Year 11, number 4 - Mijnbouwkundige Vereeniging

Natural
Resource
Jaargang 11 - Nummer 4
El Cerro Rico
Gouden Ereleden
The energy industry has it all!
Officieel Orgaan van de Mijnbouwkundige Vereeniging en
Technische Aardwetenschappen
Barbaraborrels: 4 sep, 2 okt, 6 nov
Into ice, snow, sleet,
blizzards, and where day
never becomes night.
We’re going there and beyond.
Careers in Engineering, Science & Business
From Alaska to Azerbaijan, from the Gulf of
Mexico to China, we have a vast operation
comprising nearly 98,000 people, exploration
and production interests in 29 countries,
11 refineries, 80 ships and thousands of retail
outlets. Producing more than 3.8 million barrels
of oil equivalent every day, we bring energy
from the very depths of the earth to virtually
every corner of the globe. And as demand
grows, we are going further and deeper
to secure the energy that the world needs.
We’re going there and want you to come too.
Look beyond the limits.
BP is an equal opportunity employer.
www.bp.com/ukgraduates
Inside Natural Resource
Editorial..........................................................................................................4
Presidential.....................................................................................................4
Bestuur belicht...............................................................................................5
Een ideale tijdmachine.................................................................................6
The raw material..........................................................................................10
Wireline logging in Harlingen...................................................................11
The energy industry has it all....................................................................12
CSM vs Delft tournament.........................................................................17
Gouden ereleden.........................................................................................18
Mijnbouwtool..............................................................................................20
El cerro rico de Potosi...............................................................................22
Fotopagina....................................................................................................27
MSc thesis.....................................................................................................28
European Mining Course...........................................................................31
Miners in the movies..................................................................................32
The bright side of technology..................................................................34
Weber puzzle................................................................................................37
Incorrect adresses.......................................................................................38
Graduation Subjects...................................................................................39
MV Agenda..................................................................................................39
Colofon.........................................................................................................39
Pagina 17: Mijnbouwers sporten tegen
Mijnbouwers in Engeland
Pagina 34: Higher oil recovery
rates achieved by optimising water
floods
Pagina 32: Pacelli Zitha and Pascal de Smidt
as Jules and Vincent in Pulp Fiction
3
Editorial
Dear readers,
I would like to present you the last Natural Resource of this
volume, issue 4. Once again this issue is filled up with everything
you want to know about our study, the mining- and petroleum
industry and the Mijnbouwkundige Vereeniging.
As you certainly know the coming and going of big mining
projects not only forms the landscape of a region, but it also
has demographic influence, read all about such a project in the
article on El Cerro Rico; a mountain so rich in minerals that
it has been exploited since the 16th century. It made the city
nearby, Potosi, one of the biggest and richest in the world at a
certain moment.
Of course the students of our faculty did not sit still the
past months, Louis Carlier and Marlies Vasmel for example
went along with mining engineers to watch what’s involved in
wireline logging a salt cavern at Frisia. It’s another example of
the fact that when you are a student in mining- and petroleum
engineering there are endless possibilities to widen your view,
thanks to companies that are interested in you.
The Mijnbouwkundige Vereeniging also saw a nice end of
the year with major happenings such as the golden honorary
membership of ir. J.J. de Ruiter and the tournament against our
British colleagues at Camborne School of Mines.
You will also find the well known headings like the Weber
Puzzle, this issue Weber would like you to figure out how many
mice he hid in a students kitchen! The redaction would like to
thank Koen Weber for his contribution to the Natural Resource
this year by creating his amazing puzzles.
Koen Weber is not the only one who contributed a lot to the
Natural Resource. Nanne Boogaerdt and Sanne van der Plas did
a tremendous job in creating the Miners in the movies heading.
Thanks for all the great stories and the photo enhancements.
Furthermore, there is the board of the Mijnbouwkundige
Vereeniging which supported us all year long and all the
sponsors which helped in the financial sector.
I sure hope you enjoy this last issue of volume 11, as it also is
our last issue I would like to reflect on the past year. It was a
challenge, but above all a lot of fun to create all the issues this
year. We are proud on the results and we assure you that the
progress made in the past years will continue. The group of
students who will take over our job next year is already assigned
and they are full of new ideas, inspiration and motivation. ■
Have a nice summer and glück auf,
Robert-Jan Pielkenrood
Presidential
Dear Members and Extraordinary members,
Here it is: the Natural Resource summer edition! The one you
should not forget when you pack your bags for your holiday
destination. As time went incredibly fast these past few months,
I am happy to give you the latest highlights of our association.
The main event of the year was definitively the enrichment of
the association with a new Golden Honorary member. On May
24th over 180 miners visited the faculty, the streets of Delft
city’s center and ‘Het Noorden’ to royally entertain Hans de
Ruiter as new Golden Honorary member.
During several International Student Weeks last year the urge for
competition between the Delft and Camborne miners came up.
Old traditions should be revived and that is why a brave group
of Delft miners took the boat to a group of Islands called the
U.K. to compete in Rugby, Hockey, Football and Sea Swimming.
After this weekend there was so much enthusiasm that the date
for the tournament next year has already been chosen and the
practice sessions have already started.
One of the other successes this year was the event for the first
years. In recent years, the university has been putting more
and more emphasis on educational performance. The MV
encouraged the first year students to do well in their studies
4
by organizing a ‘Punten Paintball’ event. All the students who
matched the seventy percent progress requirement were able
to join the board in a painful body paint session and a drink
afterwards. They also joined the wall of fame in the MV room.
The prospects for the next year look promising. The number
of students coming to start the study Mijnbouw next year looks
to be even more than last year (50). Moreover, the economical
crisis which has had a significant impact on both the Resource
and Petroleum business has passed its deepest point and, while
the oil price is back to an acceptable value, we are waiting for
the resource prices to follow this example.
As a last feat of arms: our board just launched our brand new
MV website on www.mv.tudelft.nl with lots of interesting new
features!
Finally I would like to thank the Editors of the Natural Resource
for their fantastic work and pleasant cooperation last academic
year. ■
Glück Auf!
Chris den Boer
President der Mijnbouwkundige Vereeniging
Bestuur Belicht
Naam: Stephanie Lier
Functie: Onderwijs
Leeftijd: 22
Woonplaats: Delft
kken voor de
“ Kies 1 a 2 va
en pak die
vijfde periode
punten!”
-Waar heb jij je allemaal voor ingezet binnen de MV?
In mijn tweede jaar ben ik NoCo geweest, dat was erg leuk, ik zit
nu ook met 3 NoCo genoten in het bestuur. In mijn derde jaar
heb ik VNC gedaan tijdens het lustrum, dat jaar heb ik ook nog
de Mijnbouw Mannen Kalender gemaakt maar dat is eigenlijk
geen MV-commissie.
-Er worden altijd grappen gemaakt over je functie, het zou een typische
vrouwenfunctie zijn, ben je het hier mee eens omdat vrouwen er toch beter
in zijn of vind je dit onzin?
Waar het op neer komt; je moet bepaalde kwaliteiten hebben, je
moet genoeg punten hebben en goed studeren, je moet assertief
zijn en opkomen voor de gehele studentenpopulatie. Je gaat om
met belangrijke organen binnen de faculteit dus dat is moeilijk,
de laatste jaren blijkt dit gewoon meestal een vrouw te zijn, ik
vind het meer toeval
-Today is a very special day, want we hebben de volgende vraag voor jouw;
welke andere functie zou je willen doen als je geen commissaris onderwijs
was?
Ik heb afgelopen jaar gemerkt dat het erg moeilijk is om vanuit
mijn functie mijn mening door te drukken tegen 4 koppige
gasten, dus ik zou anders graag presi willen zijn om vanuit een
overkoepelende functie mijn mening te verkondigen
-FPSO storing LNG filling a ULCC next to a TLP with a good AOFP,
of mijnlamp?
Gewoon mijnlamp natuurlijk, niet zo moeilijk over doen
-Wat zijn de grootste uitdagingen die je in je functie bent tegengekomen?
Het moeilijkste vond ik dat ik geen goed idee had wat de
functie inhield toen ik begon en het duurde een tijdje voor ik
mijn netwerk opgebouwd had. Je moet voor heel uiteenlopende
problemen veel verschillende mensen aanspreken en in het
begin is het ook afwegen waar je de FSR nou bij betrekt of wat
je beter zelf kunt doen. Ook was het wel moeilijk om een jaar
lang de MV op 1 te zetten, als belangrijkste in je leven.
-Wat zou jij willen veranderen aan de MV kamer?
Niet zo veel, het wordt steeds relaxter inrichten naarmate we
langer op de nieuwe faculteit zitten. Ik ben wel nu bezig met
een ereleden-fotowand om aan de leden beter zichtbaar te
maken wie dat zijn. Mijn positie in de MV kamer is soms wel
lastig want ik wordt snel afgeleid, echter ben ik op die positie
wel makkelijk aanspreekbaar voor studenten dus er is over
nagedacht.
-Aan het einde van het jaar weet je alles van je bestuursgenoten, we
zouden je willen vragen om jezelf en je bestuursgenoten te koppelen
aan personages uit de Lord of the Rings (waar Steef groot fan van is,
Red.)
Wat geweldig ik ben een hele grote Lord of the Rings nerd
dus kom maar op!
Een Hobbit Dat is niet zo moeilijk dat is Chris natuurlijk, hij is
klein met van die leuke krulletjes net als een hobbit. Toch kan
hij wel agressief zijn maar er zijn ook vast agressieve hobbits,
daarentegen houdt hij wel graag de groep bij elkaar en houd hij
van gezelligheid net als hobbits.
Gandalf Dat zal Matthijs zijn, hij is altijd een van de stilste maar
hij straalt wel wijsheid uit en als hij iets zegt is het ook wel
zinnig
Een Attack troll Dat is Daan, echt een topkerel die nooit moeilijk
doet en altijd gezellig is, behalve als hij een dag echt brak is of
na een lang weekend, op zo’n slechte dag moet je hem echt niet
aanspreken
Een Elf Henk, hij is verreweg de meest ijdele persoon van het
bestuur en volgens mij ook de langste, soms is hij een beetje
verwijfd net als een elf en hij is compleet into fitness
Een Balrog Dat ben ik zelf en ik denk dat het wel treffend is, ik
vind het zelf helemaal niet prettig om ruzie te maken maar als
er echt iets opgehoopt zit dan kan ik opeens heel boos worden
(Arme hobbit, Red.)
-Het aantal studenten bij de faculteit Mijnbouw groeit op dit moment, zie
jij duidelijke problemen of juist voordelen hiervan in het onderwijs?
Het heeft twee kanten, we hebben natuurlijk graag groei van
de sectie voor het bestaansrecht van de opleiding. Echter de
groei geeft wel wat logistieke problemen, met als voorbeeld de
microscopiezaal; die is gebouwd naar het kleine aantal studenten
van een paar jaar terug, maar de zaal is nu veel te klein. Toch
denk ik dat het met goed voorbereiden zeker mogelijk is om de
groei op te vangen en ik vind het mooi dat het aantal studenten
groeit
-Kun je leren adten?(Yard Time:36s, Red.)
Ik denk het niet, het is een bepaalde mentaliteit die je hebt of
niet, ik heb zelf ook nooit geoefend voor de Yard.
-Heb je als onderwijsexpert een tip aan de eerstejaars voor de vijfde
periode?
Jazeker, kies je vakken zorgvuldig, 1 á 2 vakken is al best wel
veel omdat er in de vijfde periode zoveel leuke dingen te doen
zijn waardoor je geen zin hebt om te studeren, dus je moet geen
grote inhaalslag plannen want dat blijkt meestal niet te werken,
denk goed na over wat je doet en pak nog wat puntjes! ■
5
Een ideale tijdmachine
Mijn allereerste promovendus, Jos Bakker, vroeg
ik ooit: “wat zou je doen als je de beschikking
had over een tijdmachine?” “Teruggaan in de
tijd om te kijken hoe het Pitalito-bekken werd
gevormd,” zei hij: dat was het onderwerp van
zijn proefschrift, een Kwartair pull-apart bekken
in de Colombiaanse Andes. Ook als reservoirgeoloog zit je vaak voor je scherm te mijmeren
over het driedimensionaal geologisch model dat
je met seismiek en putgegevens hebt gemaakt:
hoe zou mijn reservoir er uit gezien hebben toen
de sedimenten werden afgezet? Eigenlijk is dat
zelfs je belangrijkste taak. Er zijn verschillende
droompaden die je daarvoor kunt volgen.
Je kunt natuurlijk kijken naar plaatsen waar
dezelfde reservoirgesteenten aan het oppervlak zijn
ontsloten, zoals de Bentheimer zandsteen net over
de grens in Duitsland, hetzelfde gesteente als dat
waarin het Schoonebeekveld is ontwikkeld, maar het
nadeel is dat de zandsteen in de ontsluiting natuurlijk
niet precies hetzelfde hoeft te zijn als de voortzetting
van die zandstenen onder het aardoppervlak. We
weten genoeg over laterale variaties in sedimentaire
systemen om wantrouwig te zijn.
Een tweede manier is zoeken naar analogen: als
je bijvoorbeeld denkt dat je reservoirgesteenten door
troebelingsstromen zijn afgezet, diep in de oceanen,
dan ga je kijken naar andere troebelingsstromen die
door de tektoniek aan het oppervlak zijn gebracht.
Het zijn dan wel niet dezelfde troebelingsstromen, en
het is ook niet dezelfde geologische context, maar toch
kan het nauwkeurig bestuderen van die sedimenten
je op ideeën brengen waar je anders misschien nooit
op gekomen zou zijn. Dat is de filosofie achter het
reservoirgeologisch studentenveldwerk in Huesca,
Spanje van Rick Donselaar. Er zit weliswaar geen
olie in, maar je krijgt een heel goed beeld van de
driedimensionale structuur van rivierafzettingen en het
is ook de filosofie achter het grote onderzoeksproject
in de Permische Karoo-turbidieten waar Stefan Luthi
jaren aan heeft gewerkt.
Het nadeel van outcrops is alleen, dat je wel
een goed beeld krijgt van de verticale opbouw van
een sedimentpakket, maar niet van de variatie in
het horizontale vlak, het kaartbeeld, de plan view. En
toch is die natuurlijk net zo belangrijk. Meanderende
rivieren kan je vaak heel goed herkennen in je
6
seismische time slices, en in een verticale rotswand kan
je ook heel vaak reconstrueren dat het inderdaad om
een meanderende rivier gaat, maar hoe de kronkels
precies gelopen hebben zie je in de outcrop niet. En
toch is dat heel belangrijk om de geometrie van je
olieveld te reconstrueren.
Vandaar dat het zo nuttig is om ook naar recente
Fig.1 Een uitdraai van een seismisch profiel met
Hanjo Reinink en Tine Missiaen
sedimentaire systemen te kijken: daar is juist de plan
view, de luchtfoto, het satellietbeeld, het kaartbeeld
het eerste dat in het oog springt. Wat dat betreft
vullen outcrop-analogen en moderne analogen elkaar
mooi aan. Recente sedimentaire systemen vormen
ook ons belangrijkste referentiekader: wat voor een
delta is de olierijke Jurassische Brent-delta in de
Noordzee? Is het een delta zoals die van de moderne
Mississippi, waar vooral de invloed van de rivier
overheerst, of is het een delta zoals die van de Nijl,
waarin vooral de golfwerking de vorm van de delta
bepaalt? Nadeel bij recente systemen is natuurlijk dat
je juist de verticale sedimentopbouw niet ziet, die
kan je alleen bestuderen als je er ondiepe geofysica
op loslaat en ondiepe boringen zet. Maar dat is dan
ook heel veel gedaan. Een additioneel voordeel
is dat je de sedimenten in moderne delta’s meestal
heel nauwkeurig kunt dateren: met de koolstof-14
methode kan je precies de ouderdom van organische
laagjes veen, schelpen, en soms zelfs een kluitje
stuifmeelkorrels of microfossielen bepalen, met een
nauwkeurigheid van enkele tientallen jaren. Dat geeft
je een methode om de sedimentatiesnelheid vast
te stellen met een precisie die in oudere systemen
onmogelijk is. Dat leidt tot een veel beter begrip van
hoe die sedimentaire systemen precies werken.
Het mooiste is natuurlijk als het sedimentaire
systeem dat je reservoirgesteenten heeft afgezet nog
steeds bestaat. In Nederland is dat niet meer het geval:
ons aardgas zit in woestijnzanden uit het Rotliegendes,
en onze olie in strandzanden van de subtropische
Krijtzeeën. Maar op sommige plaatsen is dat wel zo.
De Pliocene reservoirgesteenten in het zuiden van de
Kaspische Zee zijn afgezet in een delta van de Wolga,
en daarom heeft BP ons meerdere projecten gegund
om te kijken hoe de huidige Wolgadelta functioneert,
al ligt die inmiddels duizend kilometer noordelijker in
een totaal andere tektonische context.
Maar het mooiste voorbeeld van een moderne delta
die een model is voor het olieveld eronder is de
Mahakam-delta, de grootste delta van Indonesië,
in Oost-Kalimantan (Borneo). Daar loopt nu een
Fig.2 Mahakam-delta
groot onderzoeksproject in het kader van het East
Kalimantan Programme (EKP) van WOTRO-NWO
en de KNAW, waar vier Nederlandse universiteiten
(Delft, Wageningen, Leiden, Twente/ITC) en zes
Indonesische instituten aan meedoen, en dat door
ons wordt gecoördineerd (www.eastkalimantan.
org). Het onderzoeksprogramma heet Upsetting the
Balance in the Mahakam Delta, en gaat niet in de eerste
plaats over het bestuderen van een analoog voor het
onderliggende olieveld, maar vooral over hoe de delta
heeft gereageerd en ook in de toekomst zal reageren op
veranderingen door menselijk toedoen en natuurlijke
processen, zoals ontbossing, klimaatverandering en
zeespiegelstijging.
Een van de meest dramatische ingrepen in de
delta vond plaats in de jaren tachtig en negentig van
de vorige eeuw. In een tijdsbestek van tien, vijftien
jaar is alle natuurlijke mangrovevegetatie in de delta
gekapt en vervangen door garnalenvijvers. Als je black
tiger prawns eet, kunnen die heel goed daarvandaan
komen. Dat heeft enorme consequenties gehad voor
de waterhuishouding en de sedimentatie in de delta,
voor de lokale ecologie, en ook voor de bewoners,
want de mangrovekappers en garnalenkwekers zijn
recente immigranten uit Zuid-Sulawesi (Celebes).
Vandaar dat de Indonesische overheid, en met name
de overkoepelende onderzoeksorganisatie LIPI
onder leiding van Dr.
Jan Sopaheluwakan, het
van groot belang achtten
om deze delta diepgaand
te onderzoeken. En
vandaar ook de titel
van het programma:
Upsetting the balance. Ons
eigen Delftse onderdeel
richt zich daarbij op het
reconstrueren van de
sedimentatie in de delta
tijdens de Holocene
zeespiegelstijging
(postdoc
Rory
Dalman)
en
de
sedimentatiegeschiedenis
van de laatste tweehonderd
jaar (PhD student Duddy Ranawijaya). Ook maken
wij numerieke simulaties van het gedrag van de delta
bij veranderende zeespiegel, sedimentaanvoer en
vegetatie.
De Mahakam delta is een klassiek voorbeeld van
een delta die onder invloed staat van het getij. Delta’s
worden vaak ingedeeld volgens het driehoeksdiagram
van Galloway (1975) in river-dominated, wave dominated
en tide-dominated deltas. In Galloways’s publicatie staat
de Mahakam delta precies tussen het ►
7
riviergedomineerde en getij gedomineerde hoekpunt
in. De sedimentstromen zijn grotendeels gescheiden,
zoals ook Joep Storms en Bob Hoogendoorn
goed hebben beschreven in hun artikel van 2005
in Sedimentary Geology, in een voorstudie voor de
pilotfase van ons programma. De rivier splitst zich
om de 10 kilometer in verschillende vrij rechte
zijtakken (distributary channels): die hebben meestal
een zandige bodem en brengen de suspensielast
naar zee. Het getij brengt de fijne sedimentlast
weer landwaarts in getijdegeulen (tidal channels),
Fig.3 Tine Missiaen, Rory Dalman, en Tarsono volgen
seimische data
die tussen de verschillende uitmondingen van de
Mahakam in liggen en vrijwel geen contact hebben
met de distributary channels. Die getijdegeulen zijn
juist merendeels zeer kronkelig en hebben vooral een
kleiige bodem. Dit hele systeem moet zich ondanks
de zeespiegelstijging in het Holoceen vele tientallen
kilometers zeewaarts hebben uitgebouwd, en wij
wilden weten hoe dat in zijn werk gaat, en met name
wat voor sedimentaire sequenties dat oplevert.
Wij hebben dat in drie fasen bestudeerd in het
jaar 2008. In de eerste plaats hebben wij twee
series seismische opnamen gemaakt, eerst met het
Stratabox instrument van onze directe Indonesische
partner, het Marine Geological Institute in Bandung,
en thuisbasis van promovendus Duddy Ranawijaya
en technicus Tarsono. Daarna hebben we meer in
detail gemeten met de Parametric Echosounder
8
(©Innomar), ons eigen geofysische instrument, dat
zeer hoge resolutie (dm-schaal) akoestische gegevens
levert tot op 10 m diepte of meer, gemeten vanaf
de rivierbodem, en dat bovendien kan meten in
zeer ondiep water (tot een halve meter diep). Onze
geofysisch specialist Tine Missiaen heeft in een
eerder project in het Verdronken Land van Saeftinge
in de Westerschelde tien verschillende geofysische
methoden uitgeprobeerd voor onze doeleinden, en
dit systeem kwam er als beste uit. Zij had ook de
leiding bij onze opnamen in Indonesië. In totaal
hebben we 750 kilometer opnamen gemaakt, in
vrijwel alle waterlopen van de Mahakam delta. We
hadden dit niet kunnen doen zonder de genereuze
steun van Total Indonesie, die olie en gas produceert
uit het onder de delta liggende Kutai basin, en die al
het transport en accommodatie voor haar rekening
heeft genomen. Studenten van de lokale Mulawarman
University in Samarinda hebben ook meegeholpen.
Op de seismische profielen is de opbouw van het
bovenste deel in fantastisch detail te zien. Opvallend
was dat er weinig penetratie was in de zandige
fluviatiele geulen, maar des te meer in de kronkelige
getijdegeulen, die prachtige profielen opleverden. Tot
onze verbazing bleken vele getijdegeulen een erosieve
bodem te hebben, en zelfs in de smalste geultjes bleken
waterdieptes tot 23 meter voor te komen, iets wat
we nog steeds niet goed begrijpen. De Wageningse
hydrologen die ook meedoen in dit programma
zullen daar aandacht aan schenken. Verder is soms
ook de discordantie tussen de Holocene delta en de
geplooide Miocene ondergrond te zien, en misschien
ook een oudere delta van een vorige highstand, te
oordelen naar de koolstof-14 leeftijden voorbij de
detectielimiet. Soms ook vervaagt het beeld als er
ondiep gas naar boven komt, een enkele keer zelfs
in de vorm van onderzeese moddervulkaantjes. De
methode is zo nauwkeurig dat je zelfs de vissen in het
water op de profielen kunt zien.
Eerder in hetzelfde jaar hadden Duddy Ranawijaya
en MSc student Hanjo Reinink al op een dertigtal
locaties ondiepe boringen gezet voor de Pb-210
dateringen van de sedimenten van de laatste 200 jaar,
onder water (!), om verstoring van het radiometrische
systeem door regenwater te vermijden. Na het
gereedkomen van de seismische profielen zijn een
tiental boorlocaties geselecteerd, waar Duddy tot
uit gewonnen wordt,
25 meter geboord
lag exact op dezelfde
heeft vanaf houten
plaats en is afgezet
platforms die hij met
door dezelfde rivier, en
een lokaal bedrijfje
zelfs de source rock is
met veel kunst en
van dezelfde bron als
vliegwerk midden in
het organisch materiaal
de rivier heeft weten
dat nu nog steeds
op te bouwen. We zijn
door de rivier wordt
nog hard bezig met de
afgevoerd: de vergane
interpretatie van de
resten van het tropisch
gegevens, en Hanjo
regenwoud in het
Reinink is bezig alles in
bovenstroomse deel
Kingdom, een software
van het stroomgebied.
pakket vergelijkbaar
De olie is dus puur
met Petrel, in een
van
plantaardige
d r i e d i m e n s i o n a a l Fig.4 Seismiek, Boring, grainsize
oorsprong, en de moderne delta is dus in alle
geologisch model te
opzichten een prachtige moderne analoog van het
zetten. De dateringen zijn nog niet klaar, er moet nog
Miocene systeem. Alleen zijn de Miocene deltaïsche
veel werk gebeuren, en een eindresultaat kunnen we
afzettingen in het Plioceen geplooid geraakt,
dus nog niet laten zien.
waardoor goede structurele traps zijn ontstaan. De
geplooide deltaïsche afzettingen zijn in de omgeving
Wat is nu het verband van dit werk met de
van Samarinda goed ontsloten, want de veenlagen
reservoirgeologie? Welnu, het onderliggende olieveld,
van de Miocene delta worden nu afgegraven in
talrijke kolenmijnen in het gebied. In die afgravingen
kan je dus ook de verticale opbouw van de deltaïsche
afzettingen goed zien. Hier komen outcrop analoog
en moderne analoog dus bij elkaar. Een ideale
tijdmachine. ■
Prof.dr. S.B. Kroonenberg
Fig.5 Rory Dolman bij outcrop van Miocene
Mahakam
dat al vanaf 1898 door de Bataafsche Petroleum
Maatschappij werd ontgonnen (Sanga-Sanga veld),
zit in reservoirgesteenten die in precies hetzelfde
sedimentaire systeem zijn afgezet als de huidige delta.
Veel pionierswerk is hier gedaan door de geoloog
George Allen in de jaren zeventig tot negentig van de
vorige eeuw. De Miocene Mahakam delta waar de olie
Missiaen, T., E. Slob & M.E. Donselaar 2008
Comparing different shallow geophysical
methods in a tidal estuary, Verdronken
Land van Saeftinge, Western Scheldt,
the Netherlands, Netherlands Journal of
Geosciences — Geologie en Mijnbouw | 87
– 2 | 151 - 164 | 2008
Storms, E.A., R.M. Hoogendoorn, M.A.C Dam, A.J.F.
Hoitink and S.B. Kroonenberg 2005 LateHolocene evolution of the Mahakam delta,
East Kalimantan, Indonesia. Sedimentary
Geology 180, 149-166
9
The Raw Material
Weber Puzzle
Solution
Right under their noses!
The dissapearing gas is
drained away from the
overpass pipeline carrying
the Neftogas sign.
The supporting structure
consists of the little red
pipes which are actually
connected to this pipeline.
The gas flows out to both
sides towards the two red
coloured pipelines
Most acidic natural water in the world comes
from an abandoned mine site
According to many politicians sustainability is the
key to paradise on earth, but because we miners
literally have to destroy nature to get to the valuables
society is sometimes upset with our actions. This
also happened at Redding, California, where miners
extracted iron, silver, gold, copper, zinc, and pyrite
from the massive sulphide deposit in the Iron
Mountain. The mine, that was used from 1860 until
1963, produces the most toxic waste water known
around the globe. The acid in the water is a result
of the chemical erosion of the sulphides by oxygen,
water and certain bacteria. Some samples of the
water that ran through the mountain had a pH of
-3.6, this is only possible when the hydrogen ion
activity is greater than one, and because of this the
site was declared the most polluted site in the world.
The water is in fact so acidic that it eats through
jeans and dissolves stitching in boots. Federal funds
raised 20,8 million dollars to clean the site up in the
coming 20 years. Let’s hope it was worth the dig.
Where’s my dozer?
Because mining equipment is so huge
and powerfull, sometimes you don’t see
something when you are digging or simply
driving around. This 32 ton catterpillar
D8R dozer was accidently scooped up by
a bucket wheel excavator.
Wireline logging in Harlingen
Door Louis Carlier en Marlies Vasmel
Vijf uur ‘s ochtends. Het groene Volkwagen busje staat
op de hoek van de straat, instappen en wegwezen! Over
volkomen verlaten snelwegen rijden we richting het
Noorden (glück auf !). Om kwart voor acht worden we in
vol ornaat verwacht in Harlingen bij put BAS-4. Het bedrijf
Well Engineering Partners heeft ons uitgenodigd om een
wireline log mee te maken. Behalve de uitgeprinte logs die
we zo nu en dan moeten analyseren op de faculteit, weten
we hier eigenlijk bar weinig over.
Natuurlijk komen we veel te vroeg aan. Na een half uur
sightseeing in Friesland belanden we op de juiste plek.
Bovengronds valt er niet veel te zien . Een hek omringt een
klein gebouw en een christmas tree. Hier moet het allemaal
gaan gebeuren. We worden warm ontvangen met een kop verse
koffie. Hierna krijgen we een stoomcursus over wat er gaande is
en wat er vandaag gaat gebeuren.
Frisia beheert meerdere putten in deze omgeving, de putten zijn
zo geautomatiseerd dat er normaal niemand aanwezig is op het
terrein. Twee keer per dag komt er iemand langs om te kijken of
alles in orde is. Er wordt hier Zechstein zout op ongeveer drie
kilometer diepte gewonnen met behulp van solution mining.
Water wordt omlaag gepompt de caverne in, zout lost hierin
op en brine wordt weer omhoog gepompt. Omdat er zich aan
de bovenkant van de caverne diesel bevindt (waar het zout niet
in oplost) kan de hoogte van het dak beheerst worden. Door
verder te gaan met het winnen van zout vergroot de caverne
zich in laterale richting. Doordat zout ductiel is en dus kan
stromen onder invloed van druk wordt het gewonnen zout
continue aangevuld. Op dit moment heeft Frisia al een aantal
keer het volume aan zout gewonnen als de caverne groot is.
Vandaag is het anders. Meerdere bedrijven zijn aanwezig
Well Engineering Partners, Frisia, Socon (het Duitse logging
bedriif) en de kraan machinist. Het is de bedoeling dat al deze
verschillende bedrijven vadaag een wireline log gaan maken. Elke
drie maanden moet Frisia namelijk aan de overheid vertellen op
welke diepte het dak van de zoutcaverne zich bevindt. Dit mag
niet te hoog komen om ervoor te zorgen dat het geproduceerde
zout van goede kwaliteit blijft.
Geclusterd tussen drie gezellige Duitsers in hun volledig
ingerichte (inclusief magnetron!) vrachtwagen beginnen we met
de tools omlaag te laten gaan. De enige tools die nodig zijn, zijn
een tension meter, een gamma ray en een temperatuur meter.
En dat terwijl wij eigenlijk altijd logs te zien krijgen waarbij alle
mogelijke apparaten gebruikt zijn, maar hoe minder je nodig
hebt, hoe goedkoper het blijft natuurlijk. Verder verbazen we
ons over de enorme buis (lubricator) waar de tools in zitten, die
zo’n tien meter hoog is en met behulp van een kraan eerst recht
boven de put gezet moet worden.
Met de gamma ray wordt een carnaliet laag opgespoord
waarvan de diepte bekend is en die kan vervolgens gebruikt
worden om de precieze diepte te bepalen. Het dak van de
caverne wordt gevonden door de temperatuur te meten. De
geostatische temperatuur van het zout is ongeveer 97 graden,
maar in de caverne is de temperatuur veel lager (ongeveer
55 graden) omdat het water dat voor productie gebruikt
wordt de caverne afkoelt. Op de diepte van het dak hopen
we dus een duidelijke sprong te zien in de temperatuur log.
Nadat de tools heel langzaam omlaag zijn gelaten en vervolgens
ook weer heel langzaam omhoog gehaald, dit heeft zeker een
paar uur geduurd (gelukkig werden we ondertussen voorzien
van genoeg koffie en lekkere broodjes kroket), blijkt dat het dak
van de caverne niet meer dan een meter verplaatst is ten opzichte
van drie maanden geleden. Iedereen kan met een gerust hart
naar huis en wij zijn bovendien weer een interessante ervaring
rijker. ■
11
“The energy industry has it all”
By Gijs C.J. Holstege
Born 28th December, 1964 in Sittard, the Netherlands
Delft University 1983 – 1989,
Bestuurs lid Delftsche Studenten Bond 1985-1986
Graduated 1989 in Technical Geophysics
1989-1990 Jason Geosystems B.V.
1990-present Shell International E&P
1990-1992 Wellsite Petroleum Engineer Southern
North Sea (Shell Expro UK.)
1992-1994 Seismic Interpreter (Shell Expro UK.)
1994-1997 Production Geologist Shell Todd Oil
Services (New Zealand)
1997-2000 Exploration Geoscientist Shell Todd Oil
Services (New Zealand)
2000-2002 New Potential Delivery Team Leader Thai
Shell E&P, Bangkok Thailand
2002-2004 Geoscience Section Head Al-Furat
Petroleum Company, Damascus Syria
2004-2006 Chief Geoscientist Al-Furat Petroleum
Company, Damascus Syria
2006-present Appraisal and Development Leader, South
Rub Al-Khali Co. Ltd, Al-Khobar Saudi
Arabia
Being asked to write an article for the MV magazine forces one
to reflect back on your life and whether choices that have been
made have been good ones. Being mid forty it does seem that
time has passed extremely quickly since those fun student days
in Delft and so, consistent with the saying time flies when you’re
having fun, I suppose that is evidence that those choices cannot
all have been bad. My first boss in Shell Expro told me that
when considering career moves, whether they are internal Shell
transfers or external moves, there are three aspects to consider
and that it is rare that all three score maximum points. Those
aspects are lifestyle/family impact, job satisfaction/challenge
and of course financial reward. In the remainder of this article
I shall be referring back to these three guiding principles and
how they have guided our choices as a family as we have moved
around the globe.
A bit more background about myself: Although 100% Dutch
I have lived a total of 31 out of my 44 years outside the
Netherlands. As a boy I grew up in Northern Ireland as a result
of a choice my parents made. I lived there throughout the worst
of “the Troubles” but cannot recall at the time being affected
by them, road blocks, checkpoints, car bombs and sectarian
conflict seemed quite a normal way of life until I moved to The
Netherlands at the age of 16. The contrast between the daily
routine in peaceful Holland and the insecure Northern Ireland
situation creates quite an impression on a young mind and adds
spice to one’s life experience. It is the pursuit of this kind of
“spice” that made the decision for an international career an
easy one. Of course being married to a Dutch Indonesian wife
12
… in the old “Hammam” in the Damascus Soukh
also helps since as a family you need to enjoy the disruption of
moving every 4 years. The word disruption is in that sense a
bit exaggerated since if there is one company who knows how
to look after its expatriates than that is Shell -as I keep being
reminded by many non-Shell expat friends.
So back to the day I graduated, I had already been working part
time for Jason Geosystems, at that time a new start-up company
housed in offices above the C-1000 supermarket. My job there
was to bug-test Seismic Inversion software and to draft the user
manual for this product. Since this meant running and trying
to crash the software I was asked to do most of this in the
evening/night hours to avoid crashing the system at critical
times during the day – an ideal job for a student! At the time I
also had an impending call to military service hanging over my
head, which prevented me from accepting a job with Shell, and
so continuing to work for Jason after graduation seemed logical
while my case was being reviewed. Once I was cleared of having
to fulfil my military service I immediately accepted the job offer
with Shell. Jason has since then become an extremely successful
company and is now owned by Fugro so the question I always
ask myself was how much money would I have made if I had
stayed there. But the attraction of spending 1-2 years working
offshore North Sea on drilling rigs was too much to refuse.
Following initial “indoctrination” at Shell’s training centre in
Noordwijkerhout I was indeed posted to my first assignment, a
small English harbour town in East Anglia called Lowestoft. I
was still unmarried at the time and so was given a small council
house that seemed quite generous compared to the student
room I had been used to till then. I spent little time in this house
since I was immediately rostered in to the offshore routine of
working 2 weeks on/off. What an incredibly lucky situation! I
was being paid relatively large sums of money as a result of
expat and offshore allowances, I was working on a drilling rig
and in the two weeks off, I could enjoy myself in Holland. As
a student I had also worked in the field but on a seismic crew.
This and the wellsite experience has been invaluable experience
in all jobs thereafter. We were drilling long reach horizontal
wells through the tight Rotliegendes sandstone as part of the
Sole Pit development. The idea that a bit was churning away
horizontally somewhere below us 22000 ft away from the rig in
a direction controlled on surface was fascinating and taught me
a lot about directional drilling amongst others. After my wellsite
period I then had a chance to plan these wells myself and get to
grips with the skills of 3D Seismic interpretation.
In April 1993 Ade and I got married and so we were a bit
concerned about where Shell would post me next since
having graduated herself Ade had just started working in the
Netherlands. I recall my session with what at the time was called
the Godfather (the global head of your adopted discipline
which in my case was Production Geology) who said: “well,
we feel it would be good for your development to accept an
overseas posting beginning with N”. I am still not sure whether
we would have accepted Nigeria at that moment but luckily it
became clear that I was being asked to go to New Zealand.
Maximum points on lifestyle, an interesting job and money-wise
nowhere near the top but then getting paid to go to a country
where most people pay themselves to go for a holiday seemed
like a good deal. The choice was an easy one since I had already
been planning a holiday there at some point. So, incredulous
with my good luck I said goodbye to East Anglia from the deck
of the Felixstowe Ferry.
We arrived in New Plymouth in Taranaki province in September
1994, the Southern Hemisphere winter. New Plymouth airport
had been shut down due to bad weather and so we spent the
last hour of our 36 hour trip from Holland on a small leaky bus
from Wanganui, to which the plane had been diverted, through
several remote farming towns until we finally reached New
Plymouth. It really felt as isolated as you could be from your
family in Europe.
We ended up staying 5-1/2 years in New Zealand. The first 4
years seemed like one extended holiday, Kiwis are quite keen
on maintaining a healthy work/life balance and we did pretty
much every outdoor activity that was at hand. Scuba diving
out of New Plymouth, catching crayfish with our own hands
and cooking them that same evening at home with a fine glass
of New Zealand white. Flying to the Marlborough sounds
for the weekend in a private Cessna for a combined fishing/
sailing/diving trip, ski-ing, wild water rafting, hiking. Not to
forget the annual leave trip – a yearly business class round
the world ticket including exotic pacific island stopovers. On
the Job front, I learnt a lot about developing gas condensate
reservoirs, integrated subsurface modelling and all the seismic
tricks possible to improve our understanding the reservoir
complexities. The second half of the posting I took up an
exploration geoscientist role and in that capacity was asked to
evaluate several so-called farm-in opportunities being offered
to STOS – quite challenging since I was asked to come to a
risk/reward analysis of the acreage in a short time frame on the
basis of limited data. We rejected most and the one we accepted
has become the Pohokura offshore Gas development currently
pumping out 20% of New Zealand’s gas demand. Another
interesting opportunity was being offered to us by a Sydney
based independent required frequent meetings in “West Island”
as the Kiwi’s like to call Australia. All in all a very rewarding
time.
New Zealand, View of the Mt Taranaki volcano in the distance
with Mt Messenger Turbidite reservoir outcrops exposed in the
foreground. The gas/condensate field I was working on was
located beneath this volcano.
Our first two children were also
born in New Plymouth and
by 2000 Ade and I had been
there 5-1/2 years. My expat
status/salary was no longer
tenable since we were almost
considered to be local staff by
the company. We had a good
think about whether to settle
in New Zealand permanently
-not an unattractive option, or
continue the expatriate lifestyle.
Coenraad and Tara Packing We decided for the latter since I
in once more
was being offered a job in Thai
Shell which meant living & working in Bangkok. Thailand had
long been a favourite destination of ours but I have to admit
that the prospect of living in Bangkok after the clean, green
New Zealand surroundings did not appeal to me. Also the job
description wasn’t really what I was looking for: “New Potential
Team leader” in a rather obscure Shell Joint Venture. On the
plus side it was my first team leader role, the money was better
than New Zealand and most importantly, my family were very
keen to go. And so we swapped the clear air of New Zealand
for the luxury lifestyle of an expat in Bangkok. ►
13
Our House in Bangkok complete with swimming
pool and two maids
The two years in Thailand turned out to be another great choice.
The company had just avoided being sold by Shell – it was the
low oil price environment- and was in the midst of re-inventing
and re-organising itself. A new Oil Play was discovered and so
our drilling rig was kept busy drilling, logging, completing a well
a week. Due to the intense activity levels my team developed a
workflow and team structure that allowed a sustained delivery of
well proposals and producing wells to keep our Deutag rig busy
and keep this mature field producing at 25000 bopd (barrels of
oil per day). The field was located in Central Thailand amongst
easy decision. Production was on the decline in Syria, daily
output was down from the peak of about 400,000 bopd to just
under 300.000 bopd when I arrived. Shell had just opened up a
technical study centre in Damascus amidst promises of being
able to increase production by smart field development and
indeed the decline was reversed to briefly exceed 300.000 bopd
for a while before resuming.
The challenges of working in Syria are all related to the sociopolitical context. The country was still run along socialist
principles with wages being low for skilled local engineering
staff and critical thinking and risk taking not being encouraged
at all. Since developing oilfields is all about managing subsurface
risk this provided an interesting additional challenge to the
expat team working together with the Syrians. In addition
the company was run with a “dual management structure”
meaning that decision making required both expat and Syrian
management lines to agree.
In my position as Chief Geoscientist I had to jointly manage
a department of 70 staff together with a Syrian counterpart.
My negotiating skills were tested to the limit and sharpened
as a result. Technically the fields were an oilman’s dream,
recovery factors of up to 70%, extremely mobile sweet oil
-perfect for waterflooding. All the fields were covered by 3D
seismic so that all the tools and data were at our disposal to
really grasp the reservoir and propose intelligent infill wells.
In my time there we reshot a high resolution 3D survey over
one of the largest producing fields, drilled about 50 wells a
year and made sure every single field was covered by detailed
integrated dynamic and static models. Towards the end of 2006
we had set up studies to look at unconventional reservoirs.
An additional challenge was President Bush’s Syria and
Lebanon Sovereignty Act (SALSA) that essentially prevented
American technology to be used in Syria. This would test the
relationship between Shell and the Government to the limit
since with major US interests, Shell is obliged to abide by
this act while the Syrians of course do not recognise its
legitimacy. Contracting and procurement of services become
Sirikit Field Thailand, the Deutag T48 rig punching down 1 well
a week without disruption to the surrounding rice paddies
rice paddies and was volumetrically large but very challenging to
produce due to the heterogeneity of the stacked lacustrine units.
It had been on production since the 80’s with crude still being
transported by railway (3 trainloads per night) to the Rayong
refinery near Bangkok. Up to 24 wells would be drilled from 1
drilling pad in order to minimise our environmental footprint
amongst these fertile rice fields.
With our family now consisting of five and with further career
opportunities a bit limited in the small Thai Shell organisation
I applied for a vacancy in Al Furat Petroleum Company, one
of Shell’s medium sized joint ventures. We had always heard
good things about living in Damascus and the opportunities
for exploring the “cradle of civilisation”, the money was good
and the job was definitely what I was looking for, so again an
14
Our family at the roman ruins of Palmyra, centra Syria
Camping in Syria
very difficult once you realise
how much US technology
dominates the oilfield and IT.
The challenges of working
in AFPC were more than
compensated by the trips we
made through Lebanon, Syria
and Jordan and the frequent
weekends camping amongst
Roman or Byzantine ruins with
friends in truly biblical settings
with clear skies. Reluctantly
my family accepted my desire Tara drilling 3 ft of well
to move on to the next OMA-183
professional challenge – true
wildcat exploration in the Empty Quarter of Saudi Arabia.
I was transferred to Shell’s Upstream Joint Venture with Saudi
Aramco (the South Rub Al-Khali Co. Ltd or SRAK) in the
summer of 2006 and once again we said goodbye to friends
and had to start again. Since there had been a terrorist attack
on SRAK’s compound in 2004, all dependants have been living
in Bahrain while we commute daily to the office, a journey of
about 45 minutes. Our biggest concern however was for the
children since they would have to change from the very intimate
Dutch Language Shell school in Damascus to the American
school in Bahrain. As true expat kids however they immediately
made friends and put our concerns to bed by taking to the
school and the American system. The project is extremely
challenging since although it may seem that Saudi Arabia has
hydrocarbons everywhere, our JV has of course been given the
most difficult area to explore and only has rights to discovered
non-associated gas and liquids. However, being able to leverage
both Shell and Saudi Aramco’s significant technical strengths
in order to firm up seven exploration well targets in a desert
area equivalent in size to the United Kingdom is a fascinating
challenge. In addition, our acreage includes significant volumes
of discovered sour gas so that a large part of my time is taken
up studying ways of monetising this resource in order to secure
Shell’s Upstream future in Saudi Arabia.
In closing it is clear that my career has added enriching
experiences to the lives of my family while at the same time
giving me sufficient professional challenge to keep me motivated.
I cannot think of another business that can provide the variety
of cultural, professional and geographical experiences that the
energy industry has to offer. The trick is to remain flexible and
always keep an open mind to hidden opportunities for personal
development in any project be they technical, commercial or
managerial. The energy industry has it all! ■
Wildcat drilling in the remote South Rub al-Khali Desert, Saudi
ArabiaOMA-183
15
Je kunt je weekenden thuis voor de buis doorbrengen
of gaan stappen in Melbourne
www.werkenbijboskalis.nl
Je bent afgestudeerd of je gaat dat binnenkort doen. Je wilt je
Mensen met een ondernemende inslag die carrière willen maken, iets
professionaliteit verdiepen, mensen ontmoeten, je grenzen verleggen.
van de wereld willen zien en ruimte voor hun eigen ontwikkeling een
Waarom zou je dat niet letterlijk doen? Boskalis biedt je de kans om de
issue vinden. Teamwerkers. Eén ding is zeker: bij Boskalis wacht je
wereld te ontdekken. De wereld van een waterbouwer, die internatio-
een vliegende start. Afgestudeerd in civiele techniek, werktuigbouw-
naal succes oogst in maritieme infrastructuur. Havens of vaarwegen
kunde, maritieme techniek, baggertechnologie, offshoretechnologie,
aanleggen, land uit water creëren, kusten en oevers versterken: we
land & watermanagement, technische natuurkunde of technische
doen het. Net zo goed in eigen land als aan de andere kant van de
aardwetenschappen? Kijk op de website www.werkenbijboskalis.nl
wereld. En we zijn ambitieus, net als jij. Daarom zoeken we talent.
om te zien hoe ver je kunt komen. Misschien wel tot Melbourne.
16 van verschil
Maak een wereld
CSM vs Delft Tournament
Het is het jaar 2009. Heel Engeland valt onder Hollandse
bezetting. Heel Engeland? Nee, er is een klein dorpje aan
de kust waar de Mijnbouwstudenten dapper weerstand
bieden tegen de overweldigers. Falmouth, dorp der
dorpen. Mijnbouwuniversiteit der Engelsen. Deze
fanatieke studenten hebben een geheim, een geheim dat
de Nederlanders de afgelopen jaren buiten hun muren
heeft gehouden: Rugby.
Dit ging jaren goed. Totdat de 15e mei aanbrak. Deze zwarte
dag in de geschiedenis van Falmouth zal altijd bekend blijven
als het CSM vs. Delft toernooi. De dag dat Falmouth viel. Een
elite-team van 11 uitverkoren Mijnbouwers vertrok op 15 mei
om 5 uur ’s ochtends vanuit Delft. Na een barre rit vol tolwegen
en plaspauzes werd om 9 uur de kust bereikt. Vermoeid, maar
nooit verslagen wisten deze dapr’n een overtocht te vinden. De
P&O ferry bracht hen door weer en wind naar de overkant.
Engeland, het perfide Albion.
Via Dubris Portus, Londinium, Isca Dumnoniorum werd
Falmouth bereikt. De traditionele groet naar deze Delftse
helden in de vorm van een geworpen fallus werd beantwoord
met de overhandiging van de Schultenbräu shotgun.
De eerste nacht werd er gestreden. Dapper en trots verzopen de
Delftenaren Falmouth naar de kelder. Toen de strijd gestreden
was, brak de dag al aan.
De dag die bekend staat als: Het toernooi. Gehavend maar
moedig betraden de Delftenaren het hockeyveld. Totale
overmacht in strijd kwam hen ten deel. 22-0.
De traditionele bakkerijen werden geplunderd. (De Cornish
meat-flap: De Engelse variant van de Appelflap, maar dan
natuurlijk met ui en vlees).
Het tweede bedrijf van deze strijd vond plaats op slagveld “het
voetbalveldje naast het bouwterrein”. De boeken verdichten dit
tegenwoordig als de slag om Falmouth.
De eerste slag werd gestreden tijdens voetbal. Doelpunt na
sliding na schwalbe werd met uitgeput, maar met het ultieme
resultaat, de zege, kwam Delft ten deel! 6-3, hoe glorieus!
Toen barstte de hemel, de zondvloed werd een lachertje
vergeleken met deze stortregen. De finale barstte los. Donder
en bliksem, storm en chaos. De teams stelden zich op, 14 man,
mano a mano, Rugby. Het signaal klonk, de horde stormde op
zijn doel af. De vogels stopten met zingen en de hemel kleurde
rood. Er werd geschreeuwd, er werd gerend. Af en toe verliet
een dapr’e het veld voor een Schultenbräu, maar enkel om
moed in te drinken. Want hoe zeer zij ook onbevreesd waren,
de Delftenaren stonden doodsangsten uit. Uit het niets sprint
een klein mannetje uit het Delfts wit/blauwe front en grijpt een
Engelsman zijn bal uit de handen. Hij kijkt om, niemand. Hij
kan niet meer terug. Links en rechts van hem stormen de woeste
dieren op hem af. Snel naar voren! Zijn maten kijken hem na.
Na enkele seconden is hij achter de horizon verdwenen. Een
bode van de achterlijn komt aan lopen en schreeuwt; “Drop!
Delft scoort!”
Victorie! (Nou, bijna victorie) ■
Glück auf!!
H.E.J. van Oeveren
17
Gouden ereleden
Op handen gedragen
Al weken lang was het een hot topic tussen het bestuur
en Hans: Worst Draaien. Samen met zijn vrouw Anneke
en hemzelf zou het bestuur kennis gaan maken met dé
techniek om de beste worsten op ambachtelijke wijze zelf
te maken zoals in Canada. Uiteindelijk bleek de geplande
middag, vrijdag 24 april 2009, een geheel andere wending
te krijgen.
Sinds het begin van het collegejaar in september al waren de
Gouden Commissie en het Bestuur in de weer geweest om een
grote verassingdag neer te zetten. Keer op keer als Hans de MV
kamer binnen kwam werden beeldschermen subtiel op stand-by
gezet, mappen rustig dichtgevouwen en werd er vluchtig over
de bureaus gekeken of er niets zou liggen dat iets zou verraden.
Net zoals bij de voorgangers zou de dag uit de volgende
hoofdpunten bestaan: onthaal op de faculteit, een stoet door
de stad en een feest in Het Noorden. Al de buitengewoonleden
werden uitgenodigd evenals zijn beste vrienden vanuit de
industrie en andere universiteiten. Druk werd er vergaderd
over steeds wildere, nieuwe plannen: een parachutesprong, een
olifant of een grote feesttent op het Noordeinde. Even nog
leek de organisatie schipbreuk te lijden in de haven toen de
avond voorafgaand aan het feest een hoofdwaterleiding werd
aangeboord bij het ophangen van een kast voor één van zijn
grote cadeaus. Tot diep in de nacht werd er hard gewerkt om
dit ongedaan te maken, hoewel Hans zelf niet zou protesteren
tegen een laagje water.
Het was al jarenlang aan de orde: het toen nog ‘gewone’
Erelid Ir. J.J. de Ruiter zou in aanmerking moeten komen
voor het Gouden Erelidmaatschap van de Mijnbouwkundige
Vereeniging vanwege zijn uitzonderlijke verdiensten voor de
studenten en de studie, een eer die slechts aan vier voorgangers
was toebedeeld. Al in zijn eigen studententijd was Hans
erg actief binnen de Mijnbouwkundige Vereeniging en dit
is eigenlijk nooit meer over gegaan in alle jaren die daarop
volgden. In zijn studententijd heeft hij veel werk verricht om
Het Noorden weer open te krijgen, aangespoord door een
weddenschap die hij was aangegaan. Ook de Barbaraborrels en
het fenomeen ‘Halflustrum’ zijn door hem geïnitieerd. Zelfs in
de tijd dat hij in het buitenland werkte, heeft hij zich ingezet
voor het onderhouden van de contacten en bemiddeld voor
stages. Terug op de faculteit als docent is Hans altijd bereid elke
student te helpen en het MV bestuur te adviseren. Het allerbest
ligt hem nog het directe contact met studenten naast de studie.
Het organiseren van autorally’s, roeien met de Glück Acht en
het zwemmen als patroon van Het Zwemmersgilde. En dit jaar
moest het gaan gebeuren. De timing kon niet beter, want zojuist
had Hans gigantisch succes geboekt door de komst van een
nieuwe leerstoel in de grondstoffensectie zeker te stellen. Door
steun vanuit de industrie heeft hij de relevantie van Mijnbouw
in Nederland anno 2009 bewezen en het zou ook niet meer heel
lang duren voordat hij met pensioen gaat.
18
Een afspraakje in Venlo en dan met de trein naar huis om lekker
met het bestuur een biertje te gaan drinken en worst te draaien
in Benthuizen. Dat is in ieder geval wat het niet werd. Om twaalf
uur parkeerde de bestuurslimousine bij het kantoor van Boart
Longyear in Venlo en het voltallig bestuur in jacquet stapte uit
om Hans uit een meeting te trekken en hem tijdens het zingen
van het Glück Auf een gouden pakketje te overhandigen.
Verstomd van verassing werd hij in het goud gehuld en ontvoerd
in de Cadillac. Onderweg naar Delft werd er een tussenstop in
de Biesbosch gemaakt, om alvast in alle rust een verfrissing op
het terras te nemen en even later ook in één van de wateren.
Vooral deze verfrissingen vielen erg goed bij Hans. Toch had hij
moeite met het feit dat hij nu bijna voor het eerst in zijn leven
geen enkele controle had over wat er georganiseerd was en wat
hem zou gaan overkomen in de komende uren…
Ondertussen verzamelde zich een bijna 200 man grote menigte
studenten, medewerkers, alumni en vrienden met een biertje in
de stralende zon bovenaan de trap van de nieuwe faculteit in
Delft. Om 4 uur stopte de lange Cadillac onder aan de trap en
onder luid gejuich stapte het gouden gestalte vergezeld door
het bestuur uit de caddie om via de trap het afdelingsgebouw
binnen te treden. Hier ontving Hans zijn eerste felicitaties en
cadeaus. Vervolgens werd Hans in een draagstoel gezet en
op de schouders van studenten in pungels gedragen in een
stoet onder begeleiding van de muzikanten van de Delftsche
Studenten Dans Harmonie gevolgd door de overige Ereleden
in de paardentram.
Aangekomen op de markt werd onder begeleiding van het
carillon van de Nieuwe Kerk het Glück Auf gezongen onder
het genot van een borreltje.
Voor het Noorden begon de ceremonie. De gehele straat was
afgezet en op twee terrasboten in de gracht was een grote tent
gebouwd. Op de bestuurstafel midden op de druk bevolkte
straat werd Hans geïnstalleerd als Gouden Erelid van de
Mijnbouwkundige Vereeniging. Het daarbij behorende gouden
speldje werd overhandigd en een groot in leer gebonden
Weddenschappenboek ter ere van Hans werd aangeboden aan
café Het Noorden. Eerder op de dag had hij al zijn grote cadeau
gehad: Een levensgroot kwarts bergkristal.
Door het uitzonderlijk lekkere weer bleef het nog de hele
avond mogelijk voor alle aanwezigen om buiten voor ‘Het
Noorden’ te genieten van het buffet, de muziek, speeches van
Hans zijn vrienden en talloze biertjes. Het echte kenmerkende
‘Mijnbouwgevoel’ heerste en tot diep in de nacht bleef een goede
mix van studenten, alumni, gepensioneerden en medewerkers
doorborrelen in het mooiste café van Delft.
Chris den Boer
President der Mijnbouwkundige Vereeniging
De eerste vier Gouden Ereleden der
Mijnbouwkundige Vereeniging
Zoals vele zaken binnen de Delftse mijnbouw gemeenschap is
ook de benoeming van Ereleden over de jaren heen niet “altijd
zoo geweescht.”De vereniging wordt reeds in 1892 opgericht,
maar de geschiedenis staat pas zwart op wit na het verschijnen
van het eerste Jaarboekje in 1903. Er zijn in die tijd nog weinig
studenten die mijnbouw studeren (tussen de oprichting van de
Civiele academie in 1942 en het begin van de 20ste eeuw is er
gemiddeld 1 student per jaar). Het benoemen van “Eereleden”
vindt plaats sinds 1898.
Het benoemen van “Gouden Ereleden” moet wachten tot 1947
wanneer prof. C.L. Van Nes als eerste deze eer te beurt valt. Op
10 mei 1927 wordt van Nes reeds benoemd tot gewoon erelid,
met veel minder ceremonieel dan in de latere jaren.
Van Nes studeert in 1903 af en werkt tot 1926 in Suriname,
Spanje, Spitsbergen en Nederland. Een jaar voor het ontvangen
van het Erelidmaatschap, wordt hij tot hoogleraar in de mijnkunde
benoemd, totdat hij in 1949 met pensioen gaat. Voor de
studentengeneraties in die jaren is hij een trouw vriend, die altijd
voor hen klaar staat. Voor de studenten uit de oorlogsjaren is hij
een dapper man in het verzet. Als dank voor het zeer vele dat hij
voor de vereniging heeft gedaan, wordt hem bij zijn pensionering
het Gouden Erelidmaatschap uitgereikt, een onderscheiding die
hem bij de receptie na afloop van zijn afscheidscollege, tezamen
met andere geschenken zoals een fototoestel, wordt aangeboden.
In 1963 overlijdt van Nes. Gedurende 23 jaar heeft hij door zijn
bijzondere en persoonlijke eigenschappen grote invloed op tal
van toekomstige mijningenieurs.
In de tijd dat van Nes aan de afdeling verbonden was, ontstaat de
sterke band tussen Jan Garos en zijn familie, die een buurtcafé
bezitten op het Noordeinde. Hier komen de arbeiders van
de Gist en Spiritus fabriek om 5 uur in de morgen hun eerste
hartversterking halen. De sfeer in Het Noorden trekt, beginnend
in de 30-er jaren, vele mijnbouwers aan, die zich hier thuis voelen
en er ontstaat een centrum waar iedere avond door mijnbouwers
tussen 11 en 12 uur een biertje gedronken wordt. In 1933 wordt
besloten om een vaste mijnbouwtafel te laten maken, waarna de
band tussen Jan Garos en de mijnbouwers voorgoed is gevestigd.
Tijdens de oorlog is Jan’s hart bij de studenten, de mijnbouwers
en de Laga roeiers. Na de oorlog wordt de woensdagavond
voor de mijnbouwers een traditie die tot de huidige tijd is
gecontinueerd. Op 10 april 1957 werd Jan tot Gouden Erelid van
de vereniging benoemd. In 1964 overlijdt Jan, de Oude Reus van
Het Noorden.
Eén van de mijnbouwstudenten die de ontwikkeling van de band
tussen de MV en Jan Garos persoonlijk meemaakt, is Hans de
Wijs, die zijn studie aan de Technische Hogeschool in 1928
begint. De jaren van de crisistijd brengt hij vele bezoeken aan
Het Noorden, het begin van een vriendschap voor het leven. De
Wijs studeert in 1935 met lof af en begint zijn mijnbouwcarrière
in Peru. Hij blijft zoveel mogelijk de relaties met Mijnbouwkunde
in Delft onderhouden, iets wat tijdens de oorlog onmogelijk is.
In 1949 wordt hij benoemd, als opvolger van de legendarische
professor Grutterink, tot hoogleraar in de Delfstof en Aardkunde.
Hij verhuist van Chili naar Delft met zijn vrouw Anneke en hun
dochter. Hier constateert hij tot zijn blijde verrassing dat bij de
studenten en de sfeer, ondanks de oorlog, dezelfde typerende
geest van saamhorigheid en kameraadschap bewaard gebleven
is (“evenals de dommelijke tradities”). Reeds in 1950 na zijn
intree rede, wordt hem het Erelidmaatschap van de vereniging
aangeboden. Er volgen bijna 30 jaar van intensief contact met
de mijnbouwgemeenschap, waarbij de Wijs altijd open staat voor
studenten met advies, een goed gesprek en een borrel. Hij stimuleert
de internationale contacten tussen studenten door vanuit het
Grondijsfonds studenten die op ISW gaan te subsidiëren. Met veel
plezier bezoekt hij Het Noorden, waar hij onder het genot van een
jenevertje met veel plezier met bekenden spreekt. Door zijn band
met het verleden, de dertiger jaren, het Garos-tijdperk, heeft hij
een belangrijke rol gespeeld bij het behouden van Het Noorden
en bij het opzetten van een steunfonds. Samen met zijn vrouw
Anneke is Hans de Wijs een constante factor bij de Barbaraborrel,
waar zij beiden dan ook in bescherm-heer en vrouwe van worden.
De betrokkenheid van de Wijs bij de studenten wordt in 1979
beloond met het Gouden Erelidmaatschap, als derde persoon in
de geschiedenis van de MV. Na zijn vertrek van de faculteit in
datzelfde jaar, blijft het intensieve contact tussen de Wijs en de
studenten bestaan tot aan zijn dood op 4 juni 1997 toe.
Herman Duparc wordt na zijn studie wiskunde aan de Stedelijke
Universiteit van Amsterdam, door de Nederlandse regering
naar Indië gestuurd om les te geven. Vervolgens wordt hij
krijgsgevangen genomen en door de Japanners in een kolenmijn
tewerk gesteld. Hij kan nog niet vermoeden dat mijnbouw en
contact met mijnbouwers een grote rol in zijn leven zal gaan
spelen. Na de oorlog keert hij terug naar Nederland en begint
aan zijn wiskundig leven. In de zestigerjaren wordt hij in Delft
benoemd tot hoogleraar Wiskunde. Vanaf het begin van zijn
benoeming aan de TH Delft trekt Herman Duparc zich het lot
van de mijnbouwers aan. Deze blinken niet uit door grote interesse
in wiskunde en Duparc verbetert dit sterk, voor een groot deel
door zijn heldere manier van onderwijs. Hierdoor wordt zijn
band met de MV steeds nauwer, hetgeen in 1964 resulteert in
het aanbieden van het Erelidmaatschap, waarover hij zelf altijd
zei: “Zijn ze nou helemaal gek geworden, wat moeten ze met
mij in zo’n mijnbouwkundig gezelschap.” Sinds die tijd worden
de contacten met de MV en Het Noorden steeds intensiever.
Zijn omgang met studenten is altijd vriendschappelijk en hartelijk.
Vanaf 1964 gaat hij jaarlijks mee met de nuldejaarsexcursie om
daar de nieuwe studenten te overtuigen van het nut der wiskunde.
Decennialang komt hij vrijwel iedere woensdagavond om half
twaalf in Het Noorden om een sherry of biertje te drinken. Na
een uur vertrekt hij weer huiswaarts, de laatste jaren met de laatste
tram, die hem letterlijk over de brug helpt. Op 12 juni 1996 wordt
zijn enorme betrokkenheid bij de MV beloond met het Gouden
Erelidmaatschap, waarbij de opkomst van vele afgestudeerden zijn
banden met de mijnbouwgemeenschap duidelijk weergeeft. Op
woensdag 26 juni 2002 staat hij nog ruim 2 uur in Het Noorden
met studenten aan de bar te praten, op maandag 1 juli overlijdt
Herman op 84 jarige leeftijd aan een acute hartstilstand. ■
Hans de Ruiter
19
20
Dear Miners, hold on to your hackles! It’s time
for something a Miner loves more than anything
on this planet: big, destructive machines! To
feed your appetite every new issue introduces
a new big, mean and powerful machine,
created to tear Mother Earth to shreds and
throw its spoils euforically up in the air. Take
down the busty girls from your walls, because
here is yet another installment of the only kind
of pin-up that matters!
Steenbergen
Hollanddrain
BSV6000
Well, it’s a vertical deep drainage trencher!
Specs:
• Engine
Caterpillar
3408E ATAAC
Now, some people (non-Miners of course)
might wonder why it’s always a Caterpillar
engine to power our monster machines...
• Power
625 bhp @
2100 rpm
... but that’s in fact quite self-explanatory.
• Fuel tank
1000 L
Which is coincidentally the exact amount of
beer an average Miner drinks in one year. Or
which a civil engineer drinks in a lifetime.
• Maximum speed
3.5 km/h
Only 0.4 km/h slower than the walking/hopping
speed of an Adélie penguin and 0.7 km/h faster
than the Emperor penguin, unless of course
they are tobogganing on their bellies.
• Tracks
6.1 x 0.8 m
Penguins don’t use tracks, with the exception
of a small, isolated group of penguins in the
Antarctic which has been reported to form
living tracks by connecting beak to feet and
rolling down snowy hillsides.
• Digging chain
rollerchain
with buckets
• Digging chain drive
hydrostatic
Capable of transmitting full engine power.
• Digging chain speed
4.7 m/sec
• Digging depth
8m
• Maximum operating speed 500 m/h
This makes it the ideal tool for transforming the
perfectly gardened backyard of your alwayscomplaining-neighbour into a historically
accurate reconstruction of an entrenched
battlefield.
21Kessel BV
Special thanks to Gebr. van
El
Cerro Resource
Rico de Potosi
Natural
Tony Waltham
Nottingham, UK
[email protected]
Fig. 1. The view down Cerro Rico to a modern mineral
processing plant with Potosi town beyond
Silver mining in Bolivia exploited the richest hill on Earth
to finance imperial Spanish in the 16th century. The mines
still operate at Potosi today, with primitive conditions
underground, but silver production may be boosted by
new geological understanding.
to that nation’s wealth and its emergence as a world power in
the 16th and 17th centuries. Meanwhile, the Indian miners lived
and died in terrible working conditions; there were thousands
of local free miners, together with many more thousands that
had been forcibly conscripted from towns all over Spanish
South America. The latter were kept in a state of virtual slavery,
working 12 hours a day and often being kept underground for
months at a time.
Potosi is the material of legends. High in the Bolivian Andes,
a single conical mountain is the core of an eroded Miocene
volcano, and is riddled with silver veins. It is known as Cerro
Rico - Rich Hill; and justifiably so, as it is often claimed as the
richest hill in the world. The original Quechua Indian name for
the mountain may have been Potojsi (meaning thunder), which
has been distorted to Potosi as the name of the city that has
grown from a mining camp at the foot of the hill (Fig. 1).
There is some debate over how much the Incas knew about the
Potosi silver, or whether they worked it on a small scale. But
the Spanish conquistadores arrived in the region in the 1530s,
developed other mines not far away, and soon heard stories of
the Potojsi Mountain. By 1545, their mine was registered and
exploitation expanded rapidly. Within two years, the mine town
housed 14,000 Indians and a few hundred Spanish. The first 20
years were the most fabulous, when the richest ores were worked
most easily, and vast amounts of silver were hauled out on mule
trains and then shipped to Spain - making a major contribution
Figure 2: Geological section
through Cerro Rico
22
For a short time around 1611, Potosi may have been the
largest city in the world, with a population exceeding those of
contemporary London and Shanghai. And this was in the middle
of a desert at a lung-straining altitude of 4090 m above sealevel. A mint was established in 1572, alongside some beautiful
churches. But it was a typical mining town, where the wealth
generated traders who sold every conceivable luxury imported
from the outside world, but in a crime-ridden, disease-ridden
state of virtual anarchy. Potosi’s wealth fluctuated with the
mining yields, and was in serious decline by 1825, when the
richest veins had been worked out, competition for the silver
market came from new mines in distant countries, and Bolivia’s
independence saw the departure of the Spanish. But the mines
have continued to produce wealth for the new nation, with
phases when tin and zinc and then silver again have continued
to pour from the veins of Cerro Rico.
A volcanic ore deposit
Potosi lies in the central cordillera of the Bolivian Andes, a great
mountain chain composed primarily of fine-grained Ordovician
and Silurian sediments. It is intruded by various Mesozoic
granodiorites (including that forming the mountain of Huayna
Potosi, that confusingly overlooks La Paz), and also by highlevel Miocene intrusions that were underlying contemporary
volcanoes. The modern volcanoes are in the western cordillera
that defines the Chile border. Along the western side of the
central cordillera, a long and narrow tin-silver metallogenic
provinces passes through Potosi, while parallel belts rich in
gold-antimony and lead-zinc-silver lie consecutively to the east.
Cerro Rico originated where a Miocene volcano
developed within the tin-silver belt. An early maar complex
had explosively created the Pallaviri Breccia (Fig. 2), which was
capped by a major cone (the Caracoles Tuff). About 13.8M
years ago, this volcanic edifice was intruded by a rising dome
of porphyritic dacite; this is about 1500 m in diameter, tapering
down to a neck that is only 100 m across at a depth of 800 m.
The dome was only exposed during later eruptive events. Before
these, cooling fractures within the dacite were permeated by
hydrothermal solutions rich in metals, so that silver, zinc and
antimony minerals were precipitated in the veins at higher
levels, while tin (as cassiterite) and tungsten (as wolframite)
increased at greater depths, beside declining amounts of the
other metals. The temperature-controlled mineral zoning
reflects the well-known zones in Cornwall and elsewhere, which
have lead, zinc, silver, copper and tin in a deepening sequence.
There were hundreds of veins thick enough and rich enough
to be mined within Cerro Rico; most were 100-600 mm wide,
though some locally thickened to 4 m. There were 35 main vein
systems, and only a few are shown on the cross section (Fig. 2).
The veins were banded with some open-space mineral fillings,
and intersected each other on a close spacing with wallrock
alteration and impregnation in between. Consequently, most
of the mountain was mineralised, and the workings became
extremely complex as they chased the best ore shoots.
Superimposed on the pattern of primary mineralisation,
there is a zone of oxidised, supergene enrichment about 300
m deep (Fig. 2). The primary ores average about 10 oz/ton
(0.034%) of silver, mainly from argentiferous tetrahedrite
(Cu12Sb4S13) and pyrargyrite (Ag3SbS2). But the secondarily
enriched zone contained native silver and chlorargyrite (AgCl)
that averaged more than ten times that value. Production from
the richest ores, from 1545 to 1570, was hand-picked by the
miners to reach the incredible grades of 7000 oz/ton - about
19% silver! - which were so easily smelted. Such grades could
never be maintained, but Cerro Rico eventually yielded between
30,000 and 50,000 tonnes of pure silver. At greater depths,
silver values declined, but the veins ran at 1-4% tin in cassiterite
(SnO2). Sphalerite (ZnS) and galena (PbS) were significant byproducts of the mining, and there was recoverable copper in
chalcocite (Cu2S) and covellite (CuS) in the supergene zone.
Cerro Rico is capped by a thin silicified zone enriched in silver,
which may have originated in a late stage of fumarolic activity.
Fig. 3. Miners roll a full tub of ore out
of the gently inclined main level
Evolution of the mines
The steep hillsides of Cerro Rico, laced with innumerable
veins that were so rich in oxidised ore, made the early mining
unusually easy. Adits could be driven into the hill at any level
and be guaranteed to reach workable veins. Silver production
peaked in 1592, when there were 612 mines on the mountain,
with shafts already reaching 250 m deep. There was an early
claim that there were 3000 “minas bocas” (adit mouths) on the
slopes above Potosi, though not all were worked at any one time
(Fig. 3).
A modern mining operation would have taken the
whole hill in one vast open-pit, but the historical alternative was
a host of small operations, each opening stopes in individual
parts of the richer veins. This encouraged rapid growth in the
mining, but eventually it had to wane, as extraction had to rely
on the thinner, leaner and less accessible veins. The decline was
steady and was almost uninterrupted from about 1700 to 1940.
By then the silver was almost exhausted. It is estimated that
the hill still contains 140M tonnes of ore with 0.017% silver
in veinlets about 10 mm wide, but this could only be won by
marginally economic open-pit working, which has also been
deemed unacceptable because it would destroy the “sacred
profile” of Cerro Rico.
From 1912 until 1985 the prices collapse, tin ore
was extracted from the deeper zone of high-temperature
mineralisation. The Pallaviri Mine worked from 1940 onwards,
following the veins in and around the feeder neck beneath the
dacite dome to a depth of 565 m (Fig. 2). And even when the
large-scale extraction of tin finished, there were still two more
phases of Potosi mining history to come.
The mines today
Vein mining continues today in Cerro Rico, more than 450 years
after it was started. The scale is now smaller, and the minerals
are different, because today’s main production is of zinc, with
lesser values of silver, lead and tin (in that order of value).
There are now about 6000 men working in and on Cerro Rico,
including many that are in daylight processing plants, and some
that are re-working old tip material. But there are still hundreds
of miners working underground, mostly in small teams ►
23
of 10-12 men. The available ore appears to be so marginal in
value that hand-working by small teams probably offers the
only scope for continuing extraction in Cerro Rico.
Each miners’ co-operative has its own patch within
the mountain, where they work one or more veins and gain
access and ore transport out through the old levels (Fig. 3). The
miners can work anywhere they want to, except where another
group has already started. They then sell their raw ore to any
of a dozen processing plants in Potosi (Fig. 1). These have
required more capital investment, because they have had to
install flotation plants to separate the sulphide minerals in the
lower grades of ore.
The effort involved in extracting the ore is enormous,
and is nearly all without machinery. Mineral from a single
Fig. 4. Diagrammatic section through a part of the working mine
sample stope, visited by the writer inside Cerro Rico, was taking
a tortuous path to daylight (Fig. 4). Ore that was visibly rich in
sphalerite was broken from a vein that was about 500 mm wide;
explosive was used in shot-holes created by hand with hammer
and star-drill. It was scraped out by hand to where it was loaded
into sacks and then dragged along a gallery. A hand-powered
winch lifted it 20 m to the next level, where it was loaded into
rail-tubs and pushed by hand along the transport level. The ore
was tipped out (Fig. 5) and shovelled into leather sacks, to be
hauled up the next shaft by electric winch. Re-loaded into larger
tubs, the journey out to daylight was downhill (Fig. 3), though
the empty tubs were pushed back up by hand.
Working conditions are appalling - hot, dusty and
low in oxygen (in thin air at an altitude of 4500 m).
Many galleries require crawling to get through, and the
only way into the small stope where two men were
Fig. 6. Squeezing over broken ore in the
only way into the stope, where miners wait
with cheeks full of coca leaves
Fig. 5. Tipping ore from a rail tub at the
foot of the winze on the transport level
24
working was a squeeze over a slope of broken ore in the ore
chute (Fig. 6). Ladders end on tiny platforms over deep shafts,
timber supports vary considerably in their condition, and some
galleries are protected only by old stone arches through tall and
ancient stopes. The miners permanently chew wads of coca
leaves so that they are too stoned to realise the awfulness of
their environment.
The miners earn about 800 bolivianos (£80) per
month, which is more than the potential earnings from desert
farming or urban sweatshops. Some auxiliary income is now
created from taking visitors on tours round the mines - though
Potosi attracts relatively few visitors, and not many of these are
crazy enough to take a mine tour. These are not for the fainthearted. Hot, breathless, stooping walks, precarious ladderclimbing (Fig. 7) and flat-out crawling firmly place a mine visit
in the “interesting experience” category. Furthermore, they start
with a visit to the miners’ market to buy explosives, detonators
and coca leaves to carry into the mine as a gift for the miners in
the most distant stope. A handful of agents in Potosi run daily
tours that are a very convenient way of seeing the mines; for
anyone who joins a tour; the experience will not be forgotten.
A silver future
Not long ago, it seemed that the focus of mining was moving
away from Potosi. A large open-pit mine has newly opened on
a somewhat similar orebody exposed on the altiplano 250 km
to the southwest. This is at San Cristobal, where a new mine
town has grown on the desert road popular with tourists from
Uyuni to Laguna Colorada. About 230M tonnes of workable
ore should produce about 13,000 tonnes of silver, together with
huge tonnages of zinc and lead from a huge, modern open-pit;
this is a massive ore deposit, though its silver grade of 0.006%
for the bulk ore of veins and wallrock is but a pale comparison
to the 19% in the richest of the Cerro Rico veins.
However, new geological explorations at Potosi have
discovered more silver in a series of sedimentary deposits
known as pallacos. There are two types of these. One group
are crudely stratified gravelly clays with dacite clasts, thought
to represent rain-triggered debris flows from screes on Cerro
Rico. The others are totally unsorted, with dacite boulders up
to 20 m across in a matrix of clay and tuff, and are interpreted
as landslides or late-stage lahars off Cerro Rico. In both types,
the dacite clasts are mineralised and silicified like their source
material high on the mountain. Pallaco deposits up to 20 m
thick are draped around the flanks of the mountain, and contain
at least 14M tonnes of ore.
Four of these pallaco ores are now being worked by
the world’s newest silver mine, San Bartolomé, operated by an
American company (Coeur d’Alene Mines) for the Bolivian
national mining corporation (Comibol), which has owned nearly
all the mining rights since nationalisation in 1952. The mine
is a shallow opencast operation where excavation of the ore
does not even require drilling and blasting; through stripping
only the flanks of the mountain, it will not touch any of the
old underground workings, some of which have significant
historical values, though it will rework some of the old dumps.
It came into production late in 2008, and should produce nearly
4000 tonnes of silver within a 15 year lifetime for the mine.
Pallaco deposits have not yet been found elsewhere;
they ought to exist on other mineralised and eroded volcanoes,
but so far nobody has looked for them. Meanwhile, the San
Bartolomé Project has given Potosi a new lease of life, with
hundreds of miners arriving at the new boom town. Cerro Rico
has not yet yielded all of its fabulous riches. ■
About the author
Dr Tony Waltham lectured in engineering geology for many
years at university in Nottingham, UK, when he wrote his
textbook Foundations of Engineering Geology, which is now widely
used for university courses and is into its third edition. He has
always travelled extensively in pursuit of his main interests
in geology underground, whether they lie in natural caves or
working mines. His research has been into ground collapse,
especially through sinkhole development in karst terrains. Since
retiring he has continued to travel and finds underground rivers
and active volcanoes equally exciting.
Acknowledgement
An earlier version of this paper appeared in Geology Today
(v.21, no.5, pp.187-190, 2005), and is reproduced by kind
permission of the editor.
Fig. 7. Ladders down to the lower levels
25
We open up perspectives.
Oil and gas is our business. From Argentina to Russia we operate successthe exploration, production and marketing of hydrocarbons. In order to
and grow our position as Germany’s largest producer of crude oil and
we are seeking engineering and geoscience graduates for our
fully in
strengthen
natural gas
Special Professional Experts Accelerated Development
(SPEAD) Programme
The aim of the SPEAD programme is to develop young and highly qualified university graduates
within our company. We offer you a tailor-made combination of “on the job training” supplemented with dedicated technical training over a 2-year period in order to equip you with the
skills and competencies to excel in your future role within Wintershall. Prerequisite for the
SPEAD programme, and for employment with Wintershall, is your mobility and enthusiasm to
take on demanding international positions for several years. For further information about the
SPEAD programme and the application process please visit our website or contact us directly:
Wintershall Holding AG
Human Resources
P.O. Box 10 40 20
34112 Kassel
Germany
[email protected]
www.wintershall.com
Shaping the future.
27
MSc Thesis
The Depositional Environments and Shallow Subsurface Architecture of the Northeastern Caspian Sea
By V. Verlinden
Supervisors: Dr. A. Moscariello, Dr. R.M. Hoogendoorn.
The Caspian Sea is the largest continental water body on Earth
and located at the border of Europe and Asia, East of the
Caucasus, and North of the Elbruz mountain range. The sea
forms a completely enclosed basin. Because the Caspian Sea
is not connected to any ocean, the water level is dependent
on the inflow of river water and evaporation. This causes the
water level to be very dynamic. Therefore, sea-level cycles at
multiple scales have taken place frequently in the past. The last
full sea-level cycle occurred between 1929 and 1995 and had an
amplitude of 3m (Kroonenberg et al. 2000). Sea-level change
has a large effect on sedimentary processes in coastal areas. The
Caspian Sea is often used to study the effects of sea-level change
on coasts (Kroonenberg et al. 2000, Overeem et al. 2003, and
Hoogendoorn et al. 2005). The results of these studies are of
great importance to study the effect of eustatic sea-level change
and analogue studies for hydrocarbon reservoirs. Relatively less
research has been done in the Northeastern Caspian Sea, which
is the flattest and shallowest part of the sea. In the last couple
of years, more interest has been shown for the deep and shallow
geology of the Northeastern part of the Caspian Sea. Multiple
hydrocarbon fields are developed in the area, including the
Kashagan field, one of the world’s largest new discoveries. The
field is developed from manmade artificial islands. Information
about the distribution of sediments in the shallow subsurface
“the subsurface architecture” is crucial for the construction of
these offshore production facilities. The subsurface architecture
is largely governed by changes in depositional environment
through time, which is the combination of physical processes
that lay down sediments. The Caspian sea-level change has a
large effect on the depositional environments in coastal zones.
Therefore, the objective of this study is to increase the knowledge
of the depositional environments and
shallow subsurface architecture of the
Northeastern Caspian Sea. This was
achieved by analyzing 6 newly drilled
cores, existing geotechnical cores,
seismics and cone penetration test data.
The depositional environments were
determined and a sequence stratigraphical
framework was developed. Finally, a 3Dsubsurface model was build to visualize
the subsurface architecture and test the
developed concepts. The results can be
used for the development of the North
Figure 1:
Caspian offshore-petroleum-production
Satellite image showing the
Caspian Sea and the study facilities, as an analogue for reservoirs
area
deposited in similar conditions and to
study the effects of sea-level change on
other low gradient coasts.
28
The present coastal zone of the Northeastern Caspian Sea can
be divided into four areas, a coastal plain, mud flats, a reed-bed
barrier zone and the open sea bordering the reed-bed barriers.
Because of the gradual change from sea to land with reed in
between and the dynamic sea level, the coastline is hard to define,
it can shift over tens of kilometres in a couple of years due to
sea-level change. Satellite images show that during the latest sealevel rise of 3m, the coastline shifted 40km landward.
The six new drilled cores have been drilled to a depth of 10m
in the Northeastern Caspian Sea. The water depth at the drilling
locations is very shallow and ranges between just 2m to 4m.
A part of the project was to drill the actual cores on location
offshore with Fugro. Because it was not allowed to transport
the cores out of the country, also the core analysis was done in
Kazakhstan in the oil-boom town of Atyrau. A sedimentological
analysis was performed and samples for radiocarbon dating and
biostratigraphical analysis were gathered. In addition, a large
amount of shallow subsurface data was already available from
cores, cone penetration tests and seismics, which were acquired
during the development of offshore hydrocarbon-fields in the
area.
Figure 2:
The Fugro drilling
barge at location in
the Northeastern
Caspian Sea.
Four different units were recognized in the cores. The deepest
sediments found, below 9m below seafloor (bsf), was a
hard overconsolidated sand unit. This unit was named “the
overconsolidated sands”. Above the overconsolidated sands, a
thick silty clay unit between 4 and 9m bsf was found, containing
organic rests. This unit was obviously named “the silty clays”.
Above, between 1,5 and 4m bsf, a homogenous brown medium
to fine grained sand unit was found. This unit was named “the
brown sands”. The shallowest unit was observed between 0 and
Table 1
Table with the 4 units, properties, depositional
environment and radiocarbon dates.
1,5m bsf and consists of a grey sand layer with a high amount
of shell fragments and silt, clay and gypsum laminations. This
layer was called “the grey sand” unit.
Using the sedimentological, biostratigraphical and seismic data,
interpretations for the depositional environments of these units
could be made. Some resemble the present morphological zones
in the area. The overconsolidated sands were interpreted as
being deposited as longitudal aeolian dunes, which were partly
reworked by coastal processes. The silty clays were interpreted as
being deposited in a lagoonal environment and the brown sands
in a barrier-like environment. The grey sands were deposited in
the most recent depositional environment, characterized by a
low sediment influx and frequent small scale sea-level changes.
Radiocarbon dating of molluscs was performed and resulted in
dates between 27.000y BP and at least 48.000y BP.
Sequence stratigraphy was used to link the sediments to sealevel change. The sequence stratigraphical analysis showed
that the overconsolidated sands have been deposited during a
lowstand and reworked during a subsequent transgression. The
silty clays and brown sands have been deposited during at least
one sea-level rise, but possibly multiple sea-level cycles. The
erosional surface between both units can either be interpreted
as a ravinement surface or a subaerial unconformity. Between
the deposition of the brown sands and grey sands, erosion
occurred. From this, the conclusion can be drawn that the
sediments encountered in the cores are deposited during at least
three but more likely 4 large scale sea-level sequences.
When placing the results from the sequence stratigraphy and
dating in a historical context, multiple sea-level graphs can be
constructed, based on the dated samples and already known
sea-level history (Dumont 1998, Kroonenberg 2008, Mamedov
1997 and Rychagov 1997). A sea-level lowstand can be placed
during the deposition of the verconsolidated sands, between the
deposition of the silty clays and brown sands or after the deposition
of the brown sands. The erosional surface between the brown
sands and recent grey sands is probably created during the a sealevel lowstand known as the Mangyshlak regression or Derbent
regression.
A
subsurface
model in Petrel was
build to visualize
the
sediment
distribution
in
3D. Correlations
between the new
drilled
cores,
geotechnical
boreholes
and
cone penetration
tests were made.
The 4 lithofacies
Figure 3:
Image showing the results in a sea-level graph; The C14 dated samples (dots)The erosional
surfaces found in the cores (red spotted lines); Three possible Caspian sea-level curves for the
period between 60.000y BP and 20.000y BP (the three dotted lines); The four different phases
of deposition (indicated in grey); The Composed Caspian sea-level curve from literature (grey
line) (after Dumont 1998, Kroonenberg 2008, Mamedov 1997and Rychagov 1997).
units can be correlated over large distances, in the range of
10-30km. Between the correlated units, 3 dimensional surfaces
were created.
Figure 4:
Correlation
between the core
logs, geotechnical
logs and cone
penetration tests.
To determine
the variation
in sediment
distribution
within
the
main
units,
variog rams
were
made
for all types
of sediments
in each unit.
These were
later used to model the sediment distribution in the 3D model.
The sediment distribution in a vertical direction was determined
by making curves, showing the percentage of each sediment
type encountered in the cores versus their depth in the model.
These curves were made for all sediment types, all with the
data from the geotechnical and CDS-cores. They indicate that
the sediments within the overconsolidated sands are uniform
distributed vertically. Within the silty clay unit, the silt content
increases towards the top of the zone. Within the brown sand
unit, a slight increase of silty clay ►
Figure 5: Modeled surfaces, separating the 4 different units.
29
towards the bottom of the unit was noticed. In the grey sands,
an increase in shell debris towards the top was noticed. The
sediment distribution in the horizontal plane was determined
with maps showing the summed thickness observed in the
wells. In the silty clay unit, they indicate an increase in silt
seaward. In the brown sand unit a high sand content parallel to
the shore is observed with more silty clays coastward and silt
in a seaward direction.
To “fill-in” the model with sediments, a process called facies
modelling was performed. With all the available data, an
expectation to find a specific sediment at a certain place in the
model can be calculated. These values are used to generate
a deterministic model. The overconsolidated sands are
modelled with object based modelling, which creates sediment
shapes, with dune shapes and sizes derived from the seismic
data. The other zones are modelled with truncated Gaussian
modelling, which is a stochastic technique that can use the
sediment thickness maps, vertical sediment percentage trends
and data driven variograms of the sediment distribution.
The object-based modelled overconsolidated sands, show
similar shapes, sizes and orientations as the longitudal-dune
features observed in the seismics. The facies model of the
silty clays shows an increase of coarser sediments towards the
top of the unit on the seaward side of the study area. These
coarser deposits can be related to overwash deposits of a
barrier complex seaward of the study area. Lithology thickness
maps within the brown sand unit show an accumulation of
sand parallel to the coast, with a higher clay fraction coastward
and a higher silt fraction seaward. This sand accumulation
is interpreted as a relict barrier complex and enforces the
concept of deposition in a barrier-like environment. The
model of the grey sands shows a high heterogeneity, especially
perpendicular the shore, and has a high shell fragments
content in the top layers.
The research shows that four lithofacies, deposited in
different depositional environments were found in the cores.
The oldest deposits are dated before 48.000y BP, they have
been deposited as aeolian dunes during a lowstand and were
reworked during a sea-level rise by coastal processes. On top,
lagoonal sediments are deposited between at least 48.000y BP
and 42.000y BP during multiple centennial to millennial or
less frequent sea-level cycles. These deposits are overlain by
barrier-like sands, deposited during sea-level rise. They have
been radiocarbon dated around 27.000y BP. The sediments in
the top of the cores have been deposited after the sea-level
lowstand known as the Mangyshlak or Derbent regression
in an environment with a low sediment influx and frequent
sea-level changes. The 3D-subsurface model shows how these
sediments are expected to be distributed in the subsurface by
the different depositional environments which occured side
by side in the low gradient environment of the Northeastern
Caspian Sea. ■
References
Kroonenberg, S.B., Badyukova, E.N., Storms, J.E.A., Ignatov,
E.I., Kasimov, N.S., 2000. A full sea-level cycle in 65 years:
barrier dynamics along Caspian shores. Sedimentary geology,
134, 257-274.
Overeem, I., Kroonenberg, S.B., Veldkamp, A., Groenesteijn,
K., Rusakoc, G.V., Svitoch, A.A., 2003. Small-scale stratigraphy
in a large ramp delta: recent and Holocene sedimentation in
the Volga Delta, Caspian Sea. Sedimentary Geology, 159, 133157.
Hoogendoorn R.M., Boels, J.F., Kroonenberg, S.B., Simmons,
M.D., Aliyeva, E., Babazadeh, A.D., Huseynov, D., 2005.
Development of the Kura delta, Azerbaijan; a record of
Holocene Caspian sea-level changes. Marine Geology,
222/223, 359-380.
Dumont, H.J., 1998. The Caspian Lake; History, biota,
structure and function. Limnology andOceanography, 43, 1,
44-52.
Kroonenberg, S.B., Kasimov, N.S., Lychagin, M. Y., 2008.
The Caspian Sea, a natural laboratory for sea-level change.
Geography, 1, 22-33.
Mamedov, A.V., 1997. The late Pleistocene-Holocene History
of the Caspian Sea. Quarternary International, 41/42, 161166.
Rychagov,G.I., 1997. Holocene
oscillations of the Caspian
Sea and forecasts based on
palaeogeographical reconstructions.
Quarternary International, 41/42,
67-172.
Picture 6
3-dimensional-subsurface model,
showing the sediment distribution
in the shallow subsurface of the
Northeastern Caspian Sea.
30
European Mining Course 2008 - 2009
In your fourth year of Mining Engineering, there are several
possibilities. You may either study abroad (Canada, USA, South
Africa, Australia) or participate in one of three existing Erasmus
Mundus Minerals and Environmental Programs (EMMEP). I
preferred the EMC, because the program is especially created
to shape participants into all round mining engineers, has a
high degree of company exposure/involvement, and because
it is supposed to be a lot of fun. The program is hosted by four
different technical universities in Helsinki, Aachen, Falmouth,
and Delft which are attended in that order.
It all started in Finland. Not knowing what to expect I arrived fully
packed at the hostel just before nightfall, where I was told at the
reception that my roommate was already in the room. ´Put your bags
down. Do you fancy a beer later on?´ What a relief... As Chris Penna
(UK) introduced himself I realized that we were going to get along
well. Important given the size of the room and the fact that we were
going to share it for the next two months. The next day I met the
rest of the group. Eighteen people from all over the world. One
of them I knew, Manu Shikongo. I had met him before during an
internship at an uranium mine in Namibia. Nice guy. During that
first day I think I spoke to everyone on the course, which was a good
thing because (as is customary in Finland) we ended up in the sauna.
During the next four weeks we attended classes together, went to the
sauna immediately thereafter (which we had arranged for free at the
hostel, due to the fact that the showers were broken on our floor),
and either had assignments to finish or explored Helsinki at night.
After these weeks followed nearly two weeks of excursions. First to
Estonia to visit oil shale operations and a limestone quarry. We were
welcomed warmly by the local students who accompanied us on the
company visits and later invited us to the initiation of their first year
students in the cellar of a castle which was interesting. Then a trip
through Sweden and Finland followed which started on a party boat
from Helsinki to Stockholm and proceeded to some of the world´s
most high tech mines (and usually a sauna afterwards). Exams in
Automation & Maintenance, Surpac Training, Mining Technology
& Mineral Economics, and Rock Mechanics concluded our stay in
Helsinki and the group continued on to Germany.
In Aachen everything had been arranged very well. In Vaals (where we
stayed) I shared a bungalow with Chris and a Fin called Juhani. We had
more space than in Helsinki but also needed it. Studying in Germany
is hard work. Seven weeks of long days were fortunately interrupted
by the Christmas market, the FEMP reunion in Poland (where old
and new students meet the sponsoring companies), some excursions,
and a fire rescue training. The program was challenging, mostly
due to the quantity of material to study and nature of assignments
given. Courses included Open Pit Mining, Environmental Issues,
and Mine Ventilation. Like in Helsinki, all exercises were group
exercises. Tensions started to build up as everyone was continually
under pressure. The fact that exams were given immediately after
the course itself was nice, but this meant that you would spend
your weekends either completing assignments or preparing for an
exam. In hindsight however, I realize that the pressure was probably
intentionally brought on and useful to have experienced. In addition,
I got to know the other EMC students better. The girls organized a
Christmas get together and I learned from Abdul Rashid Sesay (Sierra
Leone) that he had 22 brothers and sisters (among other things). It
was interesting.
After Christmas we were expected in London for some company
visits: BHP Billiton, Anglo American, ING, and the London Metal
Exchange. Afterwards I travelled to the southernmost part of England
with Joe Carr (UK). Once we arrived in Falmouth we set up camp in
an enormous secluded mansion with a heated pool. What a contrast
with previous accommodations. Juhani, Mark Fry (UK), and Claire
Barr (UK) – a girl from the EGEC group with whom we were joined
during our time in England joined us in our house. The first week we
spent at the CSM Test Mine, where we did some drilling, charging,
blasting, and mucking. Due to the many nationalities in our course
our presence there made it to the centerfold in the local newspaper.
The Camborne School of Mines offered excellent classes, challenging
exercises, but also a lot of free time to organize social events (when
it snows in England the whole country grinds to a halt) and explore
the English countryside (when it’s not raining…). And we did. With
Claire I visited castles and beaches and together with Juhani, Mark,
and Joe I did some sports and games. Falmouth itself is a nice student
town with lots of places to eat and go out and it’s quite easy to meet
people. Courses such as ´Surface Excavation & Design´ and ´Project
Management and Financial Appraisal´ made our time in England
interesting from an educational point of view.
Last but not least I arrived in Delft: Happy to be reunited with old
friends and grateful for all the comforts of home. Alluvial mining,
Industrial Minerals and Mineral Economics were all interesting, but
the case study was what we had been groomed for all year. We worked
as one group on a single project for five straight weeks only to present
our findings in four minutes each and not talk about it to anyone
else (it was an existing project). The result was worth it. The EMC
students especially enjoyed ´Queens Day´ and “Het Noorden“, but
also the excursions to IHC Holland, Smals Bouwstoffen, Shell and a
group intercultural therapy session.
In conclusion I can personally state the following about the EMC.
The EMC is a unique experience. The program offers a diverse
package of subjects and is clearly designed to make better, all-round
mining engineers out of us all. Although one is continually pressed
for time (dealing with this pressure is one of the main challenges
in the course), the program remains enjoyable due to good lectures,
several excursions, company visits, some organized social events, and
the fire rescue training. The program requires a significant amount
of adaptability to continually changing circumstances which are
often less than ideal. It is quite a thing to spend eight months in four
different countries with 17 other students (whom you have never met
before) from all over the world, 24 hours a day, seven days a week. All
told I experienced the EMC as socially and intellectually challenging,
but also rewarding. I have made friends whom I like to stay in contact
with and I think that the EMC has been beneficial in shaping me into
a better mining engineer. For these reasons I would recommend the
program and like to thank FEMP and the industry for making this
possible. ■
Glück auf!
31
Miners in the Movies
Pulp Fiction
Pulp fiction actually consists of multiple storylines which
interact at certain points and are told in a nonlinear fashion.
One of the main storylines is about two Mining students,
Vincent and Jules, who are sent out to retrieve a briefcase that
was stolen from their employer, Marcellus Wallace. The movie
never clearly indicates what exactly is in the briefcase, we just
know that is very important. When people open the briefcase
a golden shine can actually be seen coming from within and
people look in awe at the contents of the briefcase.
Lesser mortals have been discussing endlessly on the internet
what the contents of this magical briefcase might be, but for
us Miners it is completely clear. The briefcase contains nothing
less than Casper the Mining Ghost. Marcellus Wallace actually
is no one less then the Beheerder of ‘Het Noorden’. Some
32
32
environmental terrorists stole Casper from the ever watchful
eye of the Beheerder and were planning to unleash him upon
the Mining world to sow death and destruction. The Beheerder
cannot let this happen and sends two of his most trusty Miners
to get Casper back.
The second major story line is about Butch, a Miner who is
asked by Marcellus de Beheerder to go down in a drinking game
to win a bet. Butch agrees to go down after the fifth beerglass
of gin (jenever), but when he finds out his opponent is a civil
engineer he decides he cannot degrade his honor so shamefully.
He goes on to win the game, as the fifth glass actually kills the
puny civil engineer (‘man of concrete’, don’t make me laugh).
Of course, the Beheerder cannot tolerate insubordination and
goes after Butch. But when it is Miner against Miner things get
tough and nasty very quick...
My dear ladies and gentlemen, what you are reading
right now is probably my final contribution to Miners in
the Movies. It has already been two years since I started
writing this column and sadly the time has come that I
have to stop. For this last installment the initial plan was
to do Ghostbusters, a movie I am very fond of and which
is actually quite a bit different from all the other movies
we have done so far. Sad to say, we were unable to tear
four of our teachers away from their toils and troubles
for an hour at the same time. So when the deadline kept
creeping closer and closer we had to find an alternative
quickly. Desperate times ask for desperate measures, and
we grabbed back to what was familiar, what was reliable,
and what was very, VERY cool. In other words; another
Quentin Tarantino movie. To be more specific: THE
Quentin Tarantino movie, ‘Pulp Fiction’, which many rate
as his best movie (personally I think ‘True Romance’ is his
best, but he only wrote it and did not direct). So I hope you
enjoy this last installment of Miners in the Movies just as
much as I have enjoyed putting some Mining in some of
the classics.
culprits are so scared of the two
Mining students that they give
up the briefcase like whiney
little statisticians. But then Jules
starts to sing the Glück Auf.
And when Jules starts to sing
the Glück Auf, people tend to
start dying… ■
This scene
Vincent and Jules are getting back the briefcase of Marcellus
Wallace. They have just arrived at the apartment of the thieves
and get their pick-axes from the trunk. Vincent has been asked
by Marcellus to take out his wife Mia as he is going to be out of
town and someone needs to entertain her. Jules warns Vincent
and tells a story about what happened to the last guy who got
involved with Mia. The man got thrown in a ball crusher, and
the only thing he ever did was show her his rock collection.
But as we all know, you never ever show your rocks to the girl
of a Miner! You might as well strip down in front of her while
singing “Ride it, my pony” and things would still have turned
out better.
Vincent and Jules continue with their mission and enter the
apartment of the thieves to retrieve the briefcase. The four
Jules Winnfield is played by Pacelli
Zitha,chemical engineer, professor of
petroleum engineering and he who actually played badass #2 in the original
Shaft movie.
Vincent Vega is played by Pascal
de Smidt, student advisor and who I
suspect to actually be no one less then
Elvis. Don’t belief us? Just look at
the picture to the right, take away the
hair, and age it a little. There is a
reason why Pascal shaves his hair that
short, you know.
Text:
Nanne Boogaerdt
Photo enhancement:
Sanne van der Plas
33
33
The bright side of technology
Getting as much oil as possible out of a reservoir has
always been the industry’s prime goal. Where pressure
has dipped, this often involves using water as a means of
flushing it out. However, such methods only work to a
certain extent, as water follows the path of least resistance,
leaving tougher areas ‘unswept’. But, as Derek Smith
discovers, new technology is helping BP lead the way in
solving the challenge.
Maximising oil recovery from existing resources has always
been desirable. Now, it is a major priority. Doing so sustains
the economic life of existing surface and sub-surface assets
and is typically cheaper and less energy-intensive than new
exploration-led developments. In an environment where energy
security is high on the world’s political agenda, technologies
that improve recovery have serious commercial and strategic
value.
With oil and gas set to remain the planet’s main source of
energy in the coming decades, there is every incentive to recover
the maximum amount of oil possible from known reserves. Oil
recovery rates – the amount extracted from a reservoir – average
just 35% worldwide. BP estimates that a one percentage point
increased recovery from its reservoirs would yield an additional
2 billion barrels of oil equivalent. Clearly, within this context,
technologies that improve recovery offer a valuable prize.
A well-established method of improving oil recovery, is to inject
water into a reservoir, creating what is known as a ‘water flood’
or ‘sweep’. By injecting water through a network of injection
wells, the pressure in the reservoir is maintained as the oil is
produced. The water effectively pushes out more oil from the
porous rock structures where the oil is found. Approximately
60% of BP’s oil production already comes from water floods –
a level set to rise to 80% by 2010.
Across the petroleum industry, technologists have long sought
to increase the effectiveness of water floods, tackling the key
problem of how to improve that effectiveness deep in the
reservoir. Within any reservoir, permeability variations, either
vertical or aerial, stimulate the formation of water pathways.
Once a continuous outlet exists, there is less attraction for the
injected water to follow an alternative route. Consequently,
the water injected to push the remaining oil from the reservoir
simply bypasses it and flows through the easiest path. The
end result – and undesirable outcome – of this, is that the
production well delivers more water than oil and the efficiency
of the process gradually diminishes. In some circumstances,
the volume of water entering the production well, can actually
cause it to cease flowing, leading to corrosion of the pipes and
tubing. These challenges are common across the industry – and
familiar, of course, to BP, who, as a result of them, produces
more water than oil.
Physical approaches, such as injecting cement, have been used
to plug the layers producing the water and force more oil from
the reservoir. These have had success, particularly when the
34
plug is located between impermeable layers of rock within the
reservoir. But, experience has also shown that this method is
not always effective. The heterogeneity of reservoirs and their
different permeability characteristics, means that the water often
finds a way round the plug and eventually communicates with
other layers in the reservoir.
BP and other technologists have been working for many years
to make improvements. Now, a new technology – known as
Bright Water™ has been developed. In the view of Andrew
Cockin, director of the Pushing Reservoir Limits technology
programme, “Bright Water
is
a
groundbreaking
technology, which can bring
about a step-change in the
industry’s ability to improve
water floods.”
Bright Water is a dispersion,
comprising a tightly-bound,
thermally-activated particle, sub-micron in size, which is
injected into water. It flows with the water and warms as it
passes through the reservoir. It heats fastest in layers where
the water has pushed ahead of the main flood and is flowing
between the unswept, hot rock above and below. It is here that
the polymer essentially pops open or expands, blocking the
better-swept zones deep in the reservoir. In layman’s terms, it is
akin to the popping of a kernel of popcorn, creating an effect
within the reservoir which blocks used water pathways and, by
so doing, diverts water vertically or horizontally to zones that
were previously poorly swept.
One of the striking characteristics of Bright Water is that it
activates where it is needed, without having to have detailed
understanding of the reservoir’s geology. It can be made to
expand or ‘pop’ at the precise location in the reservoir, where
it is most needed. In addition, as the particles are so small,
they have no impact on the capacity to inject water into the
reservoir. The use of Bright Water, therefore, significantly
enhances the recovery of oil without the ‘injectivity loss’, which
typically results when materials are added to the injection water
introduced to a reservoir.
The development of Bright Water is a story of technological
excellence, coupled with unusual personal dedication and
perseverance. More than 10 years has gone into its creation – a
body of work recently rewarded by winning a Helios Award in
BP’s annual internal recognition programme. In 1997, a research
joint venture formed between Mobil, BP, Texaco, and Chevron
– called MoBPTeCh – was created to explore high-risk, highreward projects. At BP’s instigation, Bright Water was the first
of its initiatives.
Harry Frampton, a senior petroleum engineer within the
reservoir applications team, has been an integral part of this
project. On joining BP in 1997, Harry began work on water and
gas treatments, tasked with developing innovative approaches
to the challenge of maximising reservoir output. As one of the
inventors, he has been involved in Bright Water’s development
since its inception.
Two years of sample development and evaluation in the labs
at BP were rewarded in January 2000, when the chemical and
technical potential of a product which became known as Bright
Water, was proved in a laboratory environment. The successful
formation of an effective block some six to nine metres (2030 feet) within a tube of sand consisting of multiple 10-foot
sections demonstrated the approach’s potential.
Initial field trials, carried out in the Chevron Minas field in
Indonesia, focused on the logistical and practical challenges of
manufacturing, supplying and using Bright Water in a production
environment. Delivering, mixing and injecting the Bright Water
and detecting the blockage in the reservoir were proven to be
practical. In addition, although not the focus of these efforts,
incremental oil was produced.
As is the case with many technological breakthroughs, moving
from demonstration trials to larger-scale applications was not
without its difficulties. Further trials were designed and carried
out in the North Sea. While Bright Water was successfully
injected into the Arbroath reservoirs in 2002, the sale of these
assets and the different imperatives of the field’s new operators
meant that there were no usable results.
The key developments occurred at BP’s fields in Alaska, at
the mature assets of Milne Point and Prudhoe Bay. Again,
the personal efforts of committed individuals, in planning
the trials and carrying them out in remote environments
and Arctic weather conditions, were crucial. Working with
Danielle Ohms at Milne Point and Steve Carhart at Prudhoe
Bay, commercial trials completed in 2004-2005, yielded
successful results in 2005-2006. Seventy nine thousand
barrels of incremental oil have been produced at Milne Point
and 475,000 barrels to date from the three wells in adjacent
geological patterns in the trials at Prudhoe Bay.
Many factors have combined to bring Bright Water to its current
position. At heart, is the sheer quality of the research, coupled
with the tenacity needed to carry through an idea from concept
to patenting, to extensive testing and practical application. This
has involved navigating changing commercial environments, and
responding to wider organisational factors, such as portfolio
adjustments and changing operating priorities. In the view of
Frampton, “the alignment, clarity of purpose and commitment
of the team has always been crucial.”
Further field trials were
initiated through BP with
Pan American Energy –
a joint venture in which
BP holds a considerable
equity – in June 2007, at
the onshore Koluel Kaike
and Piedra Clavada fields
in Argentina. Trials are
also underway at two Figure 2: A pumpskid
wells in the Tangri field
near Karachi in Pakistan
and the Chevron Strathspey field in the UK North Sea. Early
indications, from monitoring of oil and produced water and
pressure fall-off tests, suggest that they are looking promising.
Comprehensive results will be available from mid-2008.
The team is actively working with assets in Europe, Africa
and Russia to introduce the technology into the best possible
locations as quickly as possible. Factors, including reservoir
characteristics, pH and salinity levels, and whether a project such
as this comes sufficiently high on the priority list of the asset in
question (who typically have several potential opportunities and
challenges for continuous operational improvements), need to
be taken into account. A decision on whether to apply Bright
Water will always be stacked up against other options; but as a
means of lowering the cost of incremental oil, the process has
a strong story to tell and is likely to become evermore attractive
as ‘learning-by-doing’ and scaling-up drive further reductions
in the incremental cost per barrel.
Enhanced oil recovery is coming of age – oil companies
worldwide recognise there are fewer untapped areas to access,
and the risks and costs of new development are high. On the
north slope of Alaska, miscible gas injection, extended-reach
drilling and coiled tubing, have steadily enhanced the recovery
factor from an original estimate of around 40% to more than
60%. The future use of time-lapse or 4D seismic surveys and
other reservoir investigation techniques will increase the ability
to track water underground and improve the capacity to ►
Figure 1: Bright Water technology has
been successfully tested at Prudhoe Bay
and Milne Point in Alaska.
35
increase yields. As part of BP’s technology programme to push
reservoir limits, Bright Water sits squarely within this portfolio.
BP believes that it will produce significant volumes of additional
oil for the company over the next 20 years – roughly equivalent
to finding a major new field – generating approximately 2-3%
more recovered oil in fields where it is used. Ten years of
development, testing and learning-by-doing stand it in good
stead to gain future benefits. Arguably, what is even more
exciting is the fact that it is just one of several areas with
real potential being developed in BP’s technology leadership
flagship programmes for research and development. Bright
Water shows that great ideas, allied with tenacity, can bring such
developments to fruition. Bright Water is now on the cusp of
wider commercial dissemination. Market interest is high. In the
meantime, existing applications continue. It is estimated that the
benefits of Bright Water in the Prudhoe Bay field will continue
for at least another ten years and its use there is on track to
deliver a further 2 million barrels in total. ■
About the author
Derek Smith is a writer and consultant on sustainable
development issues, and has worked widely on issues of
sustainability, technology and risk management in the oil and
gas industry.
Thanks goes to Illustrator Lance Bell who kindly has provided
illustrations for this article.
Bright Water is a trademark of the Nalco company.
Figure 3: Above, as Bright Water is injected into the reservoir, it heats up and blocks
used water pathways. In so doing, it diverts the water vertically and horizontally to
zones that were previously poorly swept.
36
Weber Puzzle
37
Incorrect Addresses
Ir.
Prof.
Ir.
Ir.
Dr.
Ir.
Ir.
Ir.
Dr. Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Dr. Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Dr. Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Dr. Ir.
Ir.
Ir.
Ir.
The address file of the Mijnbouwkundige Vereeniging is since long time one of the best alumni
databases in Delft. However because miners move all over the world in their careers, we sometimes
find the data contains a former adress. If you happen to know an alumnus of the list below, you
can help us by mailing his/her current adress to the Mijnbouwkundige Vereeniging.
S
P.E.
A.
M.
E.
J.
H.
A.H.F.
P.J.
F.G.
J.P.
H.G.
A.
R.J.
E.
P.E.
J.P.M.
E.
J.F.
F.J.H.
G.
J.W.E.
P.W.
R.L.
H.P.
R.
J.
J.W.
C.A.
J.P.
K.A.T.
F.D.
W.
P.K.
M.P.
S.
R.A.
A.
J.M.
M.G.
A.
J.T.
R.M.
E.
E.F.M.
H.
L.B.
F.M.
L.A.
M.J.
H.
H.H.
B.
J.W.
E.P.T.
H.L.
C.G.
C.P.
G.C.J.
S.A.
L.W.
M.L.P.
M.P.
M.W.P.
P.A.
A.G.M.T.J.
E.J.
van der
van
de
van der
van der
van
van den
van
van de
van
van
van
van
van
van
Tigrek
Poel
Ziolkowski
Berkel
Vries c/o the Macneal
Visman
Laan
Graadt van Roggen
Johannes
Hoeven
Cruyningen
Coleridge
Waterreus
Hofland
Keddeman
Stek
Ruijsenaars
Brand
Houtzager
Dirks
Smeets
Buitenen
Wasterval
Heuvel
Klaassen
Visser
Ierland
Brinkhorst
Bruijnzeels
Hofland
Bours
Vermeulen
Ottes
Manen
Koster
Sidharta
Hulscher
Kersen
Zuidberg
Dierendonck
Hoogendoorn
Boerma
Bartstra
Quadt
Ham
Gurcoglu
Eleveld
Kramer, FPB1
Latum
Mes
Nienhuis
Tijhof
Tanesha
Put
Smits
Attema
Waverijn
Visser
Holstege
Keiman
Koetsier
Martens
Kuppers
Dillen
Vercruijsse
Moonen
maarss
1932
1941
1945
1946
1946
1948
1955
1956
1958
1964
1966
1967
1967
1968
1969
1969
1970
1970
1973
1976
1977
1977
1977
1978
1978
1978
1978
1979
1980
1980
1980
1980
1981
1981
1981
1981
1981
1981
1981
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1983
1983
1983
1983
1983
1983
1983
1983
1983
1984
1984
1984
1984
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
Ir.
M.M.
D.B.
W.O.
M.
L.O.A.
P.W.
A.J.C.
R.G.
S.G.
C.W.J.
F.L.M.
P.L.
I.
M.
N.J.
K.P.
J.B.
J.M.C.
F.
H.
R.J.
L.J.
V.
W.S.
H.B.E.
M.L.A.
W.
X.
M.
R.A.
C.H.J.
J.H.
D.
R.J.J.
A.D.
P.P.
D.
J.G.
D.
P.H.
C.M.D
R.
B.R.
P.
G.T.
B.
F.N.
M.
K.A.
C.
J.P.
K.R.
E.F.
F.T.
M.K.
W.
A.J.
F.A.
J.J.
J.K.
F.G.C.
T.
M.G.H.
F.J.T.
M.R.
R.P.
R.
J.B.
van
de
de
van
de
van den
van
van
van
van
de
van
van
van
Soeters
Bosman
Rogaar
Joachimsthal
Alfers
Wilbrink
Pluym
Borselen
Hulshoff
Weert
Bever
Brunings
Hoogeveen-de Jong
Vermaas
Elzenga
Labberte
Hasselt
Hoogenbosch
Paleari
Koningh
Berkhout
Rieter
Hengst
Schmoutziger
Hylkema
Boon
Bharos
Weert
Bosch
Felix
Timmermans
Terwogt
Staalduinen
Meijers
Wormeester
Lingen
Niepce
Heikamp
Bongers
Woerdings
Kerstiens
Spruit
Joseph
Kengen
Meijer
Rademaker-Vrind
Mounzer
Ruyt
Olst
Dijksman
Elten
Heuven
Nederlof
Fedor
Keegel
Miedema
Beer
Kamminga
Hinthum
Vandehoek
Brouwer
Lefeber
Uijttenhout
Degener
Leeuwen
Losenoord
Formoso-Rafferty Castilla
Kruyswijk
If you are in contact with one of the miners listed above we would like
to ask you if you could mail his/her personal data to [email protected]
38
1985
1985
1985
1985
1985
1985
1985
1985
1985
1986
1986
1986
1986
1986
1986
1986
1986
1987
1987
1987
1987
1987
1987
1987
1988
1988
1988
1988
1988
1988
1988
1988
1988
1989
1989
1989
1990
1990
1990
1990
1990
1991
1991
1991
1991
1991
1992
1992
1992
1992
1992
1992
1992
1992
1993
1994
1994
1994
1995
1995
1995
1995
1996
1996
1996
1999
2003
2006
Graduation Subjects
17 juni 2009
Thai Son Tran: “Electromagnetic Assisted Carbonated Water Flooding in Heavy Oil Recovery”
8 juni 2009
Mathilde Robben: “Feasibility study on the use of NIRS sorting in the process of Skorpion zinc ore”
15 mei 2009
Stanley Slagmolen: “Economic Analysis of Deep Sea Mining Operation and Conceptual Design of Mining Machine”
Subtitle: “The Case of Ferromanganese Cobalt-rich Crusts on the Ratak Guyot”
8 mei 2009
Tim Drummen: “Calibrating the TU Delft double wall cell for investigation of the unsaturated behavior of Maastricht carbonate
sand”
27 april 2009
Vincent Verlinden: “Depositional environments and subsurface architecture of the Northeastern Caspian Sea”
7 april 2009
Thom van der Heijden: “Modeling of Miscible CO2 Foam Displacements with Oil”
1 april 2009
Nasrein Agage: “Fracture Network Connectivity”
27 maart 2009
Job Kruyswijk: “Pre-feasibility of Underground Coal Mining in the Peel Area”
20 maart 2009
Jaya Kisoensingh: “Geological interpretation and Modeling of an Oilshale-fire; Kimmeridge-England”
MV Agenda
12
16 - 20
27
31 - 3
4
9
18
2
7
6
augustus
augustus
augustus
aug./sept.
september
september
september
oktober
oktober
november
•
•
•
•
•
•
•
•
•
•
“Het Noorden” weer open na vakantie
OWEE
MV en KIVI vieren 150-jarig jubileum van eerste olieboring in “Het Noorden”
Nuldejaarschexcursie
Barbaraborrel verzorgd door het epo-bestuur 118
Algemene ledenvergadering en bestuurswissel
NoCo wissel
Barbaraborrel
Lezing over geschiedenis van Aardwarmte i.s.m. DAP en KIVI op fac. CiTG
Barbaraborrel: de Mosselmaaltijd
Colofon
De Natural Resource is een uitgave van de Mijnbouwkundige
Vereeniging, studievereniging van de opleiding Technische
Aardwetenschappen. Het periodiek wordt vier keer per
jaar uitgebracht en kosteloos verzonden naar alle leden van
de Mijnbouwkundige Vereeniging. Tevens worden er 100
exemplaren ter promotie aangeboden. Het merendeel hiervan
zal naar middelbare scholen in Nederland en naar relaties
worden verzonden.
Redactie
Robert-Jan Pielkenrood
Ko Korenromp
Koen van Toorenenburg
Ciarán Latooij
Laura van Leeuwen
Erik van der Putte
Daan van Berkel (QQ)
Colofon
Stevinweg 1
2628 CN Delft
E-mail: [email protected]
tel. +31 (0)15-2786039
Design
Shell, VMS, The Hague
Oplage
1600
Redactiesecretariaat
E-mail: [email protected]
Druk
Thieme Media Services, Delft
39
Protecting the environment
isn’t just in our interest. It’s in our nature.
We believe that developing energy and protecting
natural resources go hand in hand. So when we
look to the world’s future energy demands, we
never lose sight of our planet. With some of the
industry’s highest environmental standards, we’re
helping ensure that our human energy will always
be energy well spent.
To learn more, visit us at chevron.com.
CHEVRON and the CHEVRON HALLMARK are registered trademarks of Chevron Intellectual Property LLC. HUMAN ENERGY is a trademark of Chevron Intellectual Property LLC.
© 2009 Chevron Corporation. All rights reserved.