Microcalorimetri criogenici a transizione di fase superconduttiva per il futuro osservatorio spaziale in raggi X dell'ESA: ATHENA+ Dott. Luigi Piro, Claudio Macculi INAF/IAPS-Roma Via del Fosso del Cavaliere 100 Outline • Satellite mission + (very) brief scientific overview • High Energy italian TES Consortium • TES microcalorimeter: working Principle • The CryoLAB @ INAF/IAPS Roma • Past LAB2 results • Today LAB2 proposal Aim of our activity “The Hot and Energetic Universe” is the scientific theme recently (on December!) approved by the ESA SPC as the guideline for a Large mission to be flown in the next ESA slot (2028th) timeframe. Yesterday, ESA issued the “Call for mission concepts for the Largesize “L2” mission opportunity in ESA’s Science Programme” Æ ATHENA+ is a space mission proposal tailored on this scientific theme: the X-ray community will entry in the “Integral Field Spectroscopy” Å Our (INAF/IAPS) activity borned ~ 10 years ago around high resolution (dE/E<0.001@6keV) X-ray spectrometer-based mission proposal, but today I will present the activity related to the last one: the ATHENA+ X-IFU instrument! ATHENA+: Advanced Telescope for High ENergy Astrophysics Lo strumento criogenico di piano focale per spettroscopia X basato sui TES (1 kPixel) Il rivelatore per anticoincidenza e’ basato sui TES (L2 orbit) The science: High-z cluster, popIII by GRB, WHIM,… Science Drivers 5 arcmin The WHIM: the missing baryon issue CMB, BBN, SN-1A Æ ΩB ~ 0.05 0 < z ~< 2 only 50% has been observed 50% “should be” inside the WHIM (T ~ 106 K and ρWHIM/ρc ~ 20) The WHIM traces the DM, and it is the bridge among galaxies and clusters No signature in Ly-α (H neutral) in absorption since the medium is highly ionized, but in metals in soft-X band Æ E/dE > 1000. IT IS FUNDAMENTAL TO MAP AND TO DO HIGH RESOLUTION SPECTROSCOPY These regions are diffused and faint Æ TES detector I ∝ √BKG Æ satellite orbit!! min Branchini E. et al, ApJ.697:328-344,2009 Zappacosta et al., ApJ 753 137, 2012 Planck: collaboration , Ade P. et al, A&A, no. aa20194-12 c ESO 2012 November 19, 2012 First clusters • Extensive simulations/design and TES AC detector by Italian consortium by GEANT4 F(5”)=10-13 c.g.s x10 x6 Fe Kα With the reduced background ‐Fe Kα ‐Lower errors: σT/T = 3.6%; σZ/Z = 10% Cluster at the formation epoch (z=2) F=10-15 erg/cm2/s, A=0.2 arcmin2, kT=2.0 keV, Abundance 0.3, area=1m2,f/l=12m January 24, 2014 7 The microcalorimeter does not distinguish the energy deposition of a photon from the energy deposition of a particle. p Cryostat X-IFU CryoAC X-IFU Sviluppo dei TES per Raggi-X per Astrofisica in Italia Coordinamento (PI) Test e caratterizzazione dei prototipi INAF/IAPS Roma Realizzazione dei sensori Sviluppo dell’elettronica INFN-Università di Genova TAS (ex Laben) Milano CNR/IFN Roma Co-PI per la realizzazione dello strumento X-IFU per ATHENA+ insieme a IRAP (Francia), SRON(Olanda) How is energy measured? Direct detection: Equilibrium: The energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. At the time of the measurement, all of the deposited energy has become heat and the sensor is in thermal equilibrium. The ultimate energy resolution is determined by how well one can measure this change in temperature against a background of thermodynamically unavoidable temperature fluctuations. THIS IS CALORIMETRY. Eγ = hν From thermodynamics, at the thermal equilibrium, C, T0 Eγ ~ ΔQ = C⋅ΔT Æ ΔT ~ Eγ / C THIS IS CRYOGENIC MICRO-CALORIMETRY the total content energy is: ET ~ C⋅T0~NKT0 Æ N ~ C/K Energy of the bkg fluctuations σ(ET) ~ √N⋅KT0 ~ (KT2C)1/2 So, in microcalorimetry you compare σ(ET) with Eγ To decrease σ(ET) ~ (KT2C)1/2 Low temperature Æ Cryogenic detector Low heat capacity detector Æ micro detector TES microcalorimeter: working Principle …used from Microwave to soft-Gamma ray domain... α= T dR ⋅ R dT The X-ray micro calorimeter consists of a: • X-ray absorber (CABS) • temperature sensor • a thermal link (G) that connects the absorber to a heat bath A thermal bath to keep the absorber's temperature constant is necessary (restore the Working Point) Photon absorption Æ Absorber temperature change Æ Change in TESresistance. Since the TES is Voltage polarised Æ Change in current Weak currents (also < μA), low TES Resistance (~ 0.1 Ohm) Æ a special lownoise current amplifier is required Æ SQUID Amp. (Superconducting Quantum Interference Device Amplifier) Electro-Thermal Feedback – Energy Bandwidth – Energy Resolution C τ th = G τ ETF = α ⎡ τ th 1+ L Tb << TTES ⇒ τ ETF ≅ ⎛ T ⎞ L = ⋅ ⎢1 − ⎜⎜ b ⎟⎟ n ⎢ ⎝ TTES ⎠ ⎣ n ⎤ ⎥ ⎥⎦ τ th << τ th 1+ α n The Joule heating produced by Voltage bias PJ = V2/R: if T↑ Æ R↑ Æ PJ↓ Æ R↓ ⇒ Electro-Thermal stability Moreover: strong reduction of the decay time constant Æ fast signals Æ high count rate (bright sources or big area optics) En. Bandwidth EMAX Attenuation of thermal bath temperature fluctuations CT = 0.63 ⋅ α En. Resolution ΔEFWHM ≅ 2.35 ⋅ 1 α ⋅ kT 2C ≅ kTEMAX High En. BW Æ High C, Low alfa (wide transition) High En. Res. Æ low T Æ cryogenic detector Æ low C Æ high alfa (narrow transition) Trade off is necessary to reach the wanted performances Tb/TTES Curva Transizione TES Le nostre attivita’ in laboratorio all’INAF/IAPS Roma: Fisica atomica, Struttura della Materia, Elettronica, Calcolo Numerico ELETTRONICA CRIOGENICA TES: Criostato dry della Vericold inserito in una Farady Cage: Pulse tube cooler(3K); ADR a doppio stadio (35 mK) Pulse tube cooler (2.3 K) Mu-metal shield In questi anni …. …misure di transizione… …analisi degli impulsi, componenti termica ed atermica… …misure di rumore Johnson… Le attività proposte: misure e loro analisi dati Caratterizzazione di prototipi a singolo pixel di microcalorimetri TES (X-ray) per rivelatori di anticoincidenza (I-V, transizioni, spettri, noise….) Studio delle applicazioni astrofisiche e cosmologiche (necessita’ di adottare TES) Riferimenti: INAF/IAPS Roma Via del Fosso del Cavaliere, 100 (Tor Vergata, autobus 509 da Anagnina) [email protected] [email protected]
© Copyright 2024 ExpyDoc