Context-Aware Handover in HetNets Francesco Guidolin, Irene Pappalardo, Andrea Zanella, Michele Zorzi Dept. of Information Engineering, University of Padova, Italy EuCNC 2014, Bologna, Italy June 25, 2014 I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 1 / 16 Introduction Outline 1 Introduction I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 1 / 16 Introduction Introduction Macro BS Femto BS RSRP User γth TTT t I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 1 / 16 Introduction State of the Art Several Handover decision algorithms, based on: • user speed • received signal strength • interference • energy cost Most of them are heuristic. Moreover, they focus on a specific performance metrics (ping pong rate, handover failure rate, ...) I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 2 / 16 Introduction State of the Art Several Handover decision algorithms, based on: • user speed • received signal strength • interference • energy cost Most of them are heuristic. Moreover, they focus on a specific performance metrics (ping pong rate, handover failure rate, ...) I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 2 / 16 Introduction State of the Art Several Handover decision algorithms, based on: • user speed • received signal strength • interference • energy cost Most of them are heuristic. Moreover, they focus on a specific performance metrics (ping pong rate, handover failure rate, ...) I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 2 / 16 Introduction Our Contributions 1 Average Shannon capacity as a function of the TTT value, the user speed and the power profiles of Macro and Femto BSs 2 Optimization of the TTT parameter in different scenarios 3 Context-AWare (CAW) Handover Policy I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 3 / 16 System model Outline 2 System model I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 4 / 16 System model Reference scenario Propagation model: Ph (a) = Ptx h − 10ηh log(dh (a)/d0h ) , h ∈ {M, F } H R M-BS F-BS dMF δ c • γth = 0 dB • H defines the points where the TTT is triggered • R is computed from the power profiles of the BSs I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 4 / 16 System model User trajectory b Incidence angle: ω ∼ U [−π/2, π/2] T User States S ∈ {M, F , H}: TH R • connected to M-BS ω a F-BS c [green] [red] PM (a) PF (a) • connected to F-BS PF (a) PM (a) CF (a) = log2 1 + ℓ CM (a) = log2 1 + • Handing over from one to the other CH (a) = 0 [blue] I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 5 / 16 System model User trajectory b ℓ1 T Incidence angle: ω ∼ U [−π/2, π/2] User States S ∈ {M, F , H}: R • connected to M-BS ω a F-BS c [green] [red] PM (a) PF (a) • connected to F-BS PF (a) PM (a) CF (a) = log2 1 + ℓ CM (a) = log2 1 + • Handing over from one to the other CH (a) = 0 [blue] I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 5 / 16 System model Performance Metric ℓ a b ω c I. Pappalardo Trajectory Capacity Z X 1 Cℓ = CS (a)χa (S)da |ℓ| ℓ S∈{M,F ,H} ..but the incidence angle ω is unknown! Context-Aware Handover in HetNets EuCNC 2014 6 / 16 System model Performance Metric L x Trajectory Capacity Z X 1 CS (a)χa (S)da Cℓ = |ℓ| ℓ S∈{M,F ,H} a 0 ω ..but the incidence angle ω is unknown! c Average Capacity 2 C¯ = Lπ I. Pappalardo Z 0 π/2 Z L 0 X CS (a(x, ω))χa(x,ω) (S)dx dω S∈{M,F ,H} Context-Aware Handover in HetNets EuCNC 2014 6 / 16 System model Average Capacity Internal component C¯ = C¯int + C¯ext L x xmax a 0 X 2 C¯int = Lπ S∈{M,F ,H} Z 0 xmax = 2R cos ω π/2Z xmax CS (a)χa (S)dx dω 0 ω c I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 7 / 16 System model Average Capacity Internal component C¯ = C¯int + C¯ext L x xmax d+ 0 d− ω c a X 2 C¯int = Lπ S∈{M,F ,H} X 2 = Lπ S∈{M,F ,H} Z 0 xmax = 2R cos ω π/2Z xmax CS (a)χa (S)dx dω Z π/2Z 0 0 R χd (S)+χd+ (S) CS (a) √ − 1−(R/a)2 sin2 ω da dω R sin ω • χd± (M) = 1 if d± < vT • χd± (F ) = 1 • χd± (H) = 1 I. Pappalardo Context-Aware Handover in HetNets if d± > v (T + TH ) otherwise EuCNC 2014 7 / 16 System model Average Capacity External component L x C¯ = C¯int + C¯ext xmax a 0 X 2 C¯ext = Lπ S∈{M,F ,H} ω Z π/2Z 0 L CS (a)χa (S)dx dω xmax c I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 8 / 16 System model Average Capacity External component L xmax 0 x d+ C¯ = C¯int + C¯ext X 2 C¯ext = Lπ S∈{M,F ,H} ω c a X 2 = Lπ S∈{M,F ,H} Z π/2Z 0 Z π/2Z 0 L CS (a)χa (S)dx dω xmax √ R 2 +L2 CS (a) √ χd+ (S) 1−(R/a)2 sin2 ω da dω R if ω < ωT • χd+ (M) = 1 if d+ > v (T + TH ) • χd+ (F ) = 1 if d+ < vT • χd+ (H) = 1 otherwise I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 8 / 16 System model Average Capacity Final expression: Z 2 C¯ = Lπ S∈{M,F ,H} X 0 L R CS (a) G α(a, S), β(a, S), a da where • α and β are two angles, dependent on T ; • G (·) is a function computed from the incomplete elliptic integral of the first kind I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 9 / 16 Performance Evaluation Outline 3 Performance Evaluation I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 10 / 16 Performance Evaluation Average Capacity with ηM = 4 and ηF = 2 2.3 Avarege capacity [bit/s/Hz] 2.2 2.1 2 1.9 1.8 1.7 1.6 1 Km/h 20 Km/h 50 Km/h 100 Km/h Tmin 1.5 1.4 1.3 0 I. Pappalardo 0.5 1 T [s] Context-Aware Handover in HetNets 1.5 2 EuCNC 2014 10 / 16 Performance Evaluation vth [Km/h] Threshold Speeds vth 200 180 160 140 120 100 80 60 40 20 0 200 180 160 140 120 100 80 60 40 20 0 0.3 0.4 0.5 0.6 0.7 0.8 ηF/ηM 0.9 I. Pappalardo 1 3 3.5 Context-Aware Handover in HetNets 4 4.5 5 5.5 6 6.5 ηM EuCNC 2014 11 / 16 Performance Evaluation Contex-aware policy with fading1: Tmin 2.3 Avarege capacity [bit/s/Hz] 2.2 2.1 2 1.9 1.8 1.7 1.6 1 Km/h 20 Km/h 50 Km/h 100 Km/h Tmin 1.5 1.4 1.3 0 0.5 1 T [s] 1.5 2 1 K. Fukawa, H. Suzuki, Y. Tateishi, “Packet-Error-Rate Analysis Using Markov Models of the Signal-to-Interference Ratio for Mobile Packet Systems,” IEEE Transactions on Vehicular Technology, July 2012. I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 12 / 16 Performance Evaluation Policies comparison 1 Contex-AWare policy [CAW]: • Handover only when v < vth • setting T = Tmin 2 Minimum TTT policy [TMIN]: T = Tmin for every speed 3 Fixed TTT policy [FIX]: static value of T = 100 ms for every speed I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 13 / 16 Performance Evaluation Policies comparison with ηM = 4 and ηF = 2 1.9 CAW TMIN FIX Average Capacity bit/s/Hz 1.8 1.7 1.6 1.5 1.4 1.3 0 I. Pappalardo 20 40 60 80 100 Speed [Km/h] 120 Context-Aware Handover in HetNets 140 160 180 EuCNC 2014 14 / 16 Conclusions Outline 4 Conclusions I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 15 / 16 Conclusions Conclusions and Future Work Conclusions: • we have derived analytically the user capacity during the Handover process • we have shown that the impact of the context parameters on the optimal Handover policy is significant As future work: • extend the model to a scenario with multiple cells and users • exploit a machine-learning estimator to predict the context parameters I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 15 / 16 Conclusions Context-Aware Handover in HetNets Francesco Guidolin, Irene Pappalardo, Andrea Zanella, Michele Zorzi Dept. of Information Engineering, University of Padova, Italy EuCNC 2014, Bologna, Italy June 25, 2014 I. Pappalardo Context-Aware Handover in HetNets EuCNC 2014 16 / 16
© Copyright 2024 ExpyDoc