U. Salvolini · T. Scarabino (Eds.) High-Field Brain MRI: Use in Clinical Practice U. Salvolini · T. Scarabino (Eds.) High Field Brain MRI Use in Clinical Practice With 156 Figures in 553 Parts Ugo Salvolini Neuroradiology and Department of Radiology University of Marche, Ancona, Italy Tommaso Scarabino Department of Neuroradiology, Scientific Institute “Casa Sollievo della Sofferenza” San Giovanni Rotondo (Fg), Italy Department of Radiology, ASL BA/1, Hospital of Andria (Ba), Italy ISBN 3-540-31775-9 Springer-Verlag Berlin Heidelberg New York Library of Congress Control Number: 2006921045 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media http://www.springer.com ˇ Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about the application of operative techniques and medications contained in this book. In every individual case the user must check such information by consulting the relevant literature. Editor: Dr. Ute Hesemann Desk Editor: Meike Stoeck Production Editor: Joachim W. Schmidt Cover design: eStudio Calamar, Spain Typesetting: FotoSatz Pfeifer GmbH, D-82166 Gräfelfing Printed on acid-free paper – 24/3151 – 5 4 3 2 1 0 Preface Since the advent of magnetic resonance (MR) imaging, systems with a magnetic field intensity of 1.5 tesla (T) have been deemed the gold standard for different clinical applications in all body areas. Ongoing advances in hardware and software have made these MR systems increasingly compact, powerful and versatile, leading to the development of higher magnetic field strength MR systems (3.0 T) for use in clinical practice and for research purposes. As usually occurs with a new technology, 3.0 T MR imaging units will probably follow the same development trends in the years to come. These new systems are currently in routine use mainly in the United States, but despite their high cost they are increasingly being adopted for research in much broader fields than those of conventional MR systems, and also in daily clinical practice for new, more sophisticated applications, bringing major practical benefits. Results to date have been encouraging with respect to previous experience with lower field strength MR systems and show that the many advantages of 3.0 T imaging (high signal, high resolution, high sensitivity, shorter imaging times, additional more advanced study procedures and enhanced diagnostic capacity) will ensure it becomes the future standard for morphofunctional study of the brain. When future technological advances have resolved some of the shortcomings of the new 3.0 T systems (inhomogeneity of the field, artefacts caused by susceptibility and chemical shift, elevated SAR, high costs), the current MR units will gradually be replaced by higher field strength MR imaging systems. The 3.0 T MR systems of the future will offer morphological investigation with high spatial, temporal and contrast resolution (essential for diagnosis) and will also yield physiological, metabolic and functional information, enhancing the diagnostic power of routine MR imaging in terms of sensitivity and specificity both in clinical practice and for applied research purposes. This volume includes papers on the techniques and semeiotics of morphofunctional cerebral imaging at 3.0 T (including reference to the advantages and drawbacks with respect to lower field strength MR systems) and the main clinical applications in neuroradiology. We are grateful to Dr. Silvia Modena for the language revision. Ugo Salvolini Tommaso Scarabino Contents I Techniques and Semeiotics 1 High-Field MRI and Safety: I. Installation A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 High-Field MRI and Safety: II. Utilization A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Static Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Translation and Rotation Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Varying Electric and Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Magnetic Field Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Radiofrequency Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Cryogenic Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Acoustic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 8 8 8 8 9 9 3 3.0 T MRI Diagnostic Features: Comparison with Lower Magnetic Fields T. Scarabino, G. M. Giannatempo, T. Popolizio, A. Simeone, A. Maggialetti, N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Comparison of 3.0 T and 1.5 T MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Diagnostic Features of 3.0 T MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Changes in Tissue Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Increased Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Increased Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 11 11 12 14 14 16 19 19 20 4 Standard 3.0 T MR Imaging T. Scarabino, F. Nemore, G. M. Giannatempo, A. Simeone, A. Maggialetti, N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 T1 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 T2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 FLAIR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VIII Contents 5 3.0 T MR Angiography T. Scarabino, T. Popolizio, A. Stranieri, A. Maggialetti, A. Carriero, N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 MRA Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 3.0 T MRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 35 36 45 49 6 3.0 T MR Spectroscopy M. Tosetti, T. Schirmer, V. d’Alesio, A. Di Costanzo, T. Scarabino . . . . . . 6.1 Spectroscopy Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Proton MRS in Neuroradiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 MR Spectroscopy – Quality and Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Spectroscopy Artefacts and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Magnetic Susceptibility and B0 and B1 Inhomogeneities . . . . . . . . . . . . . . . . 6.2.2 Chemical Shift Misregistration and J-Modulation Artefacts . . . . . . . . . . . . . 6.2.3 Magnetic Field Stability and Radiofrequency Coil Efficiency . . . . . . . . . . . . 6.3 MR Spectroscopy Quantification and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Advanced Spectroscopy Sequences and Applications . . . . . . . . . . . . . . . . . . 6.4.1 Spectral Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Fast Acquisition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.3 High Spatial Resolution Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 51 52 53 58 58 58 59 60 60 60 61 62 63 63 7 3.0 T Diffusion Studies T. Scarabino, F. Di Salle, F. Esposito, M. Tosetti, M. Armillotta, R. Agati, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Diffusion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 DWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.2 ADC Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.3 Diffusion Tensor Imaging and Tractography . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 3.0 T Diffusion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 67 68 70 70 71 75 8 Nerve Pathways with MR Tractography A. Cherubini, G. Luccichenti, F. Fasano, G. E. Hagberg, P. P´eran, F. Di Salle, F. Esposito, T. Scarabino, U. Sabatini . . . . . . . . . . . . . . . . . . . . . . 8.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Fibre Tracking Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Seed Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.3 Global Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Limitations of Tractography Techniques and Their Solutions . . . . . . . . . . . 8.4.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 Partial Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.3 Ultrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.4 Error Correction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.5 The Problem of Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 79 80 81 82 82 82 84 84 84 84 86 86 86 87 88 Contents 9 3.0 T Perfusion Studies G. M. Giannatempo, T. Scarabino, A. Simeone, T. Popolizio, A. Stranieri, M. Armillotta, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9.1 Exogenous Methods: Dynamic Susceptibility Contrast . . . . . . . . . . . . . . . 91 9.1.1 Cerebral Blood Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 9.1.2 Cerebral Blood Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.1.3 Mean Transit Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9.1.4 Time to Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9.2 High Field DSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.3 Endogenous Methods: Arterial Spin Labelling . . . . . . . . . . . . . . . . . . . . . . 100 9.4 High-Field ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.5 New Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10 High-Field Strength Functional MRI F. Di Salle, T. Scarabino, F. Esposito, A. Aragri, O. Santopaolo, A. Elefante, M. Cirillo, S. Cirillo, R. Elefante . . . . . . . . . . . . . . . . . . . . . . . 10.1 Effects of Field Strength on Spatial Resolution . . . . . . . . . . . . . . . . . . . . . 10.2 High-Field and Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 High-Field and BOLD Signal Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 High-Field, Noise and Data Processing Issues . . . . . . . . . . . . . . . . . . . . . . 10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 108 110 111 114 115 115 11 Recent Developments and Prospects in High-Field MR A. Bacci, R. Agati, M. Leonardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Parallel Imaging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 PROPELLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 New Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Integration Between Different Functional Techniques . . . . . . . . . . . . . . . 11.3.2 Molecular Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 117 120 124 127 127 129 131 12 3.0 T Brain MRI: A Pictorial Overview of the Most Interesting Sequences T. Popolizio, V. d’Alesio, T. Scarabino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 II Applications 13 High-Field Neuroimaging in Traumatic Brain Injury E. Giugni, G. Luccichenti, G. E. Hagberg, A. Cherubini, F. Fasano, U. Sabatini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 Rationale for MR Imaging of Patients with TBI . . . . . . . . . . . . . . . . . . . . . 13.1.1 Results Obtained with Low- and Medium-Field MR . . . . . . . . . . . . . . . . . 13.2 High-Field MR in Patients with TBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Advanced High-Field Techniques in TBI . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 169 170 170 171 174 14 3.0 T Imaging of Ischaemic Stroke T. Popolizio, A. Simeone, G. M. Giannatempo, A. Stranieri, M. Armillotta, T. Scarabino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 Neuropathological Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Neuroradiological Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Neuroradiological Diagnostic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.1 Standard MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 177 178 178 178 IX X Contents 14.3.2 MR Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.3 MR Perfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.4 Combined Diffusion and Perfusion Studies . . . . . . . . . . . . . . . . . . . . . . . . 14.3.5 MR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 3.0 T MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 181 181 181 184 185 185 15 High-Field Strength MRI (3.0 T or More) in White Matter Diseases A. Charil, M. Filippi, A. Falini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1 The Quest for Improved Image Quality and Shorter Acquisition Times 15.2 3.0 T MRI Studies of Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.1 Role of MRI in Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.2 Conventional MRI Techniques: Better Lesion Identification and Quantification at Higher Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.3 High-Field Magnetic Resonance Spectroscopy: Improved Measurements of Brain Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.4 Diffusion Tensor Imaging and Fibre Tractography . . . . . . . . . . . . . . . . . . 15.2.5 Anatomical and Physiological Imaging of the Optic Chiasm . . . . . . . . . . 15.2.6 Pathological Iron Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.7 The Future of High-Field Functional MRI in MS . . . . . . . . . . . . . . . . . . . . 15.2.8 Very High-Field MRI in MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Other White Matter Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 190 190 190 190 190 191 192 192 16 High-Field Neuroimaging in Parkinson’s Disease P. P´eran, G. Luccichenti, A. Cherubini, G. E. Hagberg, U. Sabatini . . . . . 16.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.1 Mesencephalic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.2 Basal Ganglia Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.3 Cortical Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 194 195 197 198 198 199 17 High-Field 3 T Imaging of Alzheimer Disease G. Luccichenti, P. P´eran, A. Cherubini, E. Giugni, T. Scarabino, G. E. Hagberg, U. Sabatini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1 Rationale in Imaging Neurodegenerative Diseases . . . . . . . . . . . . . . . . . . 17.2 Advanced Magnetic Resonance Techniques . . . . . . . . . . . . . . . . . . . . . . . . 17.3 Advantages of 3 T Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 201 203 204 205 18 3.0 T Imaging of Brain Tumours A. Di Costanzo, F. Trojsi, T. Popolizio, G. M. Giannatempo, A. Simeone, S. Pollice, D. Catapano, M. Tosetti, N. Maggialetti, V. A. d’Angelo, A. Carriero, U. Salvolini, G. Tedeschi, T. Scarabino . . . . . . . . . . . . . . . . . . 18.1 Glial Neoplasms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Meningiomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 Primary Central Nervous System Lymphomas . . . . . . . . . . . . . . . . . . . . . 18.4 Metastases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 208 214 216 218 219 219 186 186 186 186 187 Contents 19 Use of fMRI Activation Paradigms: A Presurgical Tool for Mapping Brain Function D. Cevolani, R. Agati, M. Leonardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1 The BOLD Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 3 T vs 1.5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3 The „Ideal“ Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4 Stimulating Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.6 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8.1 Motor Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8.2 Sensory Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8.3 Visual Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8.4 Language and Lateralization Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9 Presurgical Applications of fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.1 fMRI and Brain Tumours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.2 fMRI and Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.3 fMRI and AVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.4 fMRI and Other Pathologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.5 fMRI and Presurgical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.9.6 Our Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 221 221 222 222 223 223 224 225 225 226 227 227 231 231 231 231 232 232 233 233 233 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 XI List of Contributors Raffaele Agati Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Adriana Aragri Department of Neurological Sciences, II University of Naples, Naples, Italy Michele Armillotta Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Antonella Bacci Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Alessandro Carriero Radiologia, Universit`a di Novara, Novara, Italy Domenico Catapano Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Daniela Cevolani Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Arnaud Charil Neuroimaging Research Unit, Scientific Institute and University H San Raffaele, Milan, Italy Andrea Cherubini Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Mario Cirillo Department of Neurological Sciences, II University of Naples, Naples, Italy Sossio Cirillo Department of Neurological Sciences, II University of Naples, Naples, Italy Valentina d’Alesio Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Vincenzo A. d’Angelo Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Alfonso Di Costanzo Department of Health Sciences, University of Molise, Campobasso, Italy Francesco Di Salle Department of Radiology, University of Pisa, Pisa, Italy XIV List of Contrtributors Andrea Elefante Department of Neurological Sciences, II University of Naples, Naples, Italy Raffaele Elefante Department of Neurological Sciences, II University of Naples, Naples, Italy Fabrizio Esposito Department of Radiology, University of Pisa, Pisa, Italy Andrea Falini CERMAC, Scientific Institute and University H San Raffaele, Milan, Italy Fabrizio Fasano Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Massimo Filippi Neuroimaging Research Unit, Scientific Institute and University H San Raffaele, Milan, Italy Giuseppe M. Giannatempo Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Elisabetta Giugni U.O. Diagnostica per Immagini e Laboratorio di neuroimmagini funzionali, IRCCS Fondazione Santa Lucia, Rome, Italy Gisela E. Hagberg Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Marco Leonardi Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy Giacomo Luccichenti Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Alberto Maggialetti Radiologia, AUSL BA/1, Andria (Ba), Italy Nicola Maggialetti Medical Student, University of Bari, Bari, Italy Alberto Maiorana Servizio di Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Francesco Nemore Radiologia, AUSL BA/1, Andria (Ba), Italy Patrice P´eran Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Saverio Pollice Department of Radiology, University of Novara, Novara, Italy Teresa Popolizio Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy List of Contrtributors Umberto Sabatini Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy Ugo Salvolini Neuroradiologia, Universit`a Politecnica delle Marche, Ancona, Italy Ornella Santopaolo Department of Neurological Sciences, University of Pisa, Pisa, Italy Tommaso Scarabino Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy; and Dipartimento di Radiologia, AUSL BA/1, Andria (Ba), Italy Timo Schirmer G2 Healthcare Technologies, Applied Science Laboratory Europe, Monaco Anna Simeone Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Alessandra Stranieri Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy Gioacchino Tedeschi Department of Neurological Sciences, II University of Naples, Naples, Italy Michela Tosetti MR Laboratory, Stella Maris Scientific Institute, Calabrone, Pisa, Italy Francesca Trojsi Department of Neurological Sciences, II University of Naples, Naples, Italy XV
© Copyright 2024 ExpyDoc