Contents and Front Matter

U. Salvolini · T. Scarabino (Eds.)
High-Field Brain MRI: Use in Clinical Practice
U. Salvolini · T. Scarabino (Eds.)
High Field Brain MRI
Use in Clinical Practice
With 156 Figures in 553 Parts
Ugo Salvolini
Neuroradiology and Department of Radiology
University of Marche, Ancona, Italy
Tommaso Scarabino
Department of Neuroradiology, Scientific Institute “Casa Sollievo della Sofferenza”
San Giovanni Rotondo (Fg), Italy
Department of Radiology, ASL BA/1, Hospital of Andria (Ba), Italy
ISBN 3-540-31775-9 Springer-Verlag Berlin Heidelberg New York
Library of Congress Control Number: 2006921045
This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under
the German Copyright Law.
Springer is a part of Springer Science+Business Media
http://www.springer.com
ˇ Springer-Verlag Berlin Heidelberg 2006
Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
Product liability: The publishers cannot guarantee the accuracy of any information about the
application of operative techniques and medications contained in this book. In every individual
case the user must check such information by consulting the relevant literature.
Editor: Dr. Ute Hesemann
Desk Editor: Meike Stoeck
Production Editor: Joachim W. Schmidt
Cover design: eStudio Calamar, Spain
Typesetting: FotoSatz Pfeifer GmbH, D-82166 Gräfelfing
Printed on acid-free paper – 24/3151 – 5 4 3 2 1 0
Preface
Since the advent of magnetic resonance (MR) imaging, systems with a magnetic field
intensity of 1.5 tesla (T) have been deemed the gold standard for different clinical applications in all body areas. Ongoing advances in hardware and software have made
these MR systems increasingly compact, powerful and versatile, leading to the development of higher magnetic field strength MR systems (3.0 T) for use in clinical practice and for research purposes. As usually occurs with a new technology, 3.0 T MR
imaging units will probably follow the same development trends in the years to
come.
These new systems are currently in routine use mainly in the United States, but
despite their high cost they are increasingly being adopted for research in much broader fields than those of conventional MR systems, and also in daily clinical practice
for new, more sophisticated applications, bringing major practical benefits.
Results to date have been encouraging with respect to previous experience with
lower field strength MR systems and show that the many advantages of 3.0 T imaging
(high signal, high resolution, high sensitivity, shorter imaging times, additional
more advanced study procedures and enhanced diagnostic capacity) will ensure it
becomes the future standard for morphofunctional study of the brain.
When future technological advances have resolved some of the shortcomings of
the new 3.0 T systems (inhomogeneity of the field, artefacts caused by susceptibility
and chemical shift, elevated SAR, high costs), the current MR units will gradually be
replaced by higher field strength MR imaging systems.
The 3.0 T MR systems of the future will offer morphological investigation with
high spatial, temporal and contrast resolution (essential for diagnosis) and will also
yield physiological, metabolic and functional information, enhancing the diagnostic
power of routine MR imaging in terms of sensitivity and specificity both in clinical
practice and for applied research purposes.
This volume includes papers on the techniques and semeiotics of morphofunctional cerebral imaging at 3.0 T (including reference to the advantages and drawbacks with respect to lower field strength MR systems) and the main clinical applications in neuroradiology.
We are grateful to Dr. Silvia Modena for the language revision.
Ugo Salvolini
Tommaso Scarabino
Contents
I
Techniques and Semeiotics
1
High-Field MRI and Safety: I. Installation
A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta,
U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
High-Field MRI and Safety: II. Utilization
A. Maiorana, T. Scarabino, V. d’Alesio, M. Tosetti, M. Armillotta,
U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Static Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Translation and Rotation Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Varying Electric and Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Magnetic Field Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Radiofrequency Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Cryogenic Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Acoustic Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
6
6
8
8
8
8
9
9
3
3.0 T MRI Diagnostic Features: Comparison with Lower Magnetic Fields
T. Scarabino, G. M. Giannatempo, T. Popolizio, A. Simeone,
A. Maggialetti, N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Comparison of 3.0 T and 1.5 T MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Diagnostic Features of 3.0 T MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Changes in Tissue Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Increased Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Increased Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
11
11
12
14
14
16
19
19
20
4
Standard 3.0 T MR Imaging
T. Scarabino, F. Nemore, G. M. Giannatempo, A. Simeone, A. Maggialetti,
N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Pulse Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 T1 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 T2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 FLAIR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VIII
Contents
5
3.0 T MR Angiography
T. Scarabino, T. Popolizio, A. Stranieri, A. Maggialetti, A. Carriero,
N. Maggialetti, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 MRA Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 3.0 T MRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
35
36
45
49
6
3.0 T MR Spectroscopy
M. Tosetti, T. Schirmer, V. d’Alesio, A. Di Costanzo, T. Scarabino . . . . . .
6.1 Spectroscopy Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Proton MRS in Neuroradiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.2 MR Spectroscopy – Quality and Resolution . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Spectroscopy Artefacts and Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Magnetic Susceptibility and B0 and B1 Inhomogeneities . . . . . . . . . . . . . . . .
6.2.2 Chemical Shift Misregistration and J-Modulation Artefacts . . . . . . . . . . . . .
6.2.3 Magnetic Field Stability and Radiofrequency Coil Efficiency . . . . . . . . . . . .
6.3 MR Spectroscopy Quantification and Analysis . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Advanced Spectroscopy Sequences and Applications . . . . . . . . . . . . . . . . . .
6.4.1 Spectral Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Fast Acquisition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.3 High Spatial Resolution Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
51
52
53
58
58
58
59
60
60
60
61
62
63
63
7
3.0 T Diffusion Studies
T. Scarabino, F. Di Salle, F. Esposito, M. Tosetti, M. Armillotta,
R. Agati, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Diffusion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1 DWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2 ADC Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.3 Diffusion Tensor Imaging and Tractography . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 3.0 T Diffusion Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
67
68
70
70
71
75
8
Nerve Pathways with MR Tractography
A. Cherubini, G. Luccichenti, F. Fasano, G. E. Hagberg, P. P´eran,
F. Di Salle, F. Esposito, T. Scarabino, U. Sabatini . . . . . . . . . . . . . . . . . . . . . .
8.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 Fibre Tracking Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.1 Seed Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.2 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.3 Global Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 Limitations of Tractography Techniques and Their Solutions . . . . . . . . . . .
8.4.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.2 Partial Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.3 Ultrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.4 Error Correction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.5 The Problem of Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
79
80
81
82
82
82
84
84
84
84
86
86
86
87
88
Contents
9
3.0 T Perfusion Studies
G. M. Giannatempo, T. Scarabino, A. Simeone, T. Popolizio, A. Stranieri,
M. Armillotta, U. Salvolini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.1
Exogenous Methods: Dynamic Susceptibility Contrast . . . . . . . . . . . . . . . 91
9.1.1 Cerebral Blood Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1.2 Cerebral Blood Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.3 Mean Transit Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.1.4 Time to Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2
High Field DSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3
Endogenous Methods: Arterial Spin Labelling . . . . . . . . . . . . . . . . . . . . . . 100
9.4
High-Field ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.5
New Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.6
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10
High-Field Strength Functional MRI
F. Di Salle, T. Scarabino, F. Esposito, A. Aragri, O. Santopaolo,
A. Elefante, M. Cirillo, S. Cirillo, R. Elefante . . . . . . . . . . . . . . . . . . . . . . .
10.1 Effects of Field Strength on Spatial Resolution . . . . . . . . . . . . . . . . . . . . .
10.2 High-Field and Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 High-Field and BOLD Signal Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 High-Field, Noise and Data Processing Issues . . . . . . . . . . . . . . . . . . . . . .
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
107
108
110
111
114
115
115
11
Recent Developments and Prospects in High-Field MR
A. Bacci, R. Agati, M. Leonardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1.1 Parallel Imaging Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 PROPELLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 New Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3.1 Integration Between Different Functional Techniques . . . . . . . . . . . . . . .
11.3.2 Molecular Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117
117
120
124
127
127
129
131
12
3.0 T Brain MRI: A Pictorial Overview of the Most Interesting Sequences
T. Popolizio, V. d’Alesio, T. Scarabino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
II
Applications
13
High-Field Neuroimaging in Traumatic Brain Injury
E. Giugni, G. Luccichenti, G. E. Hagberg, A. Cherubini, F. Fasano,
U. Sabatini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1 Rationale for MR Imaging of Patients with TBI . . . . . . . . . . . . . . . . . . . . .
13.1.1 Results Obtained with Low- and Medium-Field MR . . . . . . . . . . . . . . . . .
13.2 High-Field MR in Patients with TBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 Advanced High-Field Techniques in TBI . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
169
169
170
170
171
174
14
3.0 T Imaging of Ischaemic Stroke
T. Popolizio, A. Simeone, G. M. Giannatempo, A. Stranieri,
M. Armillotta, T. Scarabino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.1 Neuropathological Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Neuroradiological Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Neuroradiological Diagnostic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.1 Standard MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
177
177
178
178
178
IX
X
Contents
14.3.2 MR Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.3 MR Perfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.4 Combined Diffusion and Perfusion Studies . . . . . . . . . . . . . . . . . . . . . . . .
14.3.5 MR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4 3.0 T MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
180
181
181
181
184
185
185
15
High-Field Strength MRI (3.0 T or More) in White Matter Diseases
A. Charil, M. Filippi, A. Falini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.1 The Quest for Improved Image Quality and Shorter Acquisition Times
15.2 3.0 T MRI Studies of Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.1 Role of MRI in Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.2 Conventional MRI Techniques: Better Lesion Identification and
Quantification at Higher Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.3 High-Field Magnetic Resonance Spectroscopy: Improved Measurements
of Brain Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.4 Diffusion Tensor Imaging and Fibre Tractography . . . . . . . . . . . . . . . . . .
15.2.5 Anatomical and Physiological Imaging of the Optic Chiasm . . . . . . . . . .
15.2.6 Pathological Iron Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.7 The Future of High-Field Functional MRI in MS . . . . . . . . . . . . . . . . . . . .
15.2.8 Very High-Field MRI in MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.3 Other White Matter Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
189
190
190
190
190
190
191
192
192
16
High-Field Neuroimaging in Parkinson’s Disease
P. P´eran, G. Luccichenti, A. Cherubini, G. E. Hagberg, U. Sabatini . . . . .
16.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.1 Mesencephalic Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.2 Basal Ganglia Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.3 Cortical Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
194
194
195
197
198
198
199
17
High-Field 3 T Imaging of Alzheimer Disease
G. Luccichenti, P. P´eran, A. Cherubini, E. Giugni, T. Scarabino,
G. E. Hagberg, U. Sabatini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.1 Rationale in Imaging Neurodegenerative Diseases . . . . . . . . . . . . . . . . . .
17.2 Advanced Magnetic Resonance Techniques . . . . . . . . . . . . . . . . . . . . . . . .
17.3 Advantages of 3 T Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201
201
203
204
205
18
3.0 T Imaging of Brain Tumours
A. Di Costanzo, F. Trojsi, T. Popolizio, G. M. Giannatempo, A. Simeone,
S. Pollice, D. Catapano, M. Tosetti, N. Maggialetti, V. A. d’Angelo,
A. Carriero, U. Salvolini, G. Tedeschi, T. Scarabino . . . . . . . . . . . . . . . . . .
18.1 Glial Neoplasms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2 Meningiomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.3 Primary Central Nervous System Lymphomas . . . . . . . . . . . . . . . . . . . . .
18.4 Metastases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
208
208
214
216
218
219
219
186
186
186
186
187
Contents
19
Use of fMRI Activation Paradigms: A Presurgical Tool for Mapping
Brain Function
D. Cevolani, R. Agati, M. Leonardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.1 The BOLD Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.2 3 T vs 1.5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.3 The „Ideal“ Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.4 Stimulating Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8.1 Motor Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8.2 Sensory Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8.3 Visual Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8.4 Language and Lateralization Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9 Presurgical Applications of fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.1 fMRI and Brain Tumours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.2 fMRI and Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.3 fMRI and AVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.4 fMRI and Other Pathologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.5 fMRI and Presurgical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9.6 Our Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221
221
221
222
222
223
223
224
225
225
226
227
227
231
231
231
231
232
232
233
233
233
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
XI
List of Contributors
Raffaele Agati
Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy
Adriana Aragri
Department of Neurological Sciences, II University of Naples, Naples, Italy
Michele Armillotta
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy
Antonella Bacci
Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy
Alessandro Carriero
Radiologia, Universit`a di Novara, Novara, Italy
Domenico Catapano
Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“,
San Giovanni Rotondo (Fg), Italy
Daniela Cevolani
Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy
Arnaud Charil
Neuroimaging Research Unit, Scientific Institute and University H San Raffaele,
Milan, Italy
Andrea Cherubini
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Mario Cirillo
Department of Neurological Sciences, II University of Naples, Naples, Italy
Sossio Cirillo
Department of Neurological Sciences, II University of Naples, Naples, Italy
Valentina d’Alesio
Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni Rotondo
(Fg), Italy
Vincenzo A. d’Angelo
Department of Neurosurgery, Scientific Institute „Casa Sollievo della Sofferenza“,
San Giovanni Rotondo (Fg), Italy
Alfonso Di Costanzo
Department of Health Sciences, University of Molise, Campobasso, Italy
Francesco Di Salle
Department of Radiology, University of Pisa, Pisa, Italy
XIV
List of Contrtributors
Andrea Elefante
Department of Neurological Sciences, II University of Naples, Naples, Italy
Raffaele Elefante
Department of Neurological Sciences, II University of Naples, Naples, Italy
Fabrizio Esposito
Department of Radiology, University of Pisa, Pisa, Italy
Andrea Falini
CERMAC, Scientific Institute and University H San Raffaele, Milan, Italy
Fabrizio Fasano
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Massimo Filippi
Neuroimaging Research Unit, Scientific Institute and University H San Raffaele,
Milan, Italy
Giuseppe M. Giannatempo
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy
Elisabetta Giugni
U.O. Diagnostica per Immagini e Laboratorio di neuroimmagini funzionali, IRCCS
Fondazione Santa Lucia, Rome, Italy
Gisela E. Hagberg
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Marco Leonardi
Servizio di Neuroradiologia, Ospedale Bellaria, Bologna, Italy
Giacomo Luccichenti
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Alberto Maggialetti
Radiologia, AUSL BA/1, Andria (Ba), Italy
Nicola Maggialetti
Medical Student, University of Bari, Bari, Italy
Alberto Maiorana
Servizio di Fisica Sanitaria, IRCCS „Casa Sollievo della Sofferenza“, San Giovanni
Rotondo (Fg), Italy
Francesco Nemore
Radiologia, AUSL BA/1, Andria (Ba), Italy
Patrice P´eran
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Saverio Pollice
Department of Radiology, University of Novara, Novara, Italy
Teresa Popolizio
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy
List of Contrtributors
Umberto Sabatini
Department of Radiology and Neuroimaging Laboratory, IRCCS Fondazione Santa
Lucia, Rome, Italy
Ugo Salvolini
Neuroradiologia, Universit`a Politecnica delle Marche, Ancona, Italy
Ornella Santopaolo
Department of Neurological Sciences, University of Pisa, Pisa, Italy
Tommaso Scarabino
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy; and Dipartimento di
Radiologia, AUSL BA/1, Andria (Ba), Italy
Timo Schirmer
G2 Healthcare Technologies, Applied Science Laboratory Europe, Monaco
Anna Simeone
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy
Alessandra Stranieri
Neuroradiologia, Dipartimento di Scienze Radiologiche, Istituto Scientifico „Casa
Sollievo della Sofferenza“, San Giovanni Rotondo (Fg), Italy
Gioacchino Tedeschi
Department of Neurological Sciences, II University of Naples, Naples, Italy
Michela Tosetti
MR Laboratory, Stella Maris Scientific Institute, Calabrone, Pisa, Italy
Francesca Trojsi
Department of Neurological Sciences, II University of Naples, Naples, Italy
XV