First Principles Computational Modelling of Solid/Liquid Interfaces for Solar Energy and Solar Fuels Mariachiara Pastore Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO) Istituto CNR di Scienze e Tecnologie Molecolari , I-06123 Perugia, Italy Workshop IUPAC Italia Rome, 8th April 2014 Dye-Sensitized Solar Cells Solar Photocatalytic Cells Introduction Multiscale modelling for higher efficiencies Modeling the molecule/semiconductor interface are of Dye–dye and dye-semiconductor interactions paramount importance in determining the overall device conversion efficiency. • Dye/catalyst anchoring: photocurrent, photovoltage and device stability • Dye/catalyst co-adsorption and aggregation: energy, electron/hole transfer, excited state quenching • Dynamical aspects •Explicit interaction with solvents and other cell components: photovoltage, electronic coupling, aggregation Pastore, M.; De Angelis, F. J. Phys. Chem. Lett. 2013, 4, 956 Methods, models, tools Optical/redox properties of standalone chromophores Ru-complexes Fully organic Semiconductor cluster models (TiO2)38 (TiO2)82 Bipyramidal nancorystal (TiO2)367 Dye/catalyst/semiconductor interfaces • Dye anchoring geometries (DFT , GGA) • Electronic structure (DFT/implicit solvation models) • CPMD simulations • Absorption spectra and electronic properties (Hybrid TDDFT) squaraine in explicit water (90 molecules) Modelling single dye adsorption on the TiO2 surface Adsorption modes on TiO2 (Newns-Anderson ) the LUMO broadening (lorentzian) of the TiO2adsorbed dye gives the electronic coupling Monodentate The anchoring mode and the extent of electronic coupling directly influence the cell performances: CB energy shift (Voc), electron injection and back recombination CB shift: 40% dye’s electrostatic potential, 60% ground state charge transfer Pastore, M.; De Angelis, F.,Phys. Chem. Chem. Phys., 2012, 14, 920 Ronca, E.; Pastore, M.; Belpassi, L.; Tarantelli, F.; De Angelis, F. Energy Environ. Sci. 2013, 6, 183 Bidentate Modelling multiple dye adsorption on the TiO2 surface: aggregation Dye Aggregation on TiO2: indoline dyes Dye-aggregation on the semiconductor surface is undesired (lower IPCE values) One rhodanin ring: strong aggregation 6-7% Two rhodanin rings: weak aggregation Uchida et al. Chem. Commun. 2003 - J. Am. Chem. Soc. 2004 Our strategy Selecting dimeric arrangements on a (TiO2)82 slab Optimizations of selected structures Evaluating the relative stability of the optimized dimers Optical response simulation for the preferred arrangments M. Pastore, F. De Angelis ACS Nano, 2010, 4, 556. 8-9% Structures Selection and Optical Rensponse D149 D102 Dimer D102 D149 (0,2) 0.0 4.5 (2,2) 3.9 0.0 MP2 relative stability (kcal/mol) Monomer Dimer Dye Exc. f Exc. D102 2.11 0.82 1.96 D149 2.06 0.80 1.97 Shift 0.15 0.22 0.08 0.06 *TDDFT(B3LYP)/6-31G* excitation energies in EtOH M. Pastore, F. De Angelis ACS Nano, 2010, 4, 556. Exp. Co-adsorption on TiO2: Modeling different dyes adsorption and FRET Exploiting FRET in DSCs Enhancing the light harvesting in the red by cosensitization of TiO2 surface with organic dyes having high NIR absorption Rate of FRET R06 1 kF = τ0 rA − rD 6 hν FRET e- Where the Foster radius is given by 9000 × ln(10)κ 2QD 4 R = F ( λ ) ε ( λ ) λ dλ D A ∫ 5 4 128π n NA 6 0 NIRERD (AS02) SD (C106) Hardin, B. E.; Sellinger, A.; Moehl, T.; Humphry-Baker, R.; Moser, J.-E.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; McGehee, M. D., J. Am. Chem Soc. 2011, 133, 10662. Modeling FRET Förster type intramolecular energy transfer mediated by resonant dipoles Orientation Spectral factor Rate of FRET kF = 1 R06 τ0 rA − rD 6 Where the Foster radius is given by 9000 × ln(10)κ 2QD R = 128π 5 n 4 NA 6 0 overlap ∫ FD (λ)ε A (λ)λ dλ 4 with NA being the Avogadro’s number and n the refractive index of the medium. The dimensionless orientation factor κ2 can vary from 0 to 4 and is given by κ 2 = (cos γ − 3cosα cos β )2 For randomly oriented donoracceptor dipole moments, κ2 is equal to 2/3 Aggregates and FRET Modeling Strategy •Anchoring geometries onto the (TiO2)82 slab • Selecting the closest interacting ones (Ti active sites grid) +1.6 0.0 • Stability analysis • Geometrical orientation factor κ2 calculation +15.6 Possible co-adsorption schemes of AS02 sorrounded by four C106 molecules and relative energies in kcal/mol. Pastore, M.; De Angelis, F., J. Phys. Chem. Lett., 2011, 3, 2146−2153 Calculated Κ2, Föster Radii and FRET rates Pastore, M.; De Angelis, F., J. Phys. Chem. Lett., 2011, 3, 2146−2153 Modelling the complex cell environment Dye-Iodine-TiO2 Interactions Organic dyes with common I-/I3electrolyte generally show lower Voc compared to Ru-based dyeslower electron lifetimes 17 Å 11 Å -1.9 kcal/mol -4.3 kcal/mol Oxygen atoms are the preferred binding sites for I2 Pastore, M.; Mosconi, E; De Angelis, F. J. Phys. Chem. C 2012, 116, 5965 Planells, M.; Pelleja, L.; Clifford, J. N.; Pastore, M.; De Angelis, F.; Lopez, N.; -2.1 -2.5 Marder, S. R.; Palomares, E. Energy kcal/mol kcal/mol Pastore, M.; Mosconi, E; De Angelis, F. J. Phys. Chem. 2012,4,116, 5965 Environ. Sci.C2011, 1820 Dye-ionic additives-TiO2 Interactions Addition of Lithium salts improves the measured photocurrents 2 2π Nacc k = ∑k =1 | Vdk | ρ(ε k ) h d inj Calculated CB shift Li+ Li+ LUMO/CB states coupling Li+ Molecular packing amplifies the effect! Injection rate distribution Li+ Agrawal, S.; Leijtens, T.; Ronca, E., Pastore, M.; Snaith, H.; De Angelis, F. J. Mater. Chem. A, 2013, 1, 14675-14685 Effect of TiO2 protonation on the charge generation Surface protonation is usually employed for improving Jsc • CB donwnshift? • red-shifted dye absorption? -0.1 eV per H+ Ronca, E.; Marotta, G.; Pastore, M.; De Angelis, F. J. Phys. Chem. C 2014, In Press. DOI: 10.1021/jp5004853 Effect of TiO2 protonation on the charge generation Jsc (mA/cm2) Voc (V) FF NO 5.780 0.734 0.688 2.92 YES 7.500 0.713 0.699 3.74 Acidic treatment Eff. (%) Red-shifted absorption Max. Jsc gain for the the spectral red-shift is about 0.7 mA/cm2! 1H+ 5H+ d kinj = 2 2π Nacc | V | ∑ dk ρ (ε k ) k =1 h Increased electronic coupling improved charge generation Dye-Sensitized Photocatalytic Cells Forthcoming research activity: Short term goals • Stable anchoring on the SC in water and oxidative environment • Optimal dye/catalyst ratio on the surface • Optimal geometrical arrangement of the dye/catalyst assembly • Maximizing the forward energy and electron transfer processes • Minimizing excited state quenching and back recombination reactions Screening of novel anchoring groups stable in oxidative and water environments Simulating molecular/catalyst aggregates in model architectures and operative experimental conditions (full coverage) through QM/MM and MD simulations J. Am. Chem Soc. 2013, 135, 4219 Energy Environ. Sci. 2011, 4, 2389 Modelling dye/catalyst/TiO2 for water splitting (IrO2)562H2O W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, and T. E. Mallouk J. Am. Chem. Soc. 131, 2009, 926927 (TiO2)82 • Stability of the dye/catalys assemby on the TiO2 • Energy levels alignment • Electronic coupling for injection and regeneration Thanks to CLHYO Perugia Dr. Filippo De Angelis Enrico Ronca Gabriele Marotta Oxford University Prof. H. Snaith Financial support: FP7-NMP-2009 “SANS” - FP7-ENERGY-2010 “ESCORT” FP7-ICT-2011 “SUNFLOWER” CNR EFOR 2011 IIT-SEED 2009 …and you for your kind attention
© Copyright 2024 ExpyDoc