417 ú{à®wï æ 68 ª æ 6 (2004)412_ AZ31 }OlVEà³ÂÌø£Á«ÉyÚ· 1 Mn ÊÌe¿Þ gc 2 Y1,Þ y d °1 V[U[ ¬ 3 [X1,Þ Ö ª ì `1,Þ2 z2 1·ªZpÈwåwHw@Bn 2·ªZpÈwåw J. Japan Inst. Metals, Vol. 68, No. 6 (2004), pp. 412_ 417 Ý 2004 The Japan Institute of Metals Effect of Mn Content on Tensile Properties of Rolled AZ31 Magnesium Alloy Sheet 2, Shigeharu Kamado1 and Yo Kojima2 Yu Yoshida1,Þ2, Lawrence Cisar1,Þ3, Takayoshi Sekine1,Þ 1Department 2President, of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940_ 2188 Nagaoka University of Technology, Nagaoka 940_2188 Samples of Mg_3÷Al_1÷Zn(AZ31) alloy containing 0`0.5 mass÷Mn were prepared. They were then hot rolled and sub sequently annealed. The effect of the amount of Mn content on their microstructures and deformation behavior during tensile tests was investigated. As Mn content increases, a large amount of Al_ Mn compounds is crystallized in the alloys. The grain sizes of hot rolled specimens are significantly reduced but there is only a slight difference in the grain size of each alloy. After annealing for 1 h, significant grain growth occurs in 0÷Mn alloy. On the other hand, the grain growth is sufficiently suppressed at 0.15÷Mn content but it is hardly affected by further Mn addition. The tensile strength and 0.2÷ proof stress are improved by Mn addition of 0.05÷ or more, but those of the 0.1÷`0.5÷Mn alloys are almost the same, because particles of Al_ Mn compounds do not con tribute to the strength of the alloys. In the annealed specimens, larger elongations are obtained in 0.15÷Mn_containing alloy than in other alloys due to activation of non_basal slip and uniform elongation without deformation band. (Received March 4, 2004; Accepted April 26, 2004) Keywords: AZ31 magnesium alloy, hot rolling, grain size, tensile property, Hall_Petch relation ¶N_ÆÈéDêûÅÍCMn YÁÉæ豬·ª}§³ê 1. ¾ éÆ·éñ4)à éD±Ìæ¤ÉC}OlVEÉYÁµ ½ Mn ÍC»ÌÊÉæÁÄÞ¿Ì«¿ðǻܽͫ»³ }OlVEÉ Fe ª¬ü·éÆCÏH«ªµáº ¹éDµ©µCMg_Al_Zn n}OlVEàÌeí«¿ ·é±Æ©ç1) CMg_Al_Zn nàÅÍ 0.2`0.5 mass÷ö ÉyÚ· Mn ÊÌe¿ÉÖ·é]¿ÍfÐIÅCnIÉ xÌ Mn YÁÉæèÏH«ðüPµÄ¢éD·Èí¿C ²×½¤ÍÈ¢D ASTM Ki5) ÅÍ Mg_3 mass÷Al_1 mass÷Zn(AZ31) àÌ¢ÉYÁ³ê½ Mn ÍnÌ Al ƽµÄ Al_ Mn »¨ð`¬µC³çÉ»ÌÉnÌ Fe ªÅn· àÖÌ Mn YÁÊÍ 0.2 mass÷ÈãÆÈÁĨèCÀÛÌ éD»Ì»¨ðnÆÌäd·ÉæèéÂÚêɾϳ Mn YÁÊÍ»¢[J[ÉÏËçêÄ¢éDµ©µCsÌ ¹CãÝðgpµÄn»·é±ÆÉæè 50 ppm ȺÉÜ ÞÉÍOqµ½eåÈ Al_Mn »¨ª¶ÝµÄ¢é±Æð Å Fe Ê𸳹é±ÆªÅ«é2,3)Dµ©µCMn ð½Ê l¦éÆC»óÅÍ Mn ÜLʪ³ÂÌ@BI«¿âÁ ÉYÁ·éƱa\ mm ÌeåÈ Al_Mn »¨ªc¯· H«ÉyÚ·e¿ª\ªÉl¶³êÄ¢éÆÍ¢¦È¢D é±Æª èCWLÞÅÍñÁH̬`«Ée¿ðyÚ »±Å{¤ÅÍCi¿ÅvX¬`ÉKµ½}OlV ·±Æª\z³êéDܽzÉ_»ðsÁ½êCeå Eà³ÂÌì»ðÚIƵÄCMn ÜLÊÌÙÈé È Al_Mn »¨ªCzÉ_»çÌ`¬ðW°C»ÌÊ AZ31 }OlVEàðn»µC~NgDâø£Á« ÆµÄ Al_Mn »¨ÌãÉ`¬³ê½sbgª HÌ ÉyÚ· Mn YÁÊÌe¿ð²×½D Þ1 2002 N 11 2 úú{à®wïHúåïɨ¢Ä\ Þ2 · ª Z p È w å w å w @ ¶ ( Graduate Student, Nagaoka University of Technology) Þ3 ·ªZpÈwåwåw@¶C»ÝF®ïÐú¤(Graduate Student, Nagaoka University of Technology, Present address: Nikken Corp.) 2. À ± û @ {À±pÅÍ 1 ñÌnðÊð 3 kg ƵÄCMn YÁÊð 0`0.5÷ÉÏ»³¹½ AZ31 }OlVEàðn»µ½D 6 æ AZ31 }OlVEà³ÂÌø£Á«ÉyÚ· Mn ÊÌe¿ 413 Table 1 Chemical compositions of alloys prepared for the present study. (mass÷) Al Zn Mn Fe Ni Mg 0÷Mn Alloy 2.97 0.81 0.002 0.0039 0.0017 bal. 0.05÷Mn 2.87 0.81 0.05 0.0019 0.0002 bal. 0.1÷Mn 2.89 0.82 0.07 0.0024 0.0003 bal. 0.15÷Mn 3.01 0.91 0.12 0.0030 0.0034 bal. 0.25÷Mn 2.98 1.00 0.26 0.0036 0.0001 bal. 0.5÷Mn 2.93 1.10 0.57 0.0035 0.0046 bal. àn»ÍåCÉÄCSF6{CO2 ¬KXðÛìKXÉp ¢ÄsÁ½DܽCs¨ð·é½ßÉtbNXðS nÊÉ뵀 1 mass÷üµCaµ½D10 min ̾à ãC·Îânð·³ 190 mmC 40 mmC³ 120 mm Ìà^Éñ¾D¾çê½àÌ»wg¬ð Table 1 ɦ ·D CSbg©ç 15 mm~15 mm~70 mm Ìp_ðØèo µCASµÍCÉÄ 653 K_8 h ÌÏ¿»ð{µC ³p̿Ƶ½D³OÉCdCïRFðp¢ÄC¿ Fig. 1 Microstructures of as_homogenized specimens. ð 673 K ÜÅÁMµ½D»ÌãC¿ð¬â©ÉF©çæ èoµC³ðsÁ½D1 pX½è̳º¦Í 5÷C³ º¦Í 80÷ƵCÅIÂúð 3 mm Ƶ½DȨC[ éDܽCeàÆà½Ìo»ªÏ@³êéDMn ÜLÊ ÁMÍsí¸C1 pXÉ 673 K ÜÅÄÁMµC³ðJÔ Ì½¢ 0.5÷Mn àÅÍC³Ì¹ñfûüÉÁÄÑó µ½D ÌÌ檶ݷéD±êÍC]}OlVEÅÏ@³êÄ »±aÆø£Á«ÌÖWCܽCMn ÜLÊÆ»±¬ ¢é³kÏ`Ñ6,7)ܽ͹ñfÑ8,9)Æl¦çêC Mn Ü ·ÌÖWð²×é½ßÉC473`773 K ÜÅ 50 K ÝÅ 1 h LàÅÍC³ÌÏ`ªsÏêÅ é±Æ𦴵Ģ ÄÈܵðsÁ½D³çÉCÄÈܵµ½¿Ìî»Á éD «ð]¿·é½ßÉCrbJ[Xd³±ðsÁ½D e¿Ì~NgDÏ@ðõw°÷¾Ï@Éæès¤ÆÆ àÉCæðÍÉæè½Ï»±aðªèµ½D ³ãC623 K Å 1 h ÄÈܵµ½¿ÅÍC¢¸ê Ì¿ÅàCo»Í®SÉÁÅ·éDܽC0.5÷Mn à ÅÍC³É`¬³ê½Ï`ÑÍC623 K_1 h ÌÄÈܵ e¿Ìø£Á«ÍCCXg^\±@ðp¢½ ãC÷×±ÌwÖÆÏ»·éD±ÌwÍ 773 K_1 h ÌÄÈÜ ø£±Éæè]¿µ½Dø£±Ðͳµ½¿ðC µÉæèÁŵC±aÍÏêÆÈéD0÷Mn àÅͳí NC ùÕðp¢Ä JIS 14B äá±ÐÉ@BÁHµ½DW ±¬·Éæéµ¢e廪¶¶éD±êÉεÄC0.05÷ _Ô£Í 24 mm Ƶ½Dø£±ÍåCº·ÉÄú Mn, 0.1÷Mn àÅÍêÅÙí±¬·ª¶¶éD0.15÷ иݬx 1~10|3 s|1 ÌðÅsÁ½D Èã Mn ðÜL·éàÅÍCÙí±¬·Í¶¶¸C±a ø£Á«ÉyÚ· Mn Ìe¿ð²×é½ßC2÷Ï`³¹ ½¿Ì~NgDð§ß^dq°÷¾(TEM)ÅÏ@µ½D à 0÷Mn àæè\ª¬³¢DFig. 3 ÉeàÌÄÈܵ ·xƽϻ±aÌÖWð¦·D0.05÷Mn, 0.1÷Mn àɨ¢ÄÍÙí¬·±ð¢Ävªµ½D0÷Mn àÅ 3. À 3.1 ± Ê Mn ÜLʪ~NgDÉyÚ·e¿ à¢ã CÏ¿» ðsÁ½ ¿Ì~N gDð Í»±e廪µis·éªCMn ÜLʪ 0.05, 0.1÷ÆÁ·é±ÆÉæèCeå»ÍåÉ}§³êéD 0.1÷Èã Mn ðÜL·éàÌÔÅÍCMn ÊÌÁɺ ¤eå»Ì}§øÊÍí¸©Å éDµ½ªÁÄC»±e Fig. 1 ɦ·DMn ÜLʪ 0.05`0.1÷Ì¿ÅÍCAl_ å»ð}§µC©ÂÙí±¬·ð¶¶³¹¸CgDÌÀè« Mn »¨Ì»oÊÍí¸©Å éªCMn ÜLʪ 0.15÷ ðÛ½ßÉÍCMn ÜLÊÍ 0.15÷öxÅ\ªÅ éD ÈãÌ¿ÅÍCMn ÜLÊÌÁɺ¢CAl_Mn »¨ Ì»oÊÍÁ·éD 3.2 Mn ÜLʪ@BI«¿ÉyÚ·e¿ Fig. 2 É as_rolled Þ¨æÑ 623 K ¨æÑ 773 K ÅÄÈÜ ³ãCe·xÅÄÈܵµ½àÌî»Á«ð Fig. 4 µµ½¿Ì~NgDð¦·DÏ@Í TD ɼÈÊŠɦ·DeàÆà 473 K Å·ÅÉnÜèCÄÈÜ sÁ½Das_rolled ÞÌ»±Í¢¸êÌàÆà²Å µ·xÌã¸ÆÆàÉQd³ª¸·éD0÷Mn àÅ éªC»±aÍ Mn ÜLÊÌÁɺ¢Cᱬ³È ÍC¼Ì Mn ÜLàÆärµÄCÇÌ·xÅàd³lª 414 ú { à ® w ï (2004) Fig. 2 Fig. 3 æ 68 ª Microstructures of rolled specimens, before annealing (a), after subsequent annealed at 623 K (b) and 773 K (c). Changes in grain size with isochronal annealing for 1 h. Fig. 4 Changes in Vickers hardness with isochronal annealing for 1 h. á¢DMn ÜLàÅÍ Mn YÁʪ½¢ÙÇd³lª ÈéXüªFßçêéàÌÌC0.15÷Èã Mn ðÜL·é 0.15÷Mn ÈãÅÍÙÆñÇÏíçÈ¢D±Ìæ¤ÉCMn àÌÔÅÍÙÆñǯ¶d³ð¦·D Í÷ÊÅààÌxðÁ³¹éDµ©µC½ÊÉ Mn eàÌø£Á«ð Fig. 5 ɦ·D0÷Mn àÌø£ ðÜLµÄàxªüãµÈ¢±Æ©çCeåÈ Al_Mn » ³C0.2÷ÏÍͳÞCÄÈܵÞÆàÉCMn ÜLà ¨ÍÙÆñÇxÉñ^µÈ¢àÌƪ³êéDas_ æèá¢DêûCMn ÜLàÌÔÅÍeÄÈܵ·xɨ rolled ÞÌLÑÍ 0÷Mn àªÅàCMn ÜLÊÌ ¢ÄCø£³Éå«Èá¢ÍÈ¢D0.05÷`0.15÷Mn Áɺ¢¸·éDµ©µC473 K ÌÄÈܵðs¤±ÆÅC à Ì 0.2 ÷ Ï Í Í C Mn Ê Ì Á Æ Æ à É å · é ª C Mn ÜLàÅͳÌиݪ³êCLѪåÉ 6 æ AZ31 }OlVEà³ÂÌø£Á«ÉyÚ· Mn ÊÌe¿ Fig. 5 415 Tensile properties of rolled and annealed specimens. üã·éD½¾µCeàÆàÄÈܵ·xÌã¸Éº¢ »±ªeå»·é½ßC773 K ÅÍÇÌàÅàLÑ͸ ·éDÁÉeå»Ìµ¢ 0÷Mn àÆÙí±¬·ª¶¶ ½ 0.05÷Mn, 0.1÷Mn àÅÍLѪåÉặéD Mn ÜLàÌÔÅLÑðär·éÆCSÄÌÄÈܵ·x ɨ¢ÄC0.15÷Mn YÁàªÅà¢lð¦·D±Ìæ ¤ÉCMn ͽÊYÁµÄà@BI«¿Íü㹸C«É ÖµÄÍặ é½ßCÏH«ª«³ê êÎ Mn ÊÍ 0.15÷öxÅ\ªÅ éƾ¦éD 4. l 4.1 @ Mn ÜLÊÆxÌÖW Fig. 6 ÉÄÈܵÞÌ 0.2÷ÏÍ̱a˶«ð¦·D¢ ¸êÌàà Hall_Petch ¥É]Á½±a˶«ð¦·ªC 0÷Mn àÌÝ¼Ì Mn ÜLàÆÙÈé±a˶«ð¦ Fig. 6 Grain size dependencies of 0.2÷ proof stress of an nealed specimens. ·DMn ÜLàÌÔÅͱa˶«ÍÙÚ¯lÌXü𦠷D± ±ÅC0÷Mn àÆ 0.15÷Mn`0.5÷Mn àð 473 K ÅÄÈܵµ½¿Ì 0.2÷ÏÍ(îóÌÊu)ðär ·éÆñ 50 MPa Ì·ª éDºäç10)àCAZ31 }OlV EàoµÞÉ 0.3÷Mn ðYÁ·é±ÆÅCÏͪ 50 MPa ÙÇüã·é±ÆðñµÄ¢éD±Ì¤¿÷×»É æé»ÍCñ 25 MPa öxÅCcèÌ 25 MPa Í Mn ÌÅ n é¢Í Al_Mn »¨ÌÍoÉæé»Å éÆl¦ç êéDFig. 7 É 0.15÷Mn àÉ 623 K_1 h ÌÄÈܵðs Á½ãC2÷ÌY«Ð¸ÝðÁ¦½¿Ì TEM ð¦·D dqüÍq2 1 10r©çü˵CêʪGbWIÆÈéæ¤ Éµ½DÊ^ÉÍ 400 nm öÌ÷×È Al_Mn n»¨ª ¶ÝµÄ¢éªC»ÌÜíèÉÍϵ½]ÊÍÏ@³êÈ ¢DܽC±Ì»¨ÍCªÈ»ÌÔuàL¢±Æ© çC]ÊÌs~ßøÊÍÙÆñÇÈ¢àÌÆl¦çêéD µ½ªÁÄCOqµ½ Mn ÜLÌL³ÉNö·é 25 MPa Ì 0.2÷ÏÍÌá¢ÍCMn ÌÅn»ÉæéàÌÆl¦ç êéDܽCMg_Al_Mn 3 ³nóÔ}11) ©çÞ·éÆ Mg_3÷Al àÉÅn·é Mn Í 0.1`0.2÷öxÆl¦ç êéDÈã̱ÆÆø£±Ê©çCMn ÉæéxÌü Fig. 7 TEM image of rolled specimen of 0.15÷Mn alloy after tensile test up to 2÷ strain. The specimen was annealed at 623 K for 1 h before tensile test. 416 ú { à ® w ï (2004) æ 68 ª ãÍCÜLÊ 0.15÷öxÜÅÅC»êÈã Mn ÊðÁ³ É 0÷Mn, 0.15÷Mn, 0.25÷Mn ¨æÑ 0.5÷Mn àð 623 ¹Äà Al_Mn n»¨ª»o·éÌÝÅC³çÈéxÌ K ÅÄÈܵµ½¿ÌjfãÌõw°÷¾Ê^ð¦·D üãÍB¬µ¾È¢àÌÆl¦çêéD 0÷Mn àÅÍeåÈ»±àÉå«Èo»ª¶¶C»± ±±ÅCMÔ³ãÄÈܵµ½ Mg_1.2 mass÷Mn à ©çj󪶶éD0.15÷Mn àÅà÷×Èo»ª½© Æ}OlVEÌ 0.2÷ÏÍðär·éÆC»ê¼ê 125 çêéªC»ÌªzÍêlÅärIÏêÉÏ`·éD0.25÷ MPa12) ¨æÑ 69 MPa13) Å éD·Èí¿C1.2÷Mn ÌÅ Mn à¨æÑ 0.5÷Mn àÅÍCø£Ï`ɶ¶½Æ nÉæéxÌã¸Í 56 MPa Å éDÅn»ÉæéÏ` víêéÏ`ѪÏ@³êCjóà±ÌÏ`ÑÉÁĶ¶ ï R Í n ¿ ´ q Z x Ì 1 / 2 æ É ä á · é14) ± Æ © ç C éD±êÍC¼àɨ¢Ä³É±ü³ê½¹ñfÑÆ 0.15÷Mn ðÜÞ±ÆÉæéÍÌÁªÍñ 20 MPa Æ© ¯lÌàÌÆl¦çêéDܽC±ÌÏ`ÑÍ 0.25÷Mn ÏàçêCOqÌÅn»ÉæéàÌÆèµ½ÍÌÁ àæè 0.5÷Mn àÌûª¾ÄÉ»êéD¼àÅÏ`Ñ ªÉߢlª¾çêéD ª¶¶é´ö;ç©ÅÍÈ¢ªCgUÌx¢ Mn Ì}N 4.2 Mn ÜLÊÆ«ÌÖW IÈZxÒÍÉæéêÌdîÉNö·é±Æªl¦çê éD±Ìæ¤ÈÏ`ÑÅÍC¼Ìªæèà½ÌÏ`ðó eàÉ 623 K Å 1 h ÄÈܵµ½ÊC0.15÷Mn à ¯éDµ½ªÁÄCÏêÏ`·é 0.15÷Mn àÌLѪŠÅÍ 29÷ÌärIå«ÈLÑ𦵽D}OlVEà àC¾ÄÈÏ`Ñð`¬·é 0.5÷Mn àÌLÑͬ Ì«ÉÖµÄ Koike ç15) ÍCº·ÅàêÊ©çñêÊÖ ³ÈéàÌÆl¦çêéDܽCã¢Ï`Ñð`¬·é Ìð··×誶¶C«ÌüãÉñ^·é±ÆðñµÄ 0.25÷Mn àÅÍCÇIÈÏ`ª 0.15÷Mn àæèÍ ¢éDFig. 8 É 0.15÷Mn à³ÞÉ 623 K_1 h ÌÄÈÜ ¶¶â·¢àÌÌC0.5÷Mn àæ趶ßCLÑ µã 2÷ÌY«Ð¸ÝðÁ¦½¿Ì TEM ð¦·DüË Í¼àÌÔÉÈéàÌÆl¦çêéDȨC{¤Åp ²Í Fig. 7 ƯlÉq2 1 10rÅ éD(a)ÌÊ^©çCêÊg ¢½ Mn ÜLàÉÍsÌÞÅ©çêéæ¤È\~N [XɽsÈ]Êü̼ÉCêÊg[X©çOê½]Ê üཀྵçêéDܽCg ð(0002)ÉZbgµ½(b)ÌÊ ^ÅͱêçÌ]ÊüÍSÄÁ¦éD±Ìæ¤ÉC±Ì¿ ÅÍ a ]ÊÌêÊ©çñêÊÖÌð··×誶¶Ä¢é ±ÆªmF³ê½DKoike çÍ15)C±ÌñêÊ·×誱E ÅÌA±«ðÛ½ßɶ¶é compatibility ÍÉæé± ÆðñĵĢéDܽC¬Ñç16) Í compatibility ÍÉ æÁÄñêÊ·×誶¶éÍÍÍñ 4 mm Å é±Æðm FµÄ¢éD·Èí¿C±aª 8 mm ȺŠêÎC±àS ÌÅñêÊ·×誶¶C«ªüP³êéD0.15÷Mn àÌ 623 K ÄÈܵÞ̽ϱaÍñ 12 mm ÅC±àÌå ªÅñêÊ·×誮·éDêûC0÷Mn àÌ 623 K ÄÈܵÞ̱aÍñ 45 mm ÅC±Ìæ¤È¿ÅÍ »±ÅñêÊ·×誶¶¸CãíèÉo»Ï`ª¶ ¶C«ªáº·éDeàÆàC773 K ÌÄÈܵÉæ èCLѪặé±Æà¯lÌ´öÆl¦çêéDFig. 9 Fig. 8 TEM micrograph showing the occurrence of non_basal slip in rolled specimen of 0.15÷Mn alloy subsequently an nealed at 623 K_ 1 h. The specimen is the same as in Fig. 7. Fig. 9 Microstructures of (a) 0÷Mn, (b) 0.15÷Mn, (c) 0.25÷Mn and (d) 0.5÷Mn_ added AZ31 alloy samples an nealed at 623 K for 1 h. (A): microstructures near the fractured surface and (B): microstructures of uniformly elongated region. 6 æ AZ31 }OlVEà³ÂÌø£Á«ÉyÚ· Mn ÊÌe¿ I[_[Ì Al_Mn n»¨Í¶ÝµÈ©Á½ªC»Ì 417 OlVEàÂÌvXÁH@Éæé»i»ZpÌJv æ¤È»¨ª¶Ý·éêC«Í³çÉặé±Æª ¨æÑC·ªZpÈwåw 21 ¢I COE vOunC \z³êéD ubh´@\Þ¿n¬ÆÛ_`¬vÌÉæèsí ê½àÌÅ éD 5. ¾ ¶ £ {¤ÅÍi¿È AZ31 à³ÂÌì»ðÚIƵÄC Mn ʪ AZ31 à³ÂÌ~NgD¨æÑø£Á«Éy Ú·e¿ð²×½ÊCȺÌ_ð¾½D P ò Mn Í÷ÊÅàÄÈ̱ܵ¬·ð}§·éªC Mn ÜLʪ 0.05`0.1÷ÌêC773 K_1 h ÌÄÈܵŠÍÙí±¬·ª¶¶éD0.15÷Èã Mn ÊðÁ³¹ÄàC ±¬·}§øÊÉå·Í¶¶È¢DÙí±¬·ð¶¶³¹¸ »±eå»ð}§·é½ßÉÍCMn ÜLÊÍ 0.15÷öx Å\ªÅ éD Q ò ³ÞÌø£³C0.2÷ÏÍÍC0.05÷Mn àÅ Í 0÷Mn àæè¢lð¦·D0.1÷Èã Mn Êðâ· Æ Al_Mn »¨Ì»oʪ½ÈéªC±êçÍxÉñ ^µÈ¢½ßCø£³C0.2÷ÏÍÍüãµÈ¢D R ò ³ÞÌLÑÍ 0.15÷Mn àªÅà¢DÄÈܵ µ½ 0÷Mn àÅÍC»±e廪µCo»ª¶ µâ·¢½ßC«ÍặéD Mn ÜLàÅÍCø £Ï`ÉCÏ`ÑÌæ¤ÈÇÏ`Ì檶·é½ßC «ÍặéD S ò 0.15÷Mn àÍC\ªÈxð¿C«ÉDêé ÆÆàÉ»¨Ì»oÊàÈC{¢àÌ Mn ÊÆ µÄÅKÅ éD {¤ÌêÍnæV¶R\[VA¤JÆu} 1) R. S. Busk: Magnesium Products Design, (Japan Light Metal As sociation, Tokyo, 1988) pp. 268_270. 2) S. Kamado: Handbook of Advanced Magnesium Technology, (Kal los Publishing Co. Ltd., Tokyo, 2000) pp. 155_ 159. 3) E. F. Emley: Principles of Magnesium Technology, (Pergamon press, Oxford, 1966) pp. 180_ 181. 4) K. Ohtoshi and M. Katsuta: J. JILM 51(2001) 534_538. 5) ASTM B90, B91, B107, B275. 37. 6) G. Omori, S. Matsuo and H. Asada: J. JILM 17(1967) 32_ 7) G. Omori: J. JILM 26(1976) 336_ 346. 8) P. Klimanek and A. P äotzsch: Mater. Sci. Eng. A324(2002) 145_ 150. 9) M. S. Yong and S. C. V. Lim: Proc. 6th Int. Conf. on Magnesium Alloys and Their Applications, (WILEY_VCH Verlag GmbH & Co. KGaA, Weinheim, 2004) pp. 260_265. 10) T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, S. Nagano and H. Sano: J. JILM 53(2003) 27_31. 11) E. F. Emley: Principles of Magnesium Technology, (Pergamon press, Oxford, 1966) p. 965. 12) E. A. Brandes and G. B. Brook: Smithells Metals Reference Book, Seventh edition, (Butterworth_Heinemann Ltd., Oxford, 1992) pp. 22_ 51_ 22_ 64. 13) S. Housh, B. Mikucki and A. Stevenson: ASM Handbook, ``Properties of Magnesium Alloys'', (ASM International, Ohio, 1990) pp. 480_ 516. 14) e.g. M. F. Ashby and D. R. H. Jones: Engineering Materials 1, Heinemann Ltd., Oxford, 1996) pp. 104_110. (Butterworth_ 15) J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. 2065. Maruyama and K. Higashi: Acta Mater. 51(2003) 2055_ 16) T. Kobayashi, J. Koike, Y. Yoshida, K. Kamado, M. Suzuki, K. Maruyama and Y. Kojima: J. Japan Inst. Metals 67(2003) 149_ 152.
© Copyright 2024 ExpyDoc