"!#%$&('*)+' , ,+-/.0"!12(&3#546879$:7;7;<=#>&?%&#@,AB)"CD7E; !>F?%2(7*G"&3#H7;I,AB%1J7<$:7;7;9G>A K -/LM8GNO 7&21&#&HP9Q"<7%#97;R!$O K $M-/S0T3# #?!: UD?#/=211!V WFX>F2"7!!;?1H&QQ8&5&G&HE>*#%Y WF(GN2 x(t) = v0 · t y(t) = 1.2 − 4.905 · t2 8! %# K !"79>-Z!?"X>Y q 1.2 ∼ tv y(tv ) = 0 = 1.2 − 4.905 · t2v ⇒ tv = 4.905 = 0.495 K [-1\5%^]_#"1">F&#` a]b&G%3c&=<N 2%#1&8G>3V de 1.5 ∼ x(tv ) = v0 · tv = 1.5 ⇒ v0 = tv = 3.03 K 7M-1\5%^]_UH2"">FXG`"&^]_##fP9g !>g&?#3V de vx (tv ) = v0 ∼ = 3.03 O% vy (tv ) =q9.81 · tv ∼ = 4.85 O% 2 2 ∼ v(tv ) = vx + vy = 5.72 K [-(T3%^]_UD&8>%5&=Q#787&^]bQ&17<&?!e#/=!>g&?#3V K 7;"&"GNO 7&21&#&H^]bQ178]b&?!e#/%3- ) ∼ 58◦ α = tan−1 ( 4.85 3.03 = "!#%$&('*)+' ) )-55;c;! #g;&&>&f7;;? F"H1>FXG`0&2% = 15 ms E Q81>O^]bX#"7 ◦ !:#?a]b#%A 2;7!:?[>v0 7Q%' e# 21&#& ;7;&# &9&30 #O"7<&461D[>0&%# 97e#^Y K -(7;!T3# #?!:"8#?g"^]bTF WFX>7!!;?1H&QQ8&Y x(t) = 15 · cos(30◦ ) · t y(t) = 8 + 15 · sin(30◦ ) · t − 4.905 · t2 ZN;2 t &%! 7%>&AS R e>% &X> Q# TF&Y v y(tv ) = 0 = 8 + 15 · sin(30◦ ) · tv − 4.905 · t2v ⇒ tv ∼ = 2.25 K $M-/ GNE7&G% &G&57&2/$%D7&21;!H#F"^]bT3 ◦ ∼ x(tv ) = 15 · cos(30 ) · tv = 29.3 K [-(T3%^]_UDa] %O&O1QQ&G17< ZN;2 t 8!"7;<#&&GgA <">%&H#`;Y t = s s ◦ 2 ∼ y(ts ) = 8 + 15 · sin(30 ) · ts − 4.905 · ts = 10.9 15∗sin(30◦ ) 9.81 A K 7M-/ T3&H7*G"&3#H9#+>% &2/??"& ◦ ∼ x(ts ) = 15 · cos(30 ) · ts = 9.93 K [-(T3%^]_UD&9g7;17/>&g&#`1R!?78O&O"X# O% ◦ ∼ vx (ts ) = v0x = 15 · cos(30 ) = 13.0 K 4G-(T3%^]_UD/>F&#`"79!%#" a] %T3 O% ◦ ∼ vx (tv ) = v0x = 15 · cos(30 ) = 13.0 d% vy (tsq ) = v0y − 9.81 · tv = 15 · sin(30◦ ) − 9.81 · tv ∼ = −14.6 d% v = vx2 + vy2 ∼ = 19.5 K Q3-(T3%^]_UDa] %Q&17<!%#1=^]bT3 ZN;2 ^]bQ&1GNE>#(7;/>F&#`/46?1 a]bG% α α= tan−1 ( vvxy ) ∼ = 48.3◦ "!#%$&('*)+' -/.0O! #& Uf!%#%(7D?;/!D?D>&g&G`E; g7?d;Q v0 !:#&^]_&3#%A WF<GN7Y α K -(;/GN?D7;H& &?Q;M*#?H7MX46&?#H! X# K $M-(a]bT3&E/7R#"# x(t) = v0 · cos(α) · t K [-(a]bT3&E/7R#1>*# y(t) = v0 · sin(α) · t − 12 g · t2 K 7M-(7;<!;&P46;&H7 E7 217;# QQ&G"78!&#& 9! 79> >%H87v!0!&"7α<!"7<XG Y v0 ·sinα ts tv = 2 · tv 7;#QQ&G;Y d = x(tv ) = v0 · cosα · 2 · K [-(7;! 3 46&07 %&#QQ&G;Y v0 f7 α v0 ·sinα g = 2 · v02 · g sinα·cosα g Fa] %&#D??H#QQGH7%:!;&& h = y(ts ) = v0 · sinα · v0 ·sinα g − 21 g · ( v0 ·sinα )2 = g 1 2 · v02 · K 4G-(!: T3&DQ&12"7&#"QQ&G/>%5H>&#Ha] %O&O;A d=3·h ⇒ sinα cosα ⇒ = 4 3 2 · v02 · ⇒ sinα·cosα g tan(α) = = 4 3 3 2 · v02 · sin2 α g ⇒ α = tan−1 ( 34 ) ∼ = 53.1◦ ⇒ 2 · cosα = 3 2 · sinα sin2 α g
© Copyright 2025 ExpyDoc