GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Stima dell'infiltrazione efficace nell'area alpina ed appenninica tramite dati aperti e software open source Mauro Rossi [1,2], Marco Donnini [1,2], Francesco Frondini [2], Fausto Guzzetti [1] 1 Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, Perugia, Italy 2 Università degli Studi di Perugia. Dipartimento di Fisica e Geologia. Perugia, Italy Montefalco (PG), 16 - 19 giugno 2014 GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 The question What is effective infiltration? The infiltration is one of the main processes that regulates the water cycle THE WATER CYCLE Effective Infiltration (EI): amount of meteoric water (mm/year) that infiltrates into the subsoil Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Estimation methods How can we estimate effective infiltration (EI)? Locally: using infiltrometers (in field) Over large areas: using direct or indirect methods Direct method Ratio between the volume of water discharged on average by the springs (Q) and their recharge area (A). EI = Q/A Central Italy (Boni and Bono 1982, Boni et al. 1986, Mastrorillo et al. 2009, Mastrorillo and Petitta 2010) Indirect methods: empirical coefficients (EIC = Effective Infiltration Coefficients). EI may be determined in terms of percentage of infiltration of actual precipitation, depending on the outcropping lithotypes. (Drogue 1971, McCuen 1989, Wanielista 1990, Bonacci and Magdalenić 1993, Savenije 1996, Wu et al. 1996, Bonacci 1999 and 2001, Civita 2005, Mastrorillo et al., 2009) Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Some problems Which problems occur in the EI estimation? Infiltrometers measures are rare and often they don’t represent accurately the spatial variation of infiltration processes. In direct method the accuracy when defining the boundaries of the recharge areas, as well as the availability of the spring discharges data, are critical. The results of the indirect methods are biased by the fact that the classification of recharge areas is solely based on mean lithological parameters in terms of permeability. Additionally, the effectiveness of these methods depends on the reliability of the temperature-precipitation parameters that are rare or altogether missing in mountains areas. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 New approach Description of the model The model here presented is based on a public domain software written in Java by McCabe and Markstrom (2007) from USGS. The code performs a monthly water balance analysis based on methods proposed by Thornthwaite (1948) and Mather (1978, 1979). The original code was modified to be (1) spatially distribuited, (2) to consider deep infiltration, (3) to estimate the results variability and (4) to use open data. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Open source approach Open source software and open data The model was developed using open source software and open data. The origina Java code was rewritted in R integrating in input different open data relative to precipitation, temperature, soil parameters and elevation. Preparing input data Original code Several spatial data were elaborated using GRASS and QGIS. Model engine Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Model inputs Which data are used in the model? Climatic data. World mean monthly temperature and monthly total precipitation values, from the Intergovernmental Panel on Climate Change (IPCC) website (0.5° grid resolution) Surface elevation data. World digital elevation model ASTER GDEM, from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA's Land Processes Distributed Active Center (LP DAAC) website (30 m grid resolution) Soil/Environmental data. Eurasian soil thematic data of the European Soil Database (v2.0), from the Joint Research Center (JRC) website (10 km grid resolution) Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Model inputs Which data are used in the model? The balance computation was performed into a Climatic data. World mean monthly temperature and monthly total 0.5° gridfrom (coincident to the IPCC Panel grid).on Climate precipitation values, the Intergovernmental Change (IPCC) website (0.5° grid resolution) Surface elevation data. World digital elevation model ASTER GDEM, from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA's Land Processes Distributed Active Center (LP DAAC) website (30 m grid resolution) Soil/Environmental data. Eurasian soil thematic data of the European Soil Database (v2.0), from the Joint Research Center (JRC) website (10 km grid resolution) Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Meteorological data IPCC Network Mean monthly temperature and precipitation from the IPCC Climate Research Unit (CRU) high resolution climate database were used in the model. Global data in the period 1961 – 1990 at 0.5° grid resolution. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Meteorological data IPCC Network Mean monthly temperature and precipitation from the IPCC Climate Research Unit (CRU) high resolution climate database were used in the model. Global data in the period 1961 – 1990 at 0.5° grid resolution. Input data variability was integrated in the model: Pmin = P – (UPmin × P) Pmax = P + (UPmax × P) UPmin = 0.75 and UPmax = 1 Tmin = T – UTmin Tmax = T + UTmax UTmin = 5°C and UTmax = 5°C Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Elevation data ASTER Global Digital Elevation Model World digital elevation model ASTER GDEM was used in the model. The computation was performed using 0.5° grid resolution (IPCC grid). For each cell the minimum, maximum and mean elevation value was calculated. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Water holding capacity JRC European Soil Database (ESDB) data Water holding capacity (WHC) was derived from different layers of the JRC (10 km grid resolution) Subsoil water capacity (AWC_SUB) Topsoil water capacity (AWC_TOP) Depth to rock (DR) Using the following equation: WCH = [ AWC_SUB × DR/2 ] + [ AWC_TOP × DR/2 ] WHC, AWC_SUB, AWC_TOP = mm/m; DR = m Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Water holding capacity JRC European Soil Database (ESDB) data For each cell of the IPCC grid (0.5°) we computed the minimum, the maximum and the mean values of WHC Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Runoff and direct runoff factor JRC European Soil Database (ESDB) data Direct runoff factor (drofrac) is the fraction of rainfall (Prain) that becomes direct runoff (DRO) in a month (Mccabe and Markstrom, 2007) DRO = Prain × drofrac The runoff factor (rfactor) parameter is the fraction of surplus (S) that becomes runoff (RO) in a month RO = S × rfactor We let drofrac and rfactor vary according to the dominant surface textural class (TEXT_SRF_DOM). For each cell of the 0.5° grid was computed the minimum, the maximum and the mean value of drofrac. Introduction Materials and methods Study area (Apennines) Description drofrac rfactor NA NA NA Non soils 0.025 0.350 No mineral texture (peat soils) 0.050 0.100 Coarse 0.010 0.500 Medium 0.025 0.450 Medium Fine 0.040 0.350 Fine 0.050 0.250 Very Fine 0.060 0.100 Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Elevation/Climatic - depending parameters ASTER GDEM – IPCC data The first computation of the water-balance model is the estimation of the amount P that is rain (Prain) or snow (Psnow), in millimetres. When T is below a specified threshold (Tsnow), all precipitation is considered to be snow. If T is greater than an additional threshold (Train), then all precipitation is considered to be rain. Psnow = P × [ ( Train – T ) / ( Train – Tsnow ) ] Prain then is computed as: Prain = P – Psnow About Train we assumed for it the constant value of 3.3°C and for Tsnow we considered: • Tsnow = - 10°C for elevation of 0 m, • Tsnow = - 1°C for elevation higher than 1000 m • for elevation between 0 and 1000 m we computed Tsnow as: Tsnow = Tsnow0 – (|Tsnow1000| - |Tsnow0|) × (elevation/1000) Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Elevation/Climatic - depending parameters ASTER GDEM – IPCC data Snow melt fraction (SMF) is another component of the water balance model and it is the fraction of snow storage (snostor) that melts in a month, and is calculated as: SMF = [ ( T – Tsonw ) / ( Train – Tsnow ) ] × meltmax T is the mean monthly temperature and meltmax is the maximum melt rate. In this work: • meltmax = 1 for elevation of 0 m, • meltmax = 0.5 for elevation of 1000 m • and for elevation between 0 and 1000 m is given by: meltmax = meltmax0 + (meltmax1000 - meltmax0) / (elevation × 1000) Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Elevation/Climatic - depending parameters ASTER GDEM – IPCC data Actual evapotranspiration (AET) is derived from potential evapotranspiration (PET), Ptotal, soil-mosture storage (ST) and soil-mosture storage withdrawal (STW). PET is calculated by using the Hamon equation (Hamon, 1961): PET Hamon = 13.97 × d × D2 × Wt where PET Hamon is PET in millimeters per month, d is the number of days in a month, D is the mean monthly hours of daylight in units of 12 hrs, and Wt is a saturated water vapor density term, in grams per cubic meter, calculated by: Wt = (4.95 × e0.062 × T ) / 100 where T is the mean monthly temperature in degrees Celsius (Hamon, 1961). When Ptotal for a month is less then PET, then AET is equal to Ptotal plus the amount of soil moisture that can be withdrawn from storage in the soil. Soil moisture storage withdrawal (STW) linearly decreases with decreasing ST such that as the soil becomes drier, water becomes more difficult to remove from the soil and less is avaiable for AET. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Implementation of deep storage JRC European Soil Database (ESDB) data We introduced the new parameter deepstor. It is the deep storage and is increased by water in the soil that infiltrates in depth in a month (PMHfact). It can be computed as: • PMHfact = WHC × PMH (this analysis) Description • PMHfact = remain × PMH PMH values (ranging from 0 to 1) were derived from hydrogeological type of parental material (PMH). remain(t+1) = remain(t) - PMHfact Introduction Materials and methods Study area (Apennines) NA PMH NA No information 0.7 Non soils 0.7 Porous - Stor. ~ Perm. + 0.9 Porous 2 Stor. ~ Perm. + 0.9 Porous 1 Stor. + Perm. + 0.9 Stor. - Perm. - 0.5 Hard. Stor. -- Perm. -- 0.3 Soft. Stor. -- Perm. -- 0.3 Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Hydrological balance computation In order to compute the mean, the minimum and the maximum value of remain and deepstor, was considered different combinations on the input data: Parameter Scenario 1 (Min) Scenario 2 (Mean) Scenario 3 (Max) T P WHC Elevation PMH drofrac DRO Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Central Apennine ID Mean annual ID EI (mm/y) Mean annual EI (mm/y) The test area S1 888 U4 183 S2 860 U6 281 U1 847 S5 803 G1 869 U7 245 U2 706 S6 888 U3 828 S7 365 G2 918 S8 568 S3 983 G5 533 S4 752 S9 637 G3 879 U8 778 G4 714 G6 280 U5 231 S10 290 (Boni et al., 1986) (Crampon et al., 1996) Introduction Materials and methods Carbonate rocks are a prominent feature and form important aquifers in central and southern Italy. A series of volcanic aquifers extend along the west side of the Apennines (Crampon et al., 1996). Boni and Bono (1982) and Boni et al. (1986) identified the main hydrogeological structures of Central Italy and for each structure evaluated EI (varing around 180 to 980 mm/year) knowing the discharge from springs and the boundaries of the recharge areas. Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 The Alps The new application area (Donnini et al., 2013) Roughly we could identify an inner crystalline core surrounded by carbonate and flyshoid complexes. The crystalline - metamorphic rocks are not very permeable except where fractures have (Crampon et al., 1996) been created by tectonism, while the main The hydrogeology of the Alps is highly variegate springs are located in calcareous complexes. because of its extremely complicated geology. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Main results Results obtained and their variability (in time and space) Model results consists: Plots on monthly variation of model parameters, Yearly synthesis maps of model parameters (min, max and mean values) The main infiltration parameters are: Effective Infiltration (EI) EI = Deep Storage (mm/year) Effective Infiltration Coefficient (EIC) EIC = (Soil storage + Deep storage) / Year precipitation Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Main results Results obtained and their variability (in time and space) The computation performed with the maximum values represents well the EI values for the test area (Apennines): Boni et al., 1986: EI min = 183 mm/year EI max = 983 mm/year EI mean = 638 mm/year This work: EI min = 257 mm/year EI max = 701 mm/year (Boni et al., 1986) EI mean = 427 mm/year Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Main results Results obtained and their variability (in time and space) The computation performed with the maximum values represents well the EIC values for the test area (Apennines): EIC min = 0.19 EIC max = 0.5 EIC mean = 0.32 EIC from Civita (2005) Hydrogeological % complex Units Carbonate rocks 50 - 100 0.5 - 1 Sandstone 5 - 25 0.05 - 2.5 Volcanic deposits 50 - 90 0.5 - 0.9 Intrusive rocks 15 - 35 0.15 - 0.35 Metamorphic rocks 5 - 20 0.05 -0. 2 Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Conclusions How this model could be useful The values obtained for the test area (Apennines) are comparable but some differences persist. We think that these differences are due by: the resolution of input data, different methods on the EI enstimation. Anyway we think that: the model here shown is useful for the estimation of the water balance components at regional scale, the use of open data and open source software allow the application in different areas of the Eurasian continent. Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions GIT – Geology and Information Technology 9a Riunione del Gruppo di Geologia informatica - Sezione della Società Geologica Italiana Montefalco (PG), 16 - 19 giugno 2014 Thank you for your attention Introduction Materials and methods Study area (Apennines) Study area (Alps) Results Conclusions
© Copyright 2024 ExpyDoc