DW
±¬·Éæ阵¢e廪¶¶éD±êÉεÄC0.05÷
_ԗ£Í 24 mm Ƶ½Dø£Ž±ÍåC†º·Éĉú
Mn, 0.1÷Mn ‡àÅÍê”ÅÙí±¬·ª¶¶éD0.15÷
иݬx 1~10|3 s|1 ÌðÅsÁ½D
Èã Mn ðÜL·é‡àÅÍCÙí±¬·Í¶¶¸C±a
ø£Á«ÉyÚ· Mn Ìe¿ð²×é½ßC2÷Ï`³¹
½Ž¿Ì~NgDð§ß^dq°÷¾(TEM)ÅÏ@µ½D
à 0÷Mn ‡àæè\ª¬³¢DFig. 3 Ée‡àÌÄÈܵ
·xƽϋ»±aÌÖWð¦·D0.05÷Mn, 0.1÷Mn ‡
àɨ¢ÄÍÙí¬·±ðœ¢Ävªµ½D0÷Mn ‡àÅ
3.
À
3.1
± ‹ Ê
Mn ÜLʪ~NgDÉyÚ·e¿
‡à’¢ã CÏ¿»ˆ ðsÁ½ Ž¿Ì~N gDð
͋»±e廪˜µ­is·éªCMn ÜLʪ 0.05,
0.1÷ƝÁ·é±ÆÉæèCeå»ÍåÉ}§³êéD
0.1÷Èã Mn ðÜL·é‡àÌÔÅÍCMn Ê̝Áɺ
¤eå»Ì}§øÊÍí¸©Å éDµ½ªÁÄC‹»±e
Fig. 1 ɦ·DMn ÜLʪ 0.05`0.1÷̎¿ÅÍCAl_
å»ð}§µC©ÂÙí±¬·ð¶¶³¹¸CgDÌÀè«
Mn »‡¨Ì»oÊÍí¸©Å éªCMn ÜLʪ 0.15÷
ðÛ½ßÉÍCMn ÜLÊÍ 0.15÷öxÅ\ªÅ éD
Èã̎¿ÅÍCMn ÜLÊ̝Áɺ¢CAl_Mn »‡¨
Ì»oÊ͝Á·éD
3.2
Mn ÜLʪ@BI«¿ÉyÚ·e¿
Fig. 2 É as_rolled Þ¨æÑ 623 K ¨æÑ 773 K ÅÄÈÜ
³„ãCe·xÅÄÈܵµ½‡àÌî»Á«ð Fig. 4
µµ½Ž¿Ì~NgDð¦·DÏ@Í TD ɂ¼ÈÊÅ
ɦ·De‡àÆà 473 K Å·ÅÉnÜèCÄÈÜ
sÁ½Das_rolled Þ̋»±Í¢¸ê̇àÆà™²Å µ·xÌã¸ÆÆàÉQŸd³ª¸­·éD0÷Mn ‡àÅ
éªC‹»±aÍ Mn ÜLÊ̝Áɺ¢Cᱬ³­È
ÍC¼Ì Mn ÜL‡àÆärµÄCÇÌ·xÅàd³lª
414
ú { à ® w ï (2004)
Fig. 2
Fig. 3
æ
68
ª
Microstructures of rolled specimens, before annealing (a), after subsequent annealed at 623 K (b) and 773 K (c).
Changes in grain size with isochronal annealing for 1 h.
Fig. 4 Changes in Vickers hardness with isochronal annealing
for 1 h.
á¢DMn ÜL‡àÅÍ Mn YÁʪ½¢ÙÇd³lª‚­
ÈéXüªFßçêéàÌÌC0.15÷Èã Mn ðÜL·é‡
0.15÷Mn ÈãÅÍÙÆñÇÏíçÈ¢D±Ìæ¤ÉCMn
àÌÔÅÍÙÆñǯ¶d³ð¦·D
Í÷ÊÅà‡àÌ­xðÁ³¹éDµ©µC½ÊÉ Mn
e‡àÌø£Á«ð Fig. 5 ɦ·D0÷Mn ‡àÌø£­
ðÜLµÄà­xªüãµÈ¢±Æ©çCeåÈ Al_Mn »
³C0.2÷ÏÍͳ„ÞCÄÈܵÞÆàÉCMn ÜL‡à
‡¨ÍÙÆñÇ­xÉñ^µÈ¢àÌƄª³êéDas_
æèá¢DêûCMn ÜL‡àÌÔÅÍeÄÈܵ·xɨ
rolled ÞÌLÑÍ 0÷Mn ‡àªÅà‚­CMn ÜLÊ̝
¢ÄCø£­³Éå«Èá¢ÍÈ¢D0.05÷`0.15÷Mn ‡
Áɺ¢¸­·éDµ©µC473 K ÌÄÈܵðs¤±ÆÅC
à Ì 0.2 ÷ Ï Í Í C Mn Ê Ì  Á Æ Æ à É  å · é ª C
Mn ÜL‡àÅͳ„žÌиݪœŽ³êCLѪåÉ
6
æ
†
AZ31 }OlVE€‡à³„ÂÌø£Á«ÉyÚ· Mn ÊÌe¿
Fig. 5
415
Tensile properties of rolled and annealed specimens.
üã·éD½¾µCe‡àÆàÄÈܵ·xÌã¸Éº¢‹
»±ªeå»·é½ßC773 K ÅÍÇ̇àÅàLÑ͸­
·éDÁÉeå»Ì˜µ¢ 0÷Mn ‡àÆÙí±¬·ª¶¶
½ 0.05÷Mn, 0.1÷Mn ‡àÅÍLѪåÉặéD
Mn ÜL‡àÌÔÅLÑðär·éÆCSÄÌÄÈܵ·x
ɨ¢ÄC0.15÷Mn YÁ‡àªÅà‚¢lð¦·D±Ìæ
¤ÉCMn ͽÊYÁµÄà@BI«¿Íü㹸C„«É
ÖµÄÍặ é½ßCÏH«ªž«³ê êÎ Mn ÊÍ
0.15÷öxÅ\ªÅ éƾ¦éD
4.
l
4.1
@
Mn ÜLÊÆ­xÌÖW
Fig. 6 ÉÄÈܵÞÌ 0.2÷ÏÍ̱a˶«ð¦·D¢
¸ê̇àà Hall_Petch ¥É]Á½±a˶«ð¦·ªC
0÷Mn ‡àÌÝ¼Ì Mn ÜL‡àÆÙÈé±a˶«ð¦
Fig. 6 Grain size dependencies of 0.2÷ proof stress of an­
nealed specimens.
·DMn ÜL‡àÌÔÅͱa˶«ÍÙÚ¯lÌXüð¦
·D± ±ÅC0÷Mn ‡àÆ 0.15÷Mn`0.5÷Mn ‡àð
473 K ÅÄÈܵµ½Ž¿Ì 0.2÷ÏÍ(îóÌÊu)ðär
·éÆñ 50 MPa Ì·ª éDºäç10)àCAZ31 }OlV
E€‡àŸoµÞÉ 0.3÷Mn ðYÁ·é±ÆÅCÏͪ 50
MPa ÙÇüã·é±ÆðñµÄ¢éD±Ì¤¿÷×»É
æé­»ÍCñ 25 MPa öxÅCcèÌ 25 MPa Í Mn ÌÅ
n é¢Í Al_Mn »‡¨ÌÍoÉæ魻ŠéÆl¦ç
êéDFig. 7 É 0.15÷Mn ‡àÉ 623 K_1 h ÌÄÈܵðs
Á½ãC2÷ÌY«Ð¸ÝðÁ¦½Ž¿Ì TEM œð¦·D
dqüÍq2 ˜1 ˜10r©çü˵CêʪGbWI“ÆÈéæ¤
ɵ½DÊ^†ÉÍ 400 nm öÌ÷×È Al_Mn n»‡¨ª
¶ÝµÄ¢éªC»ÌÜíèÉÍϵ½]ÊÍÏ@³êÈ
¢DܽC±Ì»‡¨ÍC”ª­È­»ÌÔuàL¢±Æ©
çC]ÊÌs“~ßøÊÍÙÆñÇÈ¢àÌÆl¦çêéD
µ½ªÁÄCOqµ½ Mn ÜLÌL³ÉNö·é 25 MPa
Ì 0.2÷ÏÍÌá¢ÍCMn ÌÅn­»ÉæéàÌÆl¦ç
êéDܽCMg_Al_Mn 3 ³nóÔ}11) ©çބ·éÆ
Mg_3÷Al ‡à†ÉÅn·é Mn Í 0.1`0.2÷öxÆl¦ç
êéDÈã̱ÆÆø£Ž±‹Ê©çCMn Éæé­xÌü
Fig. 7 TEM image of rolled specimen of 0.15÷Mn alloy after
tensile test up to 2÷ strain. The specimen was annealed at 623
K for 1 h before tensile test.
416
ú { à ® w ï (2004)
æ
68
ª
ãÍCÜLÊ 0.15÷öxÜÅÅC»êÈã Mn ÊðÁ³
É 0÷Mn, 0.15÷Mn, 0.25÷Mn ¨æÑ 0.5÷Mn ‡àð 623
¹Äà Al_Mn n»‡¨ª»o·éÌÝÅC³çÈé­xÌ
K ÅÄÈܵµ½Ž¿ÌjfãÌõw°÷¾Ê^ð¦·D
üãÍB¬µ¾È¢àÌÆl¦çêéD
0÷Mn ‡àÅÍeåȋ»±àÉå«Èo»ª¶¶C»±
±±ÅCMÔ³„ãÄÈܵµ½ Mg_1.2 mass÷Mn ‡à
©çj󪶶éD0.15÷Mn ‡àÅà÷×Èo»ª½­©
ƃ}OlVE€Ì 0.2÷ÏÍðär·éÆC»ê¼ê 125
çêéªC»ÌªzÍêlÅärIÏêÉÏ`·éD0.25÷
MPa12) ¨æÑ 69 MPa13) Å éD·Èí¿C1.2÷Mn ÌÅ
Mn ‡à¨æÑ 0.5÷Mn ‡àÅÍCø£Ï`†É¶¶½Æ
nÉæé­xÌã¸Í 56 MPa Å éDÅn­»ÉæéÏ`
víêéÏ`ѪÏ@³êCjóà±ÌÏ`ÑɈÁĶ¶
ï R Í n ¿ ´ q Z x Ì 1 / 2 æ É ä á · é14) ± Æ © ç C
éD±êÍC¼‡àɨ¢Ä³„†É±ü³ê½¹ñfÑÆ
0.15÷Mn ðÜÞ±ÆÉæéžÍ̝ÁªÍñ 20 MPa Æ©
¯lÌàÌÆl¦çêéDܽC±ÌÏ`ÑÍ 0.25÷Mn ‡
ÏàçêCOqÌÅn­»ÉæéàÌƄ赽žÍ̝Á
àæè 0.5÷Mn ‡àÌûª¾ÄÉ»êéD¼‡àÅÏ`Ñ
ªÉߢlª¾çêéD
ª¶¶é´ö;ç©ÅÍÈ¢ªCgUÌx¢ Mn Ì}N
4.2
Mn ÜLÊƄ«ÌÖW
IÈZxÒÍÉæéêŠÌdîÉNö·é±Æªl¦çê
éD±Ìæ¤ÈÏ`ÑÅÍC¼Ì”ªæè཭ÌÏ`ðó
e‡àÉ 623 K Å 1 h ÄÈܵµ½‹ÊC0.15÷Mn ‡à
¯éDµ½ªÁÄCÏêÏ`·é 0.15÷Mn ‡àÌLѪÅ
ÅÍ 29÷ÌärIå«ÈLÑ𦵽D}OlVE€‡à
à‚­C¾ÄÈÏ`Ñð`¬·é 0.5÷Mn ‡àÌLÑͬ
̄«ÉÖµÄ Koike ç15) ÍCº·ÅàêÊ©çñêÊÖ
³­ÈéàÌÆl¦çêéDܽCã¢Ï`Ñð`¬·é
Ìð··×誶¶C„«ÌüãÉñ^·é±ÆðñµÄ
0.25÷Mn ‡àÅÍCNJIÈÏ`ª 0.15÷Mn ‡àæèÍ
¢éDFig. 8 É 0.15÷Mn ‡à³„ÞÉ 623 K_1 h ÌÄÈÜ
¶¶â·¢àÌÌC0.5÷Mn ‡àæ趶ßCLÑ
µã 2÷ÌY«Ð¸ÝðÁ¦½Ž¿Ì TEM œð¦·DüË
ͼ‡à̆ÔÉÈéàÌÆl¦çêéDȨC{¤†Åp
²Í Fig. 7 ƯlÉq2 ˜1 ˜10rÅ éD(a)ÌÊ^©çCêÊg
¢½‚ Mn ÜL‡àÉÍsÌÞÅ©çêéæ¤È”\~N
Œ[XɽsÈ]Êü̼ÉCêÊgŒ[X©çOê½]Ê
ü཭©çêéDܽCg ð(0002)ÉZbgµ½(b)ÌÊ
^ÅͱêçÌ]ÊüÍSÄÁ¦éD±Ìæ¤ÉC±ÌŽ¿
ÅÍ a ]ÊÌêÊ©çñêÊÖÌð··×誶¶Ä¢é
±ÆªmF³ê½DKoike çÍ15)C±ÌñêÊ·×誱E
ÅÌA±«ðÛ½ßɶ¶é compatibility žÍÉæé±
ÆðñĵĢéDܽC¬Ñç16) Í compatibility žÍÉ
æÁÄñêÊ·×誶¶éÍÍÍñ 4 mm Å é±Æðm
FµÄ¢éD·Èí¿C±aª 8 mm ȺŠêÎC±àS
ÌÅñêÊ·×誶¶C„«ªüP³êéD0.15÷Mn ‡
àÌ 623 K ÄÈܵÞ̽ϱaÍñ 12 mm ÅC±àÌå
”ªÅñêÊ·×誈®·éDêûC0÷Mn ‡àÌ 623
K ÄÈܵÞ̱aÍñ 45 mm ÅC±Ìæ¤ÈŽ¿Å͋
»±†›”ÅñêÊ·×誶¶¸CãíèÉo»Ï`ª¶
¶C„«ªáº·éDe‡àÆàC773 K ÌÄÈܵÉæ
èCLѪặé±Æà¯lÌ´öÆl¦çêéDFig. 9
Fig. 8 TEM micrograph showing the occurrence of non_basal
slip in rolled specimen of 0.15÷Mn alloy subsequently an­
nealed at 623 K_
1 h. The specimen is the same as in Fig. 7.
Fig. 9 Microstructures of (a) 0÷Mn, (b) 0.15÷Mn, (c)
0.25÷Mn and (d) 0.5÷Mn_
added AZ31 alloy samples an­
nealed at 623 K for 1 h. (A): microstructures near the fractured
surface and (B): microstructures of uniformly elongated
region.
6
æ
†
AZ31 }OlVE€‡à³„ÂÌø£Á«ÉyÚ· Mn ÊÌe¿
“I[_[Ì Al_Mn n»‡¨Í¶ÝµÈ©Á½ªC»Ì
417
OlVE€‡àÂÌvŒXÁH@Éæé»i»ZpÌJ­v
æ¤È»‡¨ª¶Ý·éê‡C„«Í³çÉặé±Æª
¨æÑC·ªZpÈwåw 21 ¢I COE vO‰€unC
\z³êéD
uŠbh´@\Þ¿n¬Æ‘Û’_`¬v̇•Éæèsí
ê½àÌÅ éD
5.
‹
¾
¶
£
{¤†Å͂i¿È AZ31 ‡à³„ÂÌì»ðÚIƵÄC
Mn ʪ AZ31 ‡à³„ÂÌ~NgD¨æÑø£Á«Éy
Ú·e¿ð²×½‹ÊCȺ̋_ð¾½D
P
ò
Mn Í÷ÊÅàÄÈܵžÌ±¬·ð}§·éªC
Mn ÜLʪ 0.05`0.1÷Ìê‡C773 K_1 h ÌÄÈܵÅ
ÍÙí±¬·ª¶¶éD0.15÷Èã Mn ÊðÁ³¹ÄàC
±¬·}§øÊÉå·Í¶¶È¢DÙí±¬·ð¶¶³¹¸
‹»±eå»ð}§·é½ßÉÍCMn ÜLÊÍ 0.15÷öx
Å\ªÅ éD
Q
ò
³„ÞÌø£­³C0.2÷ÏÍÍC0.05÷Mn ‡àÅ
Í 0÷Mn ‡àæ肢lð¦·D0.1÷Èã Mn Êðâ·
Æ Al_Mn »‡¨Ì»oʪ½­ÈéªC±êçÍ­xÉñ
^µÈ¢½ßCø£­³C0.2÷ÏÍÍüãµÈ¢D
R
ò
³„ÞÌLÑÍ 0.15÷Mn ‡àªÅà‚¢DÄÈܵ
µ½ 0÷Mn ‡àÅÍC‹»±e廪˜µ­Co»ª­¶
µâ·¢½ßC„«ÍặéD‚ Mn ÜL‡àÅÍCø
£Ï`†ÉCÏ`ÑÌæ¤ÈǔÏ`Ì檭¶·é½ßC
„«ÍặéD
S
ò
0.15÷Mn ‡àÍC\ªÈ­xð¿C„«ÉDêé
ÆÆàÉ»‡¨Ì»oÊà­È­C{Ÿ¢‡àÌ Mn ÊÆ
µÄÅKÅ éD
{¤†Ìê”ÍnæV¶R“\[VA€¤†J­–Æu}
1) R. S. Busk: Magnesium Products Design, (Japan Light Metal As­
sociation, Tokyo, 1988) pp. 268_270.
2) S. Kamado: Handbook of Advanced Magnesium Technology, (Kal­
los Publishing Co. Ltd., Tokyo, 2000) pp. 155_
159.
3) E. F. Emley: Principles of Magnesium Technology, (Pergamon
press, Oxford, 1966) pp. 180_
181.
4) K. Ohtoshi and M. Katsuta: J. JILM 51(2001) 534_538.
5) ASTM B90, B91, B107, B275.
37.
6) G. Omori, S. Matsuo and H. Asada: J. JILM 17(1967) 32_
7) G. Omori: J. JILM 26(1976) 336_
346.
8) P. Klimanek and A. P äotzsch: Mater. Sci. Eng. A324(2002) 145_
150.
9) M. S. Yong and S. C. V. Lim: Proc. 6th Int. Conf. on Magnesium
Alloys and Their Applications, (WILEY_VCH Verlag GmbH &
Co. KGaA, Weinheim, 2004) pp. 260_265.
10) T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, S. Nagano and H.
Sano: J. JILM 53(2003) 27_31.
11) E. F. Emley: Principles of Magnesium Technology, (Pergamon
press, Oxford, 1966) p. 965.
12) E. A. Brandes and G. B. Brook: Smithells Metals Reference Book,
Seventh edition, (Butterworth_Heinemann Ltd., Oxford, 1992)
pp. 22_
51_
22_
64.
13) S. Housh, B. Mikucki and A. Stevenson: ASM Handbook,
``Properties of Magnesium Alloys'', (ASM International, Ohio,
1990) pp. 480_
516.
14) e.g. M. F. Ashby and D. R. H. Jones: Engineering Materials 1,
Heinemann Ltd., Oxford, 1996) pp. 104_110.
(Butterworth_
15) J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K.
2065.
Maruyama and K. Higashi: Acta Mater. 51(2003) 2055_
16) T. Kobayashi, J. Koike, Y. Yoshida, K. Kamado, M. Suzuki, K.
Maruyama and Y. Kojima: J. Japan Inst. Metals 67(2003) 149_
152.