Perovskite module

Celle solari «dye» su larga area:
dall’organico alla perovskite
Aldo Di Carlo
CHOSE – Center for Hybrid and Organic Solar Energy
Polo Solare Organico – Regione Lazio
University of Rome «Tor Vergata» (Italy)
and
DYEPOWER, Rome
[email protected]
“New” manufacture processes
Conventional
Electronics
Conventional
semiconductor
industry
High temperature, doping,
vacuum
Large enterprises
Organic Electronics
Printing methods
Liquid deposition
SME and local production
NREL: Best Organic Research-Cell Efficiencies
Efficiency (%)
Perovskites
a-Si
DSC
Outline
• Stabilized Large Area Dye Solar Cell (DSC) modules for BIPV
• Large area Perovskite modules
C. Barolo, C. Bignozzi, R. Boaretto, T.M. Brown, L. Bonandini, E. Busatto, S. Caramori, D.
Colonna, G. De Angelis, A. Di Carlo, F. Giannini, A. Guglielmotti, A. Guidobaldi, A. Lanuti, A.
Lembo, D. Magistri, P. Mariani, V. Mirruzzo, S. Penna, S. Pietrantoni, D. Prencipe, A. Reale,
R. Riccitelli, A. Smarra, G. Soscia, R. Tagliaferro, L. Vesce, G. Viscardi
Dyepower (Italy)
DSC: Color, transparency and applications
The Pilot Production Line
• The semi-automated Pilot Production Line has been installed @ Dyepower R&D
Center (Fonte Nuova, Rome)
• It allows the production of the basic A4 size modules and of the large area
strings/panels (made with A4 modules composition)
• The pilot line is design for an overall throughput of 10.000 Sqm/Year.
• Automation permits the repeatability of the production processes. This will solve
the critical aspects for the industrialization route.
Colors …
Green
Bronze
Yellow
Orange
Red
Purple
0.0
Z907
Current (A)
-0.1
EL1
-0.2
EL2
-0.3
0
2
4
6
V [V]
8
10
12
14
Electr
Voc [V]
Isc [mA]
Jsc [mA/cm2]
Pmax [W]
Fill Factor
[%]
Efficiency [%]
EL1
13.49
223.37
8.77
1.83
61.51
3.8
EL2
13.1
306.5
12.0
2.32
57.7
4.8
How to scale up ?
Plug’n Scale (Dyepower patent)
+
+
+
=
Series connection
1
2
3
4
5
6
7
The first release of the string had 7 A4
modules connected in series. The output
power is 25 W/sqm with an overall
transparency of 25%.
Is DSC modules stable ? IEC 61646 tests
0.9
0.8
0.7
EDP01
0.6
0.5
0.4
0.3
0.2
0.1
1.0
0
50
100
150
200
250
300
Time (h)
1.0
Normalized Efficiency
0.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
Normalized Efficiency
Normalized Efficiency
1.0
0
0.8
Dye = Z907
50
100
150
Time (hours)
F538C553
F532C547
0.6
0.4
0.2
0.0
0
200
400
600
Time (hours)
800
1000
200
DEff < 5%
250
300
Stable electrolyte: EDP01
5
85 oC stress
Polymeric
Electrolyte
Eff (%)
4
3
2
Electrolyte
1
0
0
200
400 600
Time (h)
HSE
Ionic Liquid - SoventFree
EDP01 (Dyepower)
800
1000
A new electrolyte (EDP01) have been
developed to stabilize the cell without
compromising the module efficiency.
Results are on master plates
Thixotropic gel
Liquid
Hybrid organic/inorganic perovskite
from cells to modules
F. Matteocci, S. Razza, F. Di Giacomo, S. Casaluci, A. Palma, N.
Yagobinia, T. M. Brown, A. Reale, F. Brunetti, A. D’Epifanio, S. Licoccia,
A. Di Carlo
NREL: Best Organic Research-Cell Efficiencies
Efficiency (%)
(Seok II HOPV 2014) 20.4%
a-Si
The breaktrough in Hybrid Organic/inorganc solar cell is due to a «new»
material: Organometal trihalide perovskite
In two years Perovskite Solar Cells have improved from 9.7 % up to 20.4 % !
A similar progress has never been observer in photovoltaic technology
Organometal trihalide Perovskite
Organometal trihalide perovskite
A=CH3NH3(+) ;
B= Pb(+);
X= I(-), Cl(-), Br(-)
A
B
C
CH3NH3-Pb-I3
CH3NH3-Pb-I3
Direct band gap of 1.51 eV for CH3NH3PbI3 Perovskite
Baikie et al. J. Mater. Chem. A, 2013, 1, 5628
Mesostructured vs Planar
 Easier perovskite grown
 Better charge collection
 Easier perovskite grown
 Better charge transport
 Less production step
 No sintering step
Boix, P. P., et al.Materials Today 17(1): 16-23.
Perovskite solar cells (small area)
J [mA/cm2]
0.0
0
-5
0.2
V(V)
0.4
0.6
0.8
VOC= 0.81V
JSC= -18.163mA/cm^2
-10
FF= 71.3%
PCE= 10.5%
Area= 0.1cm^2
-15
HTM = P3HT
-20
Di Giacomo, et al. J. Power Sources 251, 152 (2014), A. Di Carlo et al. Proc. IEEE Nanotechnology 2014
Perovskite module: Fabrication 1.0
Typical fabrication process
F. Matteocci, et al Phys. Chem. Chem. Phys., 16 (2014) 3918
Perovskite modules 1.0
V(V)
1
2
3
0
-5
-10
-15
-20
-25
-30
-35
-40
4
5
Eff.= 5.1%
Module
Best Cell
Stability
6
5
Efficiency (%)
I [mA]
0
October 2013
4
3
2
1
0
0
300
600
900
1200
Shelf Life Time (Hours)
F. Matteocci, et al Phys. Chem. Chem. Phys., 16 (2014) 3918
16.8cm2
Perovskite modules 2.0: optimized fab proc.
Voltage (V)
0.0
0
Current (mA)
-5
-10
-15
-20
0.5
1.0
1.5
2.0
2.5
3.0
Three CH3NH3PbI3-xClx hybrid perovskite modules
3.5
PCE: 7.7%
FF: 0.78
Jsc= 11.7mA/cm2
VOC=3.36V
Area= 11.52 cm
2
-25
-30
March 2014
Eff= 7.7%, 11.52 cm2
-35
IV characteristic of series-connected Perovskite based
module of Fig. 1. 1 SUN AM1.5 G illumination
Eff= 13%, 10.1 cm2
June 2014
A. Di Carlo et al. Proc. IEEE Nanotechnology 2014, F. Matteocci, et al. Prog. Photovoltaics submitted (2014)
Scaling-up of perovskite modules (166 cm2)
LBIC
S. Razza, et al. submitted (2014)
Conclusion
•
•
•
•
•
Most critical IEC 61646 tests (UV, HF, DH) have been successfully passed with DSC
modules produces on pilot line
Dye Solar cells are quite mature to enter into the market (BIPV and indoor).
Open issue: improve (stable) efficiency, stable Green/Blue dyes are still missing
Hybrid Perovskite materials are becoming very important for solution process
optoelectronics (results on Photodiodes are very promising)
We have demonstrated that such technology can be scale to module size
dimension
–
–
–
–
•
Q2/2013 Eff. 5.1% (CHOSE - Italy)
Q1/2014 Eff. 8.6% (KRITC - Korea)
Q2/2014 Eff. 13.0 % (CHOSE - Italy)
…..
Open questions:
– Pb-free perovskite
– Stability
PRIN
DSSCX
Funds
CHEETAH
FP7
DESTINY
GO-NEXT