Nano Res. Electronic Supplementary Material Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes Stefano Diodati1, Luciano Pandolfo2, Andrea Caneschi3, Stefano Gialanella4, and Silvia Gross1,2 () 1 Istituto per l’Energetica e le Interfasi, IENI-CNR and INSTM, UdR di Padova, via Marzolo, 1, I-35131, Padova, Italy Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo, 1, I-35131, Padova, Italy 3 Laboratory of Molecular Magnetism, LAMM Dipartimento di Chimica e UdR INSTM di Firenze, Polo Scientifico, Via della Lastruccia, 3, 50019, Sesto Fiorentino (FI), Italy 4 Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, via Mesiano 77, I-38123, Trento, Italy 2 Supporting information to DOI 10.1007/s12274-014-0466-3 Figure S1 XRPD patterns of (a) R-Zn001-24, (b) R-Zn002-2 and (c) R-Zn002-4. Address correspondence to [email protected] Nano Res. Figure S2 XRPD patterns of ZnFe2O4 synthesized through the (a) hydrothermal and (b) reflux routes. Figure S3 Plotting of the electron maps obtained by applying the MEEM algorithm on the H-Co001 cobalt spinel XRPD pattern. Lighter coloured areas are indicative of higher electron density. | www.editorialmanager.com/nare/default.asp Nano Res. Figure S4 XRPD patterns of MnFe2O4 samples obtained with different synthetic parameters (see Table 1): (a) H-Mn007, (b) H-Mn012-1, (c) H-Mn012-2, (d) H-Mn012-4, (e) H-Mn013 and (f) H-Mn014. Figure S5 SAED for H-Co007. Figure S6 SAED for H-Mn007. www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research Nano Res. Figure S7 SAED for H-Ni007. Figure S8 SAED for H-Zn001. Figure S9 SAED for R-Zn002-2. | www.editorialmanager.com/nare/default.asp Nano Res. Figure S10 SAED for R-Zn002-4. Figure S11 XRPD pattern for H-Ni001 (top, black line) and reflection positions for NiFe2O4 (blue), Ni1.43Fe1.7O4 (green) and NiO (red). Table S1 Crystal cell parameters for NiFe2O4, Ni1.43Fe1.7O4 and NiO Compound Crystal cell Space group Crystal cell parameters NiFe2O4 Cubic Fd 3¯m (227) a = b = c = 8.3379 Å; α = β = γ = 90° Ni1.43Fe1.7O4 Cubic Fd 3¯m (227) a = b = c = 8.3473 Å; α = β = γ = 90° NiO Cubic Fm3¯m (225) a = b = c = 4.1762 Å; α = β = γ = 90° www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research Nano Res. Figure S12 XPS Fe2p peaks in (a) R-Zn002-4, (b) H-Zn002, (c) H-Ni007, (d) H-Mn007 and (e) H-Co007 (B.E. values corrected for charging effects). Figure S13 XPS Mn2p peak in H-Mn007 (B.E. values corrected for charging effects). Figure S14 XPS Ni2p peak in H-Ni007 (B.E. values corrected for charging effects). | www.editorialmanager.com/nare/default.asp Nano Res. Figure S15 XPS Zn2p peak in H-Zn002 (B.E. values corrected for charging effects). Figure S16 XPS Zn2p peak in R-Zn002-4 (B.E. values corrected for charging effects). www.theNanoResearch.com∣www.Springer.com/journal/12274 | Nano Research
© Copyright 2024 ExpyDoc