Natural Resource Jaargang 11 - Nummer 4 El Cerro Rico Gouden Ereleden The energy industry has it all! Officieel Orgaan van de Mijnbouwkundige Vereeniging en Technische Aardwetenschappen Barbaraborrels: 4 sep, 2 okt, 6 nov Into ice, snow, sleet, blizzards, and where day never becomes night. We’re going there and beyond. Careers in Engineering, Science & Business From Alaska to Azerbaijan, from the Gulf of Mexico to China, we have a vast operation comprising nearly 98,000 people, exploration and production interests in 29 countries, 11 refineries, 80 ships and thousands of retail outlets. Producing more than 3.8 million barrels of oil equivalent every day, we bring energy from the very depths of the earth to virtually every corner of the globe. And as demand grows, we are going further and deeper to secure the energy that the world needs. We’re going there and want you to come too. Look beyond the limits. BP is an equal opportunity employer. www.bp.com/ukgraduates Inside Natural Resource Editorial..........................................................................................................4 Presidential.....................................................................................................4 Bestuur belicht...............................................................................................5 Een ideale tijdmachine.................................................................................6 The raw material..........................................................................................10 Wireline logging in Harlingen...................................................................11 The energy industry has it all....................................................................12 CSM vs Delft tournament.........................................................................17 Gouden ereleden.........................................................................................18 Mijnbouwtool..............................................................................................20 El cerro rico de Potosi...............................................................................22 Fotopagina....................................................................................................27 MSc thesis.....................................................................................................28 European Mining Course...........................................................................31 Miners in the movies..................................................................................32 The bright side of technology..................................................................34 Weber puzzle................................................................................................37 Incorrect adresses.......................................................................................38 Graduation Subjects...................................................................................39 MV Agenda..................................................................................................39 Colofon.........................................................................................................39 Pagina 17: Mijnbouwers sporten tegen Mijnbouwers in Engeland Pagina 34: Higher oil recovery rates achieved by optimising water floods Pagina 32: Pacelli Zitha and Pascal de Smidt as Jules and Vincent in Pulp Fiction 3 Editorial Dear readers, I would like to present you the last Natural Resource of this volume, issue 4. Once again this issue is filled up with everything you want to know about our study, the mining- and petroleum industry and the Mijnbouwkundige Vereeniging. As you certainly know the coming and going of big mining projects not only forms the landscape of a region, but it also has demographic influence, read all about such a project in the article on El Cerro Rico; a mountain so rich in minerals that it has been exploited since the 16th century. It made the city nearby, Potosi, one of the biggest and richest in the world at a certain moment. Of course the students of our faculty did not sit still the past months, Louis Carlier and Marlies Vasmel for example went along with mining engineers to watch what’s involved in wireline logging a salt cavern at Frisia. It’s another example of the fact that when you are a student in mining- and petroleum engineering there are endless possibilities to widen your view, thanks to companies that are interested in you. The Mijnbouwkundige Vereeniging also saw a nice end of the year with major happenings such as the golden honorary membership of ir. J.J. de Ruiter and the tournament against our British colleagues at Camborne School of Mines. You will also find the well known headings like the Weber Puzzle, this issue Weber would like you to figure out how many mice he hid in a students kitchen! The redaction would like to thank Koen Weber for his contribution to the Natural Resource this year by creating his amazing puzzles. Koen Weber is not the only one who contributed a lot to the Natural Resource. Nanne Boogaerdt and Sanne van der Plas did a tremendous job in creating the Miners in the movies heading. Thanks for all the great stories and the photo enhancements. Furthermore, there is the board of the Mijnbouwkundige Vereeniging which supported us all year long and all the sponsors which helped in the financial sector. I sure hope you enjoy this last issue of volume 11, as it also is our last issue I would like to reflect on the past year. It was a challenge, but above all a lot of fun to create all the issues this year. We are proud on the results and we assure you that the progress made in the past years will continue. The group of students who will take over our job next year is already assigned and they are full of new ideas, inspiration and motivation. ■ Have a nice summer and glück auf, Robert-Jan Pielkenrood Presidential Dear Members and Extraordinary members, Here it is: the Natural Resource summer edition! The one you should not forget when you pack your bags for your holiday destination. As time went incredibly fast these past few months, I am happy to give you the latest highlights of our association. The main event of the year was definitively the enrichment of the association with a new Golden Honorary member. On May 24th over 180 miners visited the faculty, the streets of Delft city’s center and ‘Het Noorden’ to royally entertain Hans de Ruiter as new Golden Honorary member. During several International Student Weeks last year the urge for competition between the Delft and Camborne miners came up. Old traditions should be revived and that is why a brave group of Delft miners took the boat to a group of Islands called the U.K. to compete in Rugby, Hockey, Football and Sea Swimming. After this weekend there was so much enthusiasm that the date for the tournament next year has already been chosen and the practice sessions have already started. One of the other successes this year was the event for the first years. In recent years, the university has been putting more and more emphasis on educational performance. The MV encouraged the first year students to do well in their studies 4 by organizing a ‘Punten Paintball’ event. All the students who matched the seventy percent progress requirement were able to join the board in a painful body paint session and a drink afterwards. They also joined the wall of fame in the MV room. The prospects for the next year look promising. The number of students coming to start the study Mijnbouw next year looks to be even more than last year (50). Moreover, the economical crisis which has had a significant impact on both the Resource and Petroleum business has passed its deepest point and, while the oil price is back to an acceptable value, we are waiting for the resource prices to follow this example. As a last feat of arms: our board just launched our brand new MV website on www.mv.tudelft.nl with lots of interesting new features! Finally I would like to thank the Editors of the Natural Resource for their fantastic work and pleasant cooperation last academic year. ■ Glück Auf! Chris den Boer President der Mijnbouwkundige Vereeniging Bestuur Belicht Naam: Stephanie Lier Functie: Onderwijs Leeftijd: 22 Woonplaats: Delft kken voor de “ Kies 1 a 2 va en pak die vijfde periode punten!” -Waar heb jij je allemaal voor ingezet binnen de MV? In mijn tweede jaar ben ik NoCo geweest, dat was erg leuk, ik zit nu ook met 3 NoCo genoten in het bestuur. In mijn derde jaar heb ik VNC gedaan tijdens het lustrum, dat jaar heb ik ook nog de Mijnbouw Mannen Kalender gemaakt maar dat is eigenlijk geen MV-commissie. -Er worden altijd grappen gemaakt over je functie, het zou een typische vrouwenfunctie zijn, ben je het hier mee eens omdat vrouwen er toch beter in zijn of vind je dit onzin? Waar het op neer komt; je moet bepaalde kwaliteiten hebben, je moet genoeg punten hebben en goed studeren, je moet assertief zijn en opkomen voor de gehele studentenpopulatie. Je gaat om met belangrijke organen binnen de faculteit dus dat is moeilijk, de laatste jaren blijkt dit gewoon meestal een vrouw te zijn, ik vind het meer toeval -Today is a very special day, want we hebben de volgende vraag voor jouw; welke andere functie zou je willen doen als je geen commissaris onderwijs was? Ik heb afgelopen jaar gemerkt dat het erg moeilijk is om vanuit mijn functie mijn mening door te drukken tegen 4 koppige gasten, dus ik zou anders graag presi willen zijn om vanuit een overkoepelende functie mijn mening te verkondigen -FPSO storing LNG filling a ULCC next to a TLP with a good AOFP, of mijnlamp? Gewoon mijnlamp natuurlijk, niet zo moeilijk over doen -Wat zijn de grootste uitdagingen die je in je functie bent tegengekomen? Het moeilijkste vond ik dat ik geen goed idee had wat de functie inhield toen ik begon en het duurde een tijdje voor ik mijn netwerk opgebouwd had. Je moet voor heel uiteenlopende problemen veel verschillende mensen aanspreken en in het begin is het ook afwegen waar je de FSR nou bij betrekt of wat je beter zelf kunt doen. Ook was het wel moeilijk om een jaar lang de MV op 1 te zetten, als belangrijkste in je leven. -Wat zou jij willen veranderen aan de MV kamer? Niet zo veel, het wordt steeds relaxter inrichten naarmate we langer op de nieuwe faculteit zitten. Ik ben wel nu bezig met een ereleden-fotowand om aan de leden beter zichtbaar te maken wie dat zijn. Mijn positie in de MV kamer is soms wel lastig want ik wordt snel afgeleid, echter ben ik op die positie wel makkelijk aanspreekbaar voor studenten dus er is over nagedacht. -Aan het einde van het jaar weet je alles van je bestuursgenoten, we zouden je willen vragen om jezelf en je bestuursgenoten te koppelen aan personages uit de Lord of the Rings (waar Steef groot fan van is, Red.) Wat geweldig ik ben een hele grote Lord of the Rings nerd dus kom maar op! Een Hobbit Dat is niet zo moeilijk dat is Chris natuurlijk, hij is klein met van die leuke krulletjes net als een hobbit. Toch kan hij wel agressief zijn maar er zijn ook vast agressieve hobbits, daarentegen houdt hij wel graag de groep bij elkaar en houd hij van gezelligheid net als hobbits. Gandalf Dat zal Matthijs zijn, hij is altijd een van de stilste maar hij straalt wel wijsheid uit en als hij iets zegt is het ook wel zinnig Een Attack troll Dat is Daan, echt een topkerel die nooit moeilijk doet en altijd gezellig is, behalve als hij een dag echt brak is of na een lang weekend, op zo’n slechte dag moet je hem echt niet aanspreken Een Elf Henk, hij is verreweg de meest ijdele persoon van het bestuur en volgens mij ook de langste, soms is hij een beetje verwijfd net als een elf en hij is compleet into fitness Een Balrog Dat ben ik zelf en ik denk dat het wel treffend is, ik vind het zelf helemaal niet prettig om ruzie te maken maar als er echt iets opgehoopt zit dan kan ik opeens heel boos worden (Arme hobbit, Red.) -Het aantal studenten bij de faculteit Mijnbouw groeit op dit moment, zie jij duidelijke problemen of juist voordelen hiervan in het onderwijs? Het heeft twee kanten, we hebben natuurlijk graag groei van de sectie voor het bestaansrecht van de opleiding. Echter de groei geeft wel wat logistieke problemen, met als voorbeeld de microscopiezaal; die is gebouwd naar het kleine aantal studenten van een paar jaar terug, maar de zaal is nu veel te klein. Toch denk ik dat het met goed voorbereiden zeker mogelijk is om de groei op te vangen en ik vind het mooi dat het aantal studenten groeit -Kun je leren adten?(Yard Time:36s, Red.) Ik denk het niet, het is een bepaalde mentaliteit die je hebt of niet, ik heb zelf ook nooit geoefend voor de Yard. -Heb je als onderwijsexpert een tip aan de eerstejaars voor de vijfde periode? Jazeker, kies je vakken zorgvuldig, 1 á 2 vakken is al best wel veel omdat er in de vijfde periode zoveel leuke dingen te doen zijn waardoor je geen zin hebt om te studeren, dus je moet geen grote inhaalslag plannen want dat blijkt meestal niet te werken, denk goed na over wat je doet en pak nog wat puntjes! ■ 5 Een ideale tijdmachine Mijn allereerste promovendus, Jos Bakker, vroeg ik ooit: “wat zou je doen als je de beschikking had over een tijdmachine?” “Teruggaan in de tijd om te kijken hoe het Pitalito-bekken werd gevormd,” zei hij: dat was het onderwerp van zijn proefschrift, een Kwartair pull-apart bekken in de Colombiaanse Andes. Ook als reservoirgeoloog zit je vaak voor je scherm te mijmeren over het driedimensionaal geologisch model dat je met seismiek en putgegevens hebt gemaakt: hoe zou mijn reservoir er uit gezien hebben toen de sedimenten werden afgezet? Eigenlijk is dat zelfs je belangrijkste taak. Er zijn verschillende droompaden die je daarvoor kunt volgen. Je kunt natuurlijk kijken naar plaatsen waar dezelfde reservoirgesteenten aan het oppervlak zijn ontsloten, zoals de Bentheimer zandsteen net over de grens in Duitsland, hetzelfde gesteente als dat waarin het Schoonebeekveld is ontwikkeld, maar het nadeel is dat de zandsteen in de ontsluiting natuurlijk niet precies hetzelfde hoeft te zijn als de voortzetting van die zandstenen onder het aardoppervlak. We weten genoeg over laterale variaties in sedimentaire systemen om wantrouwig te zijn. Een tweede manier is zoeken naar analogen: als je bijvoorbeeld denkt dat je reservoirgesteenten door troebelingsstromen zijn afgezet, diep in de oceanen, dan ga je kijken naar andere troebelingsstromen die door de tektoniek aan het oppervlak zijn gebracht. Het zijn dan wel niet dezelfde troebelingsstromen, en het is ook niet dezelfde geologische context, maar toch kan het nauwkeurig bestuderen van die sedimenten je op ideeën brengen waar je anders misschien nooit op gekomen zou zijn. Dat is de filosofie achter het reservoirgeologisch studentenveldwerk in Huesca, Spanje van Rick Donselaar. Er zit weliswaar geen olie in, maar je krijgt een heel goed beeld van de driedimensionale structuur van rivierafzettingen en het is ook de filosofie achter het grote onderzoeksproject in de Permische Karoo-turbidieten waar Stefan Luthi jaren aan heeft gewerkt. Het nadeel van outcrops is alleen, dat je wel een goed beeld krijgt van de verticale opbouw van een sedimentpakket, maar niet van de variatie in het horizontale vlak, het kaartbeeld, de plan view. En toch is die natuurlijk net zo belangrijk. Meanderende rivieren kan je vaak heel goed herkennen in je 6 seismische time slices, en in een verticale rotswand kan je ook heel vaak reconstrueren dat het inderdaad om een meanderende rivier gaat, maar hoe de kronkels precies gelopen hebben zie je in de outcrop niet. En toch is dat heel belangrijk om de geometrie van je olieveld te reconstrueren. Vandaar dat het zo nuttig is om ook naar recente Fig.1 Een uitdraai van een seismisch profiel met Hanjo Reinink en Tine Missiaen sedimentaire systemen te kijken: daar is juist de plan view, de luchtfoto, het satellietbeeld, het kaartbeeld het eerste dat in het oog springt. Wat dat betreft vullen outcrop-analogen en moderne analogen elkaar mooi aan. Recente sedimentaire systemen vormen ook ons belangrijkste referentiekader: wat voor een delta is de olierijke Jurassische Brent-delta in de Noordzee? Is het een delta zoals die van de moderne Mississippi, waar vooral de invloed van de rivier overheerst, of is het een delta zoals die van de Nijl, waarin vooral de golfwerking de vorm van de delta bepaalt? Nadeel bij recente systemen is natuurlijk dat je juist de verticale sedimentopbouw niet ziet, die kan je alleen bestuderen als je er ondiepe geofysica op loslaat en ondiepe boringen zet. Maar dat is dan ook heel veel gedaan. Een additioneel voordeel is dat je de sedimenten in moderne delta’s meestal heel nauwkeurig kunt dateren: met de koolstof-14 methode kan je precies de ouderdom van organische laagjes veen, schelpen, en soms zelfs een kluitje stuifmeelkorrels of microfossielen bepalen, met een nauwkeurigheid van enkele tientallen jaren. Dat geeft je een methode om de sedimentatiesnelheid vast te stellen met een precisie die in oudere systemen onmogelijk is. Dat leidt tot een veel beter begrip van hoe die sedimentaire systemen precies werken. Het mooiste is natuurlijk als het sedimentaire systeem dat je reservoirgesteenten heeft afgezet nog steeds bestaat. In Nederland is dat niet meer het geval: ons aardgas zit in woestijnzanden uit het Rotliegendes, en onze olie in strandzanden van de subtropische Krijtzeeën. Maar op sommige plaatsen is dat wel zo. De Pliocene reservoirgesteenten in het zuiden van de Kaspische Zee zijn afgezet in een delta van de Wolga, en daarom heeft BP ons meerdere projecten gegund om te kijken hoe de huidige Wolgadelta functioneert, al ligt die inmiddels duizend kilometer noordelijker in een totaal andere tektonische context. Maar het mooiste voorbeeld van een moderne delta die een model is voor het olieveld eronder is de Mahakam-delta, de grootste delta van Indonesië, in Oost-Kalimantan (Borneo). Daar loopt nu een Fig.2 Mahakam-delta groot onderzoeksproject in het kader van het East Kalimantan Programme (EKP) van WOTRO-NWO en de KNAW, waar vier Nederlandse universiteiten (Delft, Wageningen, Leiden, Twente/ITC) en zes Indonesische instituten aan meedoen, en dat door ons wordt gecoördineerd (www.eastkalimantan. org). Het onderzoeksprogramma heet Upsetting the Balance in the Mahakam Delta, en gaat niet in de eerste plaats over het bestuderen van een analoog voor het onderliggende olieveld, maar vooral over hoe de delta heeft gereageerd en ook in de toekomst zal reageren op veranderingen door menselijk toedoen en natuurlijke processen, zoals ontbossing, klimaatverandering en zeespiegelstijging. Een van de meest dramatische ingrepen in de delta vond plaats in de jaren tachtig en negentig van de vorige eeuw. In een tijdsbestek van tien, vijftien jaar is alle natuurlijke mangrovevegetatie in de delta gekapt en vervangen door garnalenvijvers. Als je black tiger prawns eet, kunnen die heel goed daarvandaan komen. Dat heeft enorme consequenties gehad voor de waterhuishouding en de sedimentatie in de delta, voor de lokale ecologie, en ook voor de bewoners, want de mangrovekappers en garnalenkwekers zijn recente immigranten uit Zuid-Sulawesi (Celebes). Vandaar dat de Indonesische overheid, en met name de overkoepelende onderzoeksorganisatie LIPI onder leiding van Dr. Jan Sopaheluwakan, het van groot belang achtten om deze delta diepgaand te onderzoeken. En vandaar ook de titel van het programma: Upsetting the balance. Ons eigen Delftse onderdeel richt zich daarbij op het reconstrueren van de sedimentatie in de delta tijdens de Holocene zeespiegelstijging (postdoc Rory Dalman) en de sedimentatiegeschiedenis van de laatste tweehonderd jaar (PhD student Duddy Ranawijaya). Ook maken wij numerieke simulaties van het gedrag van de delta bij veranderende zeespiegel, sedimentaanvoer en vegetatie. De Mahakam delta is een klassiek voorbeeld van een delta die onder invloed staat van het getij. Delta’s worden vaak ingedeeld volgens het driehoeksdiagram van Galloway (1975) in river-dominated, wave dominated en tide-dominated deltas. In Galloways’s publicatie staat de Mahakam delta precies tussen het ► 7 riviergedomineerde en getij gedomineerde hoekpunt in. De sedimentstromen zijn grotendeels gescheiden, zoals ook Joep Storms en Bob Hoogendoorn goed hebben beschreven in hun artikel van 2005 in Sedimentary Geology, in een voorstudie voor de pilotfase van ons programma. De rivier splitst zich om de 10 kilometer in verschillende vrij rechte zijtakken (distributary channels): die hebben meestal een zandige bodem en brengen de suspensielast naar zee. Het getij brengt de fijne sedimentlast weer landwaarts in getijdegeulen (tidal channels), Fig.3 Tine Missiaen, Rory Dalman, en Tarsono volgen seimische data die tussen de verschillende uitmondingen van de Mahakam in liggen en vrijwel geen contact hebben met de distributary channels. Die getijdegeulen zijn juist merendeels zeer kronkelig en hebben vooral een kleiige bodem. Dit hele systeem moet zich ondanks de zeespiegelstijging in het Holoceen vele tientallen kilometers zeewaarts hebben uitgebouwd, en wij wilden weten hoe dat in zijn werk gaat, en met name wat voor sedimentaire sequenties dat oplevert. Wij hebben dat in drie fasen bestudeerd in het jaar 2008. In de eerste plaats hebben wij twee series seismische opnamen gemaakt, eerst met het Stratabox instrument van onze directe Indonesische partner, het Marine Geological Institute in Bandung, en thuisbasis van promovendus Duddy Ranawijaya en technicus Tarsono. Daarna hebben we meer in detail gemeten met de Parametric Echosounder 8 (©Innomar), ons eigen geofysische instrument, dat zeer hoge resolutie (dm-schaal) akoestische gegevens levert tot op 10 m diepte of meer, gemeten vanaf de rivierbodem, en dat bovendien kan meten in zeer ondiep water (tot een halve meter diep). Onze geofysisch specialist Tine Missiaen heeft in een eerder project in het Verdronken Land van Saeftinge in de Westerschelde tien verschillende geofysische methoden uitgeprobeerd voor onze doeleinden, en dit systeem kwam er als beste uit. Zij had ook de leiding bij onze opnamen in Indonesië. In totaal hebben we 750 kilometer opnamen gemaakt, in vrijwel alle waterlopen van de Mahakam delta. We hadden dit niet kunnen doen zonder de genereuze steun van Total Indonesie, die olie en gas produceert uit het onder de delta liggende Kutai basin, en die al het transport en accommodatie voor haar rekening heeft genomen. Studenten van de lokale Mulawarman University in Samarinda hebben ook meegeholpen. Op de seismische profielen is de opbouw van het bovenste deel in fantastisch detail te zien. Opvallend was dat er weinig penetratie was in de zandige fluviatiele geulen, maar des te meer in de kronkelige getijdegeulen, die prachtige profielen opleverden. Tot onze verbazing bleken vele getijdegeulen een erosieve bodem te hebben, en zelfs in de smalste geultjes bleken waterdieptes tot 23 meter voor te komen, iets wat we nog steeds niet goed begrijpen. De Wageningse hydrologen die ook meedoen in dit programma zullen daar aandacht aan schenken. Verder is soms ook de discordantie tussen de Holocene delta en de geplooide Miocene ondergrond te zien, en misschien ook een oudere delta van een vorige highstand, te oordelen naar de koolstof-14 leeftijden voorbij de detectielimiet. Soms ook vervaagt het beeld als er ondiep gas naar boven komt, een enkele keer zelfs in de vorm van onderzeese moddervulkaantjes. De methode is zo nauwkeurig dat je zelfs de vissen in het water op de profielen kunt zien. Eerder in hetzelfde jaar hadden Duddy Ranawijaya en MSc student Hanjo Reinink al op een dertigtal locaties ondiepe boringen gezet voor de Pb-210 dateringen van de sedimenten van de laatste 200 jaar, onder water (!), om verstoring van het radiometrische systeem door regenwater te vermijden. Na het gereedkomen van de seismische profielen zijn een tiental boorlocaties geselecteerd, waar Duddy tot uit gewonnen wordt, 25 meter geboord lag exact op dezelfde heeft vanaf houten plaats en is afgezet platforms die hij met door dezelfde rivier, en een lokaal bedrijfje zelfs de source rock is met veel kunst en van dezelfde bron als vliegwerk midden in het organisch materiaal de rivier heeft weten dat nu nog steeds op te bouwen. We zijn door de rivier wordt nog hard bezig met de afgevoerd: de vergane interpretatie van de resten van het tropisch gegevens, en Hanjo regenwoud in het Reinink is bezig alles in bovenstroomse deel Kingdom, een software van het stroomgebied. pakket vergelijkbaar De olie is dus puur met Petrel, in een van plantaardige d r i e d i m e n s i o n a a l Fig.4 Seismiek, Boring, grainsize oorsprong, en de moderne delta is dus in alle geologisch model te opzichten een prachtige moderne analoog van het zetten. De dateringen zijn nog niet klaar, er moet nog Miocene systeem. Alleen zijn de Miocene deltaïsche veel werk gebeuren, en een eindresultaat kunnen we afzettingen in het Plioceen geplooid geraakt, dus nog niet laten zien. waardoor goede structurele traps zijn ontstaan. De geplooide deltaïsche afzettingen zijn in de omgeving Wat is nu het verband van dit werk met de van Samarinda goed ontsloten, want de veenlagen reservoirgeologie? Welnu, het onderliggende olieveld, van de Miocene delta worden nu afgegraven in talrijke kolenmijnen in het gebied. In die afgravingen kan je dus ook de verticale opbouw van de deltaïsche afzettingen goed zien. Hier komen outcrop analoog en moderne analoog dus bij elkaar. Een ideale tijdmachine. ■ Prof.dr. S.B. Kroonenberg Fig.5 Rory Dolman bij outcrop van Miocene Mahakam dat al vanaf 1898 door de Bataafsche Petroleum Maatschappij werd ontgonnen (Sanga-Sanga veld), zit in reservoirgesteenten die in precies hetzelfde sedimentaire systeem zijn afgezet als de huidige delta. Veel pionierswerk is hier gedaan door de geoloog George Allen in de jaren zeventig tot negentig van de vorige eeuw. De Miocene Mahakam delta waar de olie Missiaen, T., E. Slob & M.E. Donselaar 2008 Comparing different shallow geophysical methods in a tidal estuary, Verdronken Land van Saeftinge, Western Scheldt, the Netherlands, Netherlands Journal of Geosciences — Geologie en Mijnbouw | 87 – 2 | 151 - 164 | 2008 Storms, E.A., R.M. Hoogendoorn, M.A.C Dam, A.J.F. Hoitink and S.B. Kroonenberg 2005 LateHolocene evolution of the Mahakam delta, East Kalimantan, Indonesia. Sedimentary Geology 180, 149-166 9 The Raw Material Weber Puzzle Solution Right under their noses! The dissapearing gas is drained away from the overpass pipeline carrying the Neftogas sign. The supporting structure consists of the little red pipes which are actually connected to this pipeline. The gas flows out to both sides towards the two red coloured pipelines Most acidic natural water in the world comes from an abandoned mine site According to many politicians sustainability is the key to paradise on earth, but because we miners literally have to destroy nature to get to the valuables society is sometimes upset with our actions. This also happened at Redding, California, where miners extracted iron, silver, gold, copper, zinc, and pyrite from the massive sulphide deposit in the Iron Mountain. The mine, that was used from 1860 until 1963, produces the most toxic waste water known around the globe. The acid in the water is a result of the chemical erosion of the sulphides by oxygen, water and certain bacteria. Some samples of the water that ran through the mountain had a pH of -3.6, this is only possible when the hydrogen ion activity is greater than one, and because of this the site was declared the most polluted site in the world. The water is in fact so acidic that it eats through jeans and dissolves stitching in boots. Federal funds raised 20,8 million dollars to clean the site up in the coming 20 years. Let’s hope it was worth the dig. Where’s my dozer? Because mining equipment is so huge and powerfull, sometimes you don’t see something when you are digging or simply driving around. This 32 ton catterpillar D8R dozer was accidently scooped up by a bucket wheel excavator. Wireline logging in Harlingen Door Louis Carlier en Marlies Vasmel Vijf uur ‘s ochtends. Het groene Volkwagen busje staat op de hoek van de straat, instappen en wegwezen! Over volkomen verlaten snelwegen rijden we richting het Noorden (glück auf !). Om kwart voor acht worden we in vol ornaat verwacht in Harlingen bij put BAS-4. Het bedrijf Well Engineering Partners heeft ons uitgenodigd om een wireline log mee te maken. Behalve de uitgeprinte logs die we zo nu en dan moeten analyseren op de faculteit, weten we hier eigenlijk bar weinig over. Natuurlijk komen we veel te vroeg aan. Na een half uur sightseeing in Friesland belanden we op de juiste plek. Bovengronds valt er niet veel te zien . Een hek omringt een klein gebouw en een christmas tree. Hier moet het allemaal gaan gebeuren. We worden warm ontvangen met een kop verse koffie. Hierna krijgen we een stoomcursus over wat er gaande is en wat er vandaag gaat gebeuren. Frisia beheert meerdere putten in deze omgeving, de putten zijn zo geautomatiseerd dat er normaal niemand aanwezig is op het terrein. Twee keer per dag komt er iemand langs om te kijken of alles in orde is. Er wordt hier Zechstein zout op ongeveer drie kilometer diepte gewonnen met behulp van solution mining. Water wordt omlaag gepompt de caverne in, zout lost hierin op en brine wordt weer omhoog gepompt. Omdat er zich aan de bovenkant van de caverne diesel bevindt (waar het zout niet in oplost) kan de hoogte van het dak beheerst worden. Door verder te gaan met het winnen van zout vergroot de caverne zich in laterale richting. Doordat zout ductiel is en dus kan stromen onder invloed van druk wordt het gewonnen zout continue aangevuld. Op dit moment heeft Frisia al een aantal keer het volume aan zout gewonnen als de caverne groot is. Vandaag is het anders. Meerdere bedrijven zijn aanwezig Well Engineering Partners, Frisia, Socon (het Duitse logging bedriif) en de kraan machinist. Het is de bedoeling dat al deze verschillende bedrijven vadaag een wireline log gaan maken. Elke drie maanden moet Frisia namelijk aan de overheid vertellen op welke diepte het dak van de zoutcaverne zich bevindt. Dit mag niet te hoog komen om ervoor te zorgen dat het geproduceerde zout van goede kwaliteit blijft. Geclusterd tussen drie gezellige Duitsers in hun volledig ingerichte (inclusief magnetron!) vrachtwagen beginnen we met de tools omlaag te laten gaan. De enige tools die nodig zijn, zijn een tension meter, een gamma ray en een temperatuur meter. En dat terwijl wij eigenlijk altijd logs te zien krijgen waarbij alle mogelijke apparaten gebruikt zijn, maar hoe minder je nodig hebt, hoe goedkoper het blijft natuurlijk. Verder verbazen we ons over de enorme buis (lubricator) waar de tools in zitten, die zo’n tien meter hoog is en met behulp van een kraan eerst recht boven de put gezet moet worden. Met de gamma ray wordt een carnaliet laag opgespoord waarvan de diepte bekend is en die kan vervolgens gebruikt worden om de precieze diepte te bepalen. Het dak van de caverne wordt gevonden door de temperatuur te meten. De geostatische temperatuur van het zout is ongeveer 97 graden, maar in de caverne is de temperatuur veel lager (ongeveer 55 graden) omdat het water dat voor productie gebruikt wordt de caverne afkoelt. Op de diepte van het dak hopen we dus een duidelijke sprong te zien in de temperatuur log. Nadat de tools heel langzaam omlaag zijn gelaten en vervolgens ook weer heel langzaam omhoog gehaald, dit heeft zeker een paar uur geduurd (gelukkig werden we ondertussen voorzien van genoeg koffie en lekkere broodjes kroket), blijkt dat het dak van de caverne niet meer dan een meter verplaatst is ten opzichte van drie maanden geleden. Iedereen kan met een gerust hart naar huis en wij zijn bovendien weer een interessante ervaring rijker. ■ 11 “The energy industry has it all” By Gijs C.J. Holstege Born 28th December, 1964 in Sittard, the Netherlands Delft University 1983 – 1989, Bestuurs lid Delftsche Studenten Bond 1985-1986 Graduated 1989 in Technical Geophysics 1989-1990 Jason Geosystems B.V. 1990-present Shell International E&P 1990-1992 Wellsite Petroleum Engineer Southern North Sea (Shell Expro UK.) 1992-1994 Seismic Interpreter (Shell Expro UK.) 1994-1997 Production Geologist Shell Todd Oil Services (New Zealand) 1997-2000 Exploration Geoscientist Shell Todd Oil Services (New Zealand) 2000-2002 New Potential Delivery Team Leader Thai Shell E&P, Bangkok Thailand 2002-2004 Geoscience Section Head Al-Furat Petroleum Company, Damascus Syria 2004-2006 Chief Geoscientist Al-Furat Petroleum Company, Damascus Syria 2006-present Appraisal and Development Leader, South Rub Al-Khali Co. Ltd, Al-Khobar Saudi Arabia Being asked to write an article for the MV magazine forces one to reflect back on your life and whether choices that have been made have been good ones. Being mid forty it does seem that time has passed extremely quickly since those fun student days in Delft and so, consistent with the saying time flies when you’re having fun, I suppose that is evidence that those choices cannot all have been bad. My first boss in Shell Expro told me that when considering career moves, whether they are internal Shell transfers or external moves, there are three aspects to consider and that it is rare that all three score maximum points. Those aspects are lifestyle/family impact, job satisfaction/challenge and of course financial reward. In the remainder of this article I shall be referring back to these three guiding principles and how they have guided our choices as a family as we have moved around the globe. A bit more background about myself: Although 100% Dutch I have lived a total of 31 out of my 44 years outside the Netherlands. As a boy I grew up in Northern Ireland as a result of a choice my parents made. I lived there throughout the worst of “the Troubles” but cannot recall at the time being affected by them, road blocks, checkpoints, car bombs and sectarian conflict seemed quite a normal way of life until I moved to The Netherlands at the age of 16. The contrast between the daily routine in peaceful Holland and the insecure Northern Ireland situation creates quite an impression on a young mind and adds spice to one’s life experience. It is the pursuit of this kind of “spice” that made the decision for an international career an easy one. Of course being married to a Dutch Indonesian wife 12 … in the old “Hammam” in the Damascus Soukh also helps since as a family you need to enjoy the disruption of moving every 4 years. The word disruption is in that sense a bit exaggerated since if there is one company who knows how to look after its expatriates than that is Shell -as I keep being reminded by many non-Shell expat friends. So back to the day I graduated, I had already been working part time for Jason Geosystems, at that time a new start-up company housed in offices above the C-1000 supermarket. My job there was to bug-test Seismic Inversion software and to draft the user manual for this product. Since this meant running and trying to crash the software I was asked to do most of this in the evening/night hours to avoid crashing the system at critical times during the day – an ideal job for a student! At the time I also had an impending call to military service hanging over my head, which prevented me from accepting a job with Shell, and so continuing to work for Jason after graduation seemed logical while my case was being reviewed. Once I was cleared of having to fulfil my military service I immediately accepted the job offer with Shell. Jason has since then become an extremely successful company and is now owned by Fugro so the question I always ask myself was how much money would I have made if I had stayed there. But the attraction of spending 1-2 years working offshore North Sea on drilling rigs was too much to refuse. Following initial “indoctrination” at Shell’s training centre in Noordwijkerhout I was indeed posted to my first assignment, a small English harbour town in East Anglia called Lowestoft. I was still unmarried at the time and so was given a small council house that seemed quite generous compared to the student room I had been used to till then. I spent little time in this house since I was immediately rostered in to the offshore routine of working 2 weeks on/off. What an incredibly lucky situation! I was being paid relatively large sums of money as a result of expat and offshore allowances, I was working on a drilling rig and in the two weeks off, I could enjoy myself in Holland. As a student I had also worked in the field but on a seismic crew. This and the wellsite experience has been invaluable experience in all jobs thereafter. We were drilling long reach horizontal wells through the tight Rotliegendes sandstone as part of the Sole Pit development. The idea that a bit was churning away horizontally somewhere below us 22000 ft away from the rig in a direction controlled on surface was fascinating and taught me a lot about directional drilling amongst others. After my wellsite period I then had a chance to plan these wells myself and get to grips with the skills of 3D Seismic interpretation. In April 1993 Ade and I got married and so we were a bit concerned about where Shell would post me next since having graduated herself Ade had just started working in the Netherlands. I recall my session with what at the time was called the Godfather (the global head of your adopted discipline which in my case was Production Geology) who said: “well, we feel it would be good for your development to accept an overseas posting beginning with N”. I am still not sure whether we would have accepted Nigeria at that moment but luckily it became clear that I was being asked to go to New Zealand. Maximum points on lifestyle, an interesting job and money-wise nowhere near the top but then getting paid to go to a country where most people pay themselves to go for a holiday seemed like a good deal. The choice was an easy one since I had already been planning a holiday there at some point. So, incredulous with my good luck I said goodbye to East Anglia from the deck of the Felixstowe Ferry. We arrived in New Plymouth in Taranaki province in September 1994, the Southern Hemisphere winter. New Plymouth airport had been shut down due to bad weather and so we spent the last hour of our 36 hour trip from Holland on a small leaky bus from Wanganui, to which the plane had been diverted, through several remote farming towns until we finally reached New Plymouth. It really felt as isolated as you could be from your family in Europe. We ended up staying 5-1/2 years in New Zealand. The first 4 years seemed like one extended holiday, Kiwis are quite keen on maintaining a healthy work/life balance and we did pretty much every outdoor activity that was at hand. Scuba diving out of New Plymouth, catching crayfish with our own hands and cooking them that same evening at home with a fine glass of New Zealand white. Flying to the Marlborough sounds for the weekend in a private Cessna for a combined fishing/ sailing/diving trip, ski-ing, wild water rafting, hiking. Not to forget the annual leave trip – a yearly business class round the world ticket including exotic pacific island stopovers. On the Job front, I learnt a lot about developing gas condensate reservoirs, integrated subsurface modelling and all the seismic tricks possible to improve our understanding the reservoir complexities. The second half of the posting I took up an exploration geoscientist role and in that capacity was asked to evaluate several so-called farm-in opportunities being offered to STOS – quite challenging since I was asked to come to a risk/reward analysis of the acreage in a short time frame on the basis of limited data. We rejected most and the one we accepted has become the Pohokura offshore Gas development currently pumping out 20% of New Zealand’s gas demand. Another interesting opportunity was being offered to us by a Sydney based independent required frequent meetings in “West Island” as the Kiwi’s like to call Australia. All in all a very rewarding time. New Zealand, View of the Mt Taranaki volcano in the distance with Mt Messenger Turbidite reservoir outcrops exposed in the foreground. The gas/condensate field I was working on was located beneath this volcano. Our first two children were also born in New Plymouth and by 2000 Ade and I had been there 5-1/2 years. My expat status/salary was no longer tenable since we were almost considered to be local staff by the company. We had a good think about whether to settle in New Zealand permanently -not an unattractive option, or continue the expatriate lifestyle. Coenraad and Tara Packing We decided for the latter since I in once more was being offered a job in Thai Shell which meant living & working in Bangkok. Thailand had long been a favourite destination of ours but I have to admit that the prospect of living in Bangkok after the clean, green New Zealand surroundings did not appeal to me. Also the job description wasn’t really what I was looking for: “New Potential Team leader” in a rather obscure Shell Joint Venture. On the plus side it was my first team leader role, the money was better than New Zealand and most importantly, my family were very keen to go. And so we swapped the clear air of New Zealand for the luxury lifestyle of an expat in Bangkok. ► 13 Our House in Bangkok complete with swimming pool and two maids The two years in Thailand turned out to be another great choice. The company had just avoided being sold by Shell – it was the low oil price environment- and was in the midst of re-inventing and re-organising itself. A new Oil Play was discovered and so our drilling rig was kept busy drilling, logging, completing a well a week. Due to the intense activity levels my team developed a workflow and team structure that allowed a sustained delivery of well proposals and producing wells to keep our Deutag rig busy and keep this mature field producing at 25000 bopd (barrels of oil per day). The field was located in Central Thailand amongst easy decision. Production was on the decline in Syria, daily output was down from the peak of about 400,000 bopd to just under 300.000 bopd when I arrived. Shell had just opened up a technical study centre in Damascus amidst promises of being able to increase production by smart field development and indeed the decline was reversed to briefly exceed 300.000 bopd for a while before resuming. The challenges of working in Syria are all related to the sociopolitical context. The country was still run along socialist principles with wages being low for skilled local engineering staff and critical thinking and risk taking not being encouraged at all. Since developing oilfields is all about managing subsurface risk this provided an interesting additional challenge to the expat team working together with the Syrians. In addition the company was run with a “dual management structure” meaning that decision making required both expat and Syrian management lines to agree. In my position as Chief Geoscientist I had to jointly manage a department of 70 staff together with a Syrian counterpart. My negotiating skills were tested to the limit and sharpened as a result. Technically the fields were an oilman’s dream, recovery factors of up to 70%, extremely mobile sweet oil -perfect for waterflooding. All the fields were covered by 3D seismic so that all the tools and data were at our disposal to really grasp the reservoir and propose intelligent infill wells. In my time there we reshot a high resolution 3D survey over one of the largest producing fields, drilled about 50 wells a year and made sure every single field was covered by detailed integrated dynamic and static models. Towards the end of 2006 we had set up studies to look at unconventional reservoirs. An additional challenge was President Bush’s Syria and Lebanon Sovereignty Act (SALSA) that essentially prevented American technology to be used in Syria. This would test the relationship between Shell and the Government to the limit since with major US interests, Shell is obliged to abide by this act while the Syrians of course do not recognise its legitimacy. Contracting and procurement of services become Sirikit Field Thailand, the Deutag T48 rig punching down 1 well a week without disruption to the surrounding rice paddies rice paddies and was volumetrically large but very challenging to produce due to the heterogeneity of the stacked lacustrine units. It had been on production since the 80’s with crude still being transported by railway (3 trainloads per night) to the Rayong refinery near Bangkok. Up to 24 wells would be drilled from 1 drilling pad in order to minimise our environmental footprint amongst these fertile rice fields. With our family now consisting of five and with further career opportunities a bit limited in the small Thai Shell organisation I applied for a vacancy in Al Furat Petroleum Company, one of Shell’s medium sized joint ventures. We had always heard good things about living in Damascus and the opportunities for exploring the “cradle of civilisation”, the money was good and the job was definitely what I was looking for, so again an 14 Our family at the roman ruins of Palmyra, centra Syria Camping in Syria very difficult once you realise how much US technology dominates the oilfield and IT. The challenges of working in AFPC were more than compensated by the trips we made through Lebanon, Syria and Jordan and the frequent weekends camping amongst Roman or Byzantine ruins with friends in truly biblical settings with clear skies. Reluctantly my family accepted my desire Tara drilling 3 ft of well to move on to the next OMA-183 professional challenge – true wildcat exploration in the Empty Quarter of Saudi Arabia. I was transferred to Shell’s Upstream Joint Venture with Saudi Aramco (the South Rub Al-Khali Co. Ltd or SRAK) in the summer of 2006 and once again we said goodbye to friends and had to start again. Since there had been a terrorist attack on SRAK’s compound in 2004, all dependants have been living in Bahrain while we commute daily to the office, a journey of about 45 minutes. Our biggest concern however was for the children since they would have to change from the very intimate Dutch Language Shell school in Damascus to the American school in Bahrain. As true expat kids however they immediately made friends and put our concerns to bed by taking to the school and the American system. The project is extremely challenging since although it may seem that Saudi Arabia has hydrocarbons everywhere, our JV has of course been given the most difficult area to explore and only has rights to discovered non-associated gas and liquids. However, being able to leverage both Shell and Saudi Aramco’s significant technical strengths in order to firm up seven exploration well targets in a desert area equivalent in size to the United Kingdom is a fascinating challenge. In addition, our acreage includes significant volumes of discovered sour gas so that a large part of my time is taken up studying ways of monetising this resource in order to secure Shell’s Upstream future in Saudi Arabia. In closing it is clear that my career has added enriching experiences to the lives of my family while at the same time giving me sufficient professional challenge to keep me motivated. I cannot think of another business that can provide the variety of cultural, professional and geographical experiences that the energy industry has to offer. The trick is to remain flexible and always keep an open mind to hidden opportunities for personal development in any project be they technical, commercial or managerial. The energy industry has it all! ■ Wildcat drilling in the remote South Rub al-Khali Desert, Saudi ArabiaOMA-183 15 Je kunt je weekenden thuis voor de buis doorbrengen of gaan stappen in Melbourne www.werkenbijboskalis.nl Je bent afgestudeerd of je gaat dat binnenkort doen. Je wilt je Mensen met een ondernemende inslag die carrière willen maken, iets professionaliteit verdiepen, mensen ontmoeten, je grenzen verleggen. van de wereld willen zien en ruimte voor hun eigen ontwikkeling een Waarom zou je dat niet letterlijk doen? Boskalis biedt je de kans om de issue vinden. Teamwerkers. Eén ding is zeker: bij Boskalis wacht je wereld te ontdekken. De wereld van een waterbouwer, die internatio- een vliegende start. Afgestudeerd in civiele techniek, werktuigbouw- naal succes oogst in maritieme infrastructuur. Havens of vaarwegen kunde, maritieme techniek, baggertechnologie, offshoretechnologie, aanleggen, land uit water creëren, kusten en oevers versterken: we land & watermanagement, technische natuurkunde of technische doen het. Net zo goed in eigen land als aan de andere kant van de aardwetenschappen? Kijk op de website www.werkenbijboskalis.nl wereld. En we zijn ambitieus, net als jij. Daarom zoeken we talent. om te zien hoe ver je kunt komen. Misschien wel tot Melbourne. 16 van verschil Maak een wereld CSM vs Delft Tournament Het is het jaar 2009. Heel Engeland valt onder Hollandse bezetting. Heel Engeland? Nee, er is een klein dorpje aan de kust waar de Mijnbouwstudenten dapper weerstand bieden tegen de overweldigers. Falmouth, dorp der dorpen. Mijnbouwuniversiteit der Engelsen. Deze fanatieke studenten hebben een geheim, een geheim dat de Nederlanders de afgelopen jaren buiten hun muren heeft gehouden: Rugby. Dit ging jaren goed. Totdat de 15e mei aanbrak. Deze zwarte dag in de geschiedenis van Falmouth zal altijd bekend blijven als het CSM vs. Delft toernooi. De dag dat Falmouth viel. Een elite-team van 11 uitverkoren Mijnbouwers vertrok op 15 mei om 5 uur ’s ochtends vanuit Delft. Na een barre rit vol tolwegen en plaspauzes werd om 9 uur de kust bereikt. Vermoeid, maar nooit verslagen wisten deze dapr’n een overtocht te vinden. De P&O ferry bracht hen door weer en wind naar de overkant. Engeland, het perfide Albion. Via Dubris Portus, Londinium, Isca Dumnoniorum werd Falmouth bereikt. De traditionele groet naar deze Delftse helden in de vorm van een geworpen fallus werd beantwoord met de overhandiging van de Schultenbräu shotgun. De eerste nacht werd er gestreden. Dapper en trots verzopen de Delftenaren Falmouth naar de kelder. Toen de strijd gestreden was, brak de dag al aan. De dag die bekend staat als: Het toernooi. Gehavend maar moedig betraden de Delftenaren het hockeyveld. Totale overmacht in strijd kwam hen ten deel. 22-0. De traditionele bakkerijen werden geplunderd. (De Cornish meat-flap: De Engelse variant van de Appelflap, maar dan natuurlijk met ui en vlees). Het tweede bedrijf van deze strijd vond plaats op slagveld “het voetbalveldje naast het bouwterrein”. De boeken verdichten dit tegenwoordig als de slag om Falmouth. De eerste slag werd gestreden tijdens voetbal. Doelpunt na sliding na schwalbe werd met uitgeput, maar met het ultieme resultaat, de zege, kwam Delft ten deel! 6-3, hoe glorieus! Toen barstte de hemel, de zondvloed werd een lachertje vergeleken met deze stortregen. De finale barstte los. Donder en bliksem, storm en chaos. De teams stelden zich op, 14 man, mano a mano, Rugby. Het signaal klonk, de horde stormde op zijn doel af. De vogels stopten met zingen en de hemel kleurde rood. Er werd geschreeuwd, er werd gerend. Af en toe verliet een dapr’e het veld voor een Schultenbräu, maar enkel om moed in te drinken. Want hoe zeer zij ook onbevreesd waren, de Delftenaren stonden doodsangsten uit. Uit het niets sprint een klein mannetje uit het Delfts wit/blauwe front en grijpt een Engelsman zijn bal uit de handen. Hij kijkt om, niemand. Hij kan niet meer terug. Links en rechts van hem stormen de woeste dieren op hem af. Snel naar voren! Zijn maten kijken hem na. Na enkele seconden is hij achter de horizon verdwenen. Een bode van de achterlijn komt aan lopen en schreeuwt; “Drop! Delft scoort!” Victorie! (Nou, bijna victorie) ■ Glück auf!! H.E.J. van Oeveren 17 Gouden ereleden Op handen gedragen Al weken lang was het een hot topic tussen het bestuur en Hans: Worst Draaien. Samen met zijn vrouw Anneke en hemzelf zou het bestuur kennis gaan maken met dé techniek om de beste worsten op ambachtelijke wijze zelf te maken zoals in Canada. Uiteindelijk bleek de geplande middag, vrijdag 24 april 2009, een geheel andere wending te krijgen. Sinds het begin van het collegejaar in september al waren de Gouden Commissie en het Bestuur in de weer geweest om een grote verassingdag neer te zetten. Keer op keer als Hans de MV kamer binnen kwam werden beeldschermen subtiel op stand-by gezet, mappen rustig dichtgevouwen en werd er vluchtig over de bureaus gekeken of er niets zou liggen dat iets zou verraden. Net zoals bij de voorgangers zou de dag uit de volgende hoofdpunten bestaan: onthaal op de faculteit, een stoet door de stad en een feest in Het Noorden. Al de buitengewoonleden werden uitgenodigd evenals zijn beste vrienden vanuit de industrie en andere universiteiten. Druk werd er vergaderd over steeds wildere, nieuwe plannen: een parachutesprong, een olifant of een grote feesttent op het Noordeinde. Even nog leek de organisatie schipbreuk te lijden in de haven toen de avond voorafgaand aan het feest een hoofdwaterleiding werd aangeboord bij het ophangen van een kast voor één van zijn grote cadeaus. Tot diep in de nacht werd er hard gewerkt om dit ongedaan te maken, hoewel Hans zelf niet zou protesteren tegen een laagje water. Het was al jarenlang aan de orde: het toen nog ‘gewone’ Erelid Ir. J.J. de Ruiter zou in aanmerking moeten komen voor het Gouden Erelidmaatschap van de Mijnbouwkundige Vereeniging vanwege zijn uitzonderlijke verdiensten voor de studenten en de studie, een eer die slechts aan vier voorgangers was toebedeeld. Al in zijn eigen studententijd was Hans erg actief binnen de Mijnbouwkundige Vereeniging en dit is eigenlijk nooit meer over gegaan in alle jaren die daarop volgden. In zijn studententijd heeft hij veel werk verricht om Het Noorden weer open te krijgen, aangespoord door een weddenschap die hij was aangegaan. Ook de Barbaraborrels en het fenomeen ‘Halflustrum’ zijn door hem geïnitieerd. Zelfs in de tijd dat hij in het buitenland werkte, heeft hij zich ingezet voor het onderhouden van de contacten en bemiddeld voor stages. Terug op de faculteit als docent is Hans altijd bereid elke student te helpen en het MV bestuur te adviseren. Het allerbest ligt hem nog het directe contact met studenten naast de studie. Het organiseren van autorally’s, roeien met de Glück Acht en het zwemmen als patroon van Het Zwemmersgilde. En dit jaar moest het gaan gebeuren. De timing kon niet beter, want zojuist had Hans gigantisch succes geboekt door de komst van een nieuwe leerstoel in de grondstoffensectie zeker te stellen. Door steun vanuit de industrie heeft hij de relevantie van Mijnbouw in Nederland anno 2009 bewezen en het zou ook niet meer heel lang duren voordat hij met pensioen gaat. 18 Een afspraakje in Venlo en dan met de trein naar huis om lekker met het bestuur een biertje te gaan drinken en worst te draaien in Benthuizen. Dat is in ieder geval wat het niet werd. Om twaalf uur parkeerde de bestuurslimousine bij het kantoor van Boart Longyear in Venlo en het voltallig bestuur in jacquet stapte uit om Hans uit een meeting te trekken en hem tijdens het zingen van het Glück Auf een gouden pakketje te overhandigen. Verstomd van verassing werd hij in het goud gehuld en ontvoerd in de Cadillac. Onderweg naar Delft werd er een tussenstop in de Biesbosch gemaakt, om alvast in alle rust een verfrissing op het terras te nemen en even later ook in één van de wateren. Vooral deze verfrissingen vielen erg goed bij Hans. Toch had hij moeite met het feit dat hij nu bijna voor het eerst in zijn leven geen enkele controle had over wat er georganiseerd was en wat hem zou gaan overkomen in de komende uren… Ondertussen verzamelde zich een bijna 200 man grote menigte studenten, medewerkers, alumni en vrienden met een biertje in de stralende zon bovenaan de trap van de nieuwe faculteit in Delft. Om 4 uur stopte de lange Cadillac onder aan de trap en onder luid gejuich stapte het gouden gestalte vergezeld door het bestuur uit de caddie om via de trap het afdelingsgebouw binnen te treden. Hier ontving Hans zijn eerste felicitaties en cadeaus. Vervolgens werd Hans in een draagstoel gezet en op de schouders van studenten in pungels gedragen in een stoet onder begeleiding van de muzikanten van de Delftsche Studenten Dans Harmonie gevolgd door de overige Ereleden in de paardentram. Aangekomen op de markt werd onder begeleiding van het carillon van de Nieuwe Kerk het Glück Auf gezongen onder het genot van een borreltje. Voor het Noorden begon de ceremonie. De gehele straat was afgezet en op twee terrasboten in de gracht was een grote tent gebouwd. Op de bestuurstafel midden op de druk bevolkte straat werd Hans geïnstalleerd als Gouden Erelid van de Mijnbouwkundige Vereeniging. Het daarbij behorende gouden speldje werd overhandigd en een groot in leer gebonden Weddenschappenboek ter ere van Hans werd aangeboden aan café Het Noorden. Eerder op de dag had hij al zijn grote cadeau gehad: Een levensgroot kwarts bergkristal. Door het uitzonderlijk lekkere weer bleef het nog de hele avond mogelijk voor alle aanwezigen om buiten voor ‘Het Noorden’ te genieten van het buffet, de muziek, speeches van Hans zijn vrienden en talloze biertjes. Het echte kenmerkende ‘Mijnbouwgevoel’ heerste en tot diep in de nacht bleef een goede mix van studenten, alumni, gepensioneerden en medewerkers doorborrelen in het mooiste café van Delft. Chris den Boer President der Mijnbouwkundige Vereeniging De eerste vier Gouden Ereleden der Mijnbouwkundige Vereeniging Zoals vele zaken binnen de Delftse mijnbouw gemeenschap is ook de benoeming van Ereleden over de jaren heen niet “altijd zoo geweescht.”De vereniging wordt reeds in 1892 opgericht, maar de geschiedenis staat pas zwart op wit na het verschijnen van het eerste Jaarboekje in 1903. Er zijn in die tijd nog weinig studenten die mijnbouw studeren (tussen de oprichting van de Civiele academie in 1942 en het begin van de 20ste eeuw is er gemiddeld 1 student per jaar). Het benoemen van “Eereleden” vindt plaats sinds 1898. Het benoemen van “Gouden Ereleden” moet wachten tot 1947 wanneer prof. C.L. Van Nes als eerste deze eer te beurt valt. Op 10 mei 1927 wordt van Nes reeds benoemd tot gewoon erelid, met veel minder ceremonieel dan in de latere jaren. Van Nes studeert in 1903 af en werkt tot 1926 in Suriname, Spanje, Spitsbergen en Nederland. Een jaar voor het ontvangen van het Erelidmaatschap, wordt hij tot hoogleraar in de mijnkunde benoemd, totdat hij in 1949 met pensioen gaat. Voor de studentengeneraties in die jaren is hij een trouw vriend, die altijd voor hen klaar staat. Voor de studenten uit de oorlogsjaren is hij een dapper man in het verzet. Als dank voor het zeer vele dat hij voor de vereniging heeft gedaan, wordt hem bij zijn pensionering het Gouden Erelidmaatschap uitgereikt, een onderscheiding die hem bij de receptie na afloop van zijn afscheidscollege, tezamen met andere geschenken zoals een fototoestel, wordt aangeboden. In 1963 overlijdt van Nes. Gedurende 23 jaar heeft hij door zijn bijzondere en persoonlijke eigenschappen grote invloed op tal van toekomstige mijningenieurs. In de tijd dat van Nes aan de afdeling verbonden was, ontstaat de sterke band tussen Jan Garos en zijn familie, die een buurtcafé bezitten op het Noordeinde. Hier komen de arbeiders van de Gist en Spiritus fabriek om 5 uur in de morgen hun eerste hartversterking halen. De sfeer in Het Noorden trekt, beginnend in de 30-er jaren, vele mijnbouwers aan, die zich hier thuis voelen en er ontstaat een centrum waar iedere avond door mijnbouwers tussen 11 en 12 uur een biertje gedronken wordt. In 1933 wordt besloten om een vaste mijnbouwtafel te laten maken, waarna de band tussen Jan Garos en de mijnbouwers voorgoed is gevestigd. Tijdens de oorlog is Jan’s hart bij de studenten, de mijnbouwers en de Laga roeiers. Na de oorlog wordt de woensdagavond voor de mijnbouwers een traditie die tot de huidige tijd is gecontinueerd. Op 10 april 1957 werd Jan tot Gouden Erelid van de vereniging benoemd. In 1964 overlijdt Jan, de Oude Reus van Het Noorden. Eén van de mijnbouwstudenten die de ontwikkeling van de band tussen de MV en Jan Garos persoonlijk meemaakt, is Hans de Wijs, die zijn studie aan de Technische Hogeschool in 1928 begint. De jaren van de crisistijd brengt hij vele bezoeken aan Het Noorden, het begin van een vriendschap voor het leven. De Wijs studeert in 1935 met lof af en begint zijn mijnbouwcarrière in Peru. Hij blijft zoveel mogelijk de relaties met Mijnbouwkunde in Delft onderhouden, iets wat tijdens de oorlog onmogelijk is. In 1949 wordt hij benoemd, als opvolger van de legendarische professor Grutterink, tot hoogleraar in de Delfstof en Aardkunde. Hij verhuist van Chili naar Delft met zijn vrouw Anneke en hun dochter. Hier constateert hij tot zijn blijde verrassing dat bij de studenten en de sfeer, ondanks de oorlog, dezelfde typerende geest van saamhorigheid en kameraadschap bewaard gebleven is (“evenals de dommelijke tradities”). Reeds in 1950 na zijn intree rede, wordt hem het Erelidmaatschap van de vereniging aangeboden. Er volgen bijna 30 jaar van intensief contact met de mijnbouwgemeenschap, waarbij de Wijs altijd open staat voor studenten met advies, een goed gesprek en een borrel. Hij stimuleert de internationale contacten tussen studenten door vanuit het Grondijsfonds studenten die op ISW gaan te subsidiëren. Met veel plezier bezoekt hij Het Noorden, waar hij onder het genot van een jenevertje met veel plezier met bekenden spreekt. Door zijn band met het verleden, de dertiger jaren, het Garos-tijdperk, heeft hij een belangrijke rol gespeeld bij het behouden van Het Noorden en bij het opzetten van een steunfonds. Samen met zijn vrouw Anneke is Hans de Wijs een constante factor bij de Barbaraborrel, waar zij beiden dan ook in bescherm-heer en vrouwe van worden. De betrokkenheid van de Wijs bij de studenten wordt in 1979 beloond met het Gouden Erelidmaatschap, als derde persoon in de geschiedenis van de MV. Na zijn vertrek van de faculteit in datzelfde jaar, blijft het intensieve contact tussen de Wijs en de studenten bestaan tot aan zijn dood op 4 juni 1997 toe. Herman Duparc wordt na zijn studie wiskunde aan de Stedelijke Universiteit van Amsterdam, door de Nederlandse regering naar Indië gestuurd om les te geven. Vervolgens wordt hij krijgsgevangen genomen en door de Japanners in een kolenmijn tewerk gesteld. Hij kan nog niet vermoeden dat mijnbouw en contact met mijnbouwers een grote rol in zijn leven zal gaan spelen. Na de oorlog keert hij terug naar Nederland en begint aan zijn wiskundig leven. In de zestigerjaren wordt hij in Delft benoemd tot hoogleraar Wiskunde. Vanaf het begin van zijn benoeming aan de TH Delft trekt Herman Duparc zich het lot van de mijnbouwers aan. Deze blinken niet uit door grote interesse in wiskunde en Duparc verbetert dit sterk, voor een groot deel door zijn heldere manier van onderwijs. Hierdoor wordt zijn band met de MV steeds nauwer, hetgeen in 1964 resulteert in het aanbieden van het Erelidmaatschap, waarover hij zelf altijd zei: “Zijn ze nou helemaal gek geworden, wat moeten ze met mij in zo’n mijnbouwkundig gezelschap.” Sinds die tijd worden de contacten met de MV en Het Noorden steeds intensiever. Zijn omgang met studenten is altijd vriendschappelijk en hartelijk. Vanaf 1964 gaat hij jaarlijks mee met de nuldejaarsexcursie om daar de nieuwe studenten te overtuigen van het nut der wiskunde. Decennialang komt hij vrijwel iedere woensdagavond om half twaalf in Het Noorden om een sherry of biertje te drinken. Na een uur vertrekt hij weer huiswaarts, de laatste jaren met de laatste tram, die hem letterlijk over de brug helpt. Op 12 juni 1996 wordt zijn enorme betrokkenheid bij de MV beloond met het Gouden Erelidmaatschap, waarbij de opkomst van vele afgestudeerden zijn banden met de mijnbouwgemeenschap duidelijk weergeeft. Op woensdag 26 juni 2002 staat hij nog ruim 2 uur in Het Noorden met studenten aan de bar te praten, op maandag 1 juli overlijdt Herman op 84 jarige leeftijd aan een acute hartstilstand. ■ Hans de Ruiter 19 20 Dear Miners, hold on to your hackles! It’s time for something a Miner loves more than anything on this planet: big, destructive machines! To feed your appetite every new issue introduces a new big, mean and powerful machine, created to tear Mother Earth to shreds and throw its spoils euforically up in the air. Take down the busty girls from your walls, because here is yet another installment of the only kind of pin-up that matters! Steenbergen Hollanddrain BSV6000 Well, it’s a vertical deep drainage trencher! Specs: • Engine Caterpillar 3408E ATAAC Now, some people (non-Miners of course) might wonder why it’s always a Caterpillar engine to power our monster machines... • Power 625 bhp @ 2100 rpm ... but that’s in fact quite self-explanatory. • Fuel tank 1000 L Which is coincidentally the exact amount of beer an average Miner drinks in one year. Or which a civil engineer drinks in a lifetime. • Maximum speed 3.5 km/h Only 0.4 km/h slower than the walking/hopping speed of an Adélie penguin and 0.7 km/h faster than the Emperor penguin, unless of course they are tobogganing on their bellies. • Tracks 6.1 x 0.8 m Penguins don’t use tracks, with the exception of a small, isolated group of penguins in the Antarctic which has been reported to form living tracks by connecting beak to feet and rolling down snowy hillsides. • Digging chain rollerchain with buckets • Digging chain drive hydrostatic Capable of transmitting full engine power. • Digging chain speed 4.7 m/sec • Digging depth 8m • Maximum operating speed 500 m/h This makes it the ideal tool for transforming the perfectly gardened backyard of your alwayscomplaining-neighbour into a historically accurate reconstruction of an entrenched battlefield. 21Kessel BV Special thanks to Gebr. van El Cerro Resource Rico de Potosi Natural Tony Waltham Nottingham, UK [email protected] Fig. 1. The view down Cerro Rico to a modern mineral processing plant with Potosi town beyond Silver mining in Bolivia exploited the richest hill on Earth to finance imperial Spanish in the 16th century. The mines still operate at Potosi today, with primitive conditions underground, but silver production may be boosted by new geological understanding. to that nation’s wealth and its emergence as a world power in the 16th and 17th centuries. Meanwhile, the Indian miners lived and died in terrible working conditions; there were thousands of local free miners, together with many more thousands that had been forcibly conscripted from towns all over Spanish South America. The latter were kept in a state of virtual slavery, working 12 hours a day and often being kept underground for months at a time. Potosi is the material of legends. High in the Bolivian Andes, a single conical mountain is the core of an eroded Miocene volcano, and is riddled with silver veins. It is known as Cerro Rico - Rich Hill; and justifiably so, as it is often claimed as the richest hill in the world. The original Quechua Indian name for the mountain may have been Potojsi (meaning thunder), which has been distorted to Potosi as the name of the city that has grown from a mining camp at the foot of the hill (Fig. 1). There is some debate over how much the Incas knew about the Potosi silver, or whether they worked it on a small scale. But the Spanish conquistadores arrived in the region in the 1530s, developed other mines not far away, and soon heard stories of the Potojsi Mountain. By 1545, their mine was registered and exploitation expanded rapidly. Within two years, the mine town housed 14,000 Indians and a few hundred Spanish. The first 20 years were the most fabulous, when the richest ores were worked most easily, and vast amounts of silver were hauled out on mule trains and then shipped to Spain - making a major contribution Figure 2: Geological section through Cerro Rico 22 For a short time around 1611, Potosi may have been the largest city in the world, with a population exceeding those of contemporary London and Shanghai. And this was in the middle of a desert at a lung-straining altitude of 4090 m above sealevel. A mint was established in 1572, alongside some beautiful churches. But it was a typical mining town, where the wealth generated traders who sold every conceivable luxury imported from the outside world, but in a crime-ridden, disease-ridden state of virtual anarchy. Potosi’s wealth fluctuated with the mining yields, and was in serious decline by 1825, when the richest veins had been worked out, competition for the silver market came from new mines in distant countries, and Bolivia’s independence saw the departure of the Spanish. But the mines have continued to produce wealth for the new nation, with phases when tin and zinc and then silver again have continued to pour from the veins of Cerro Rico. A volcanic ore deposit Potosi lies in the central cordillera of the Bolivian Andes, a great mountain chain composed primarily of fine-grained Ordovician and Silurian sediments. It is intruded by various Mesozoic granodiorites (including that forming the mountain of Huayna Potosi, that confusingly overlooks La Paz), and also by highlevel Miocene intrusions that were underlying contemporary volcanoes. The modern volcanoes are in the western cordillera that defines the Chile border. Along the western side of the central cordillera, a long and narrow tin-silver metallogenic provinces passes through Potosi, while parallel belts rich in gold-antimony and lead-zinc-silver lie consecutively to the east. Cerro Rico originated where a Miocene volcano developed within the tin-silver belt. An early maar complex had explosively created the Pallaviri Breccia (Fig. 2), which was capped by a major cone (the Caracoles Tuff). About 13.8M years ago, this volcanic edifice was intruded by a rising dome of porphyritic dacite; this is about 1500 m in diameter, tapering down to a neck that is only 100 m across at a depth of 800 m. The dome was only exposed during later eruptive events. Before these, cooling fractures within the dacite were permeated by hydrothermal solutions rich in metals, so that silver, zinc and antimony minerals were precipitated in the veins at higher levels, while tin (as cassiterite) and tungsten (as wolframite) increased at greater depths, beside declining amounts of the other metals. The temperature-controlled mineral zoning reflects the well-known zones in Cornwall and elsewhere, which have lead, zinc, silver, copper and tin in a deepening sequence. There were hundreds of veins thick enough and rich enough to be mined within Cerro Rico; most were 100-600 mm wide, though some locally thickened to 4 m. There were 35 main vein systems, and only a few are shown on the cross section (Fig. 2). The veins were banded with some open-space mineral fillings, and intersected each other on a close spacing with wallrock alteration and impregnation in between. Consequently, most of the mountain was mineralised, and the workings became extremely complex as they chased the best ore shoots. Superimposed on the pattern of primary mineralisation, there is a zone of oxidised, supergene enrichment about 300 m deep (Fig. 2). The primary ores average about 10 oz/ton (0.034%) of silver, mainly from argentiferous tetrahedrite (Cu12Sb4S13) and pyrargyrite (Ag3SbS2). But the secondarily enriched zone contained native silver and chlorargyrite (AgCl) that averaged more than ten times that value. Production from the richest ores, from 1545 to 1570, was hand-picked by the miners to reach the incredible grades of 7000 oz/ton - about 19% silver! - which were so easily smelted. Such grades could never be maintained, but Cerro Rico eventually yielded between 30,000 and 50,000 tonnes of pure silver. At greater depths, silver values declined, but the veins ran at 1-4% tin in cassiterite (SnO2). Sphalerite (ZnS) and galena (PbS) were significant byproducts of the mining, and there was recoverable copper in chalcocite (Cu2S) and covellite (CuS) in the supergene zone. Cerro Rico is capped by a thin silicified zone enriched in silver, which may have originated in a late stage of fumarolic activity. Fig. 3. Miners roll a full tub of ore out of the gently inclined main level Evolution of the mines The steep hillsides of Cerro Rico, laced with innumerable veins that were so rich in oxidised ore, made the early mining unusually easy. Adits could be driven into the hill at any level and be guaranteed to reach workable veins. Silver production peaked in 1592, when there were 612 mines on the mountain, with shafts already reaching 250 m deep. There was an early claim that there were 3000 “minas bocas” (adit mouths) on the slopes above Potosi, though not all were worked at any one time (Fig. 3). A modern mining operation would have taken the whole hill in one vast open-pit, but the historical alternative was a host of small operations, each opening stopes in individual parts of the richer veins. This encouraged rapid growth in the mining, but eventually it had to wane, as extraction had to rely on the thinner, leaner and less accessible veins. The decline was steady and was almost uninterrupted from about 1700 to 1940. By then the silver was almost exhausted. It is estimated that the hill still contains 140M tonnes of ore with 0.017% silver in veinlets about 10 mm wide, but this could only be won by marginally economic open-pit working, which has also been deemed unacceptable because it would destroy the “sacred profile” of Cerro Rico. From 1912 until 1985 the prices collapse, tin ore was extracted from the deeper zone of high-temperature mineralisation. The Pallaviri Mine worked from 1940 onwards, following the veins in and around the feeder neck beneath the dacite dome to a depth of 565 m (Fig. 2). And even when the large-scale extraction of tin finished, there were still two more phases of Potosi mining history to come. The mines today Vein mining continues today in Cerro Rico, more than 450 years after it was started. The scale is now smaller, and the minerals are different, because today’s main production is of zinc, with lesser values of silver, lead and tin (in that order of value). There are now about 6000 men working in and on Cerro Rico, including many that are in daylight processing plants, and some that are re-working old tip material. But there are still hundreds of miners working underground, mostly in small teams ► 23 of 10-12 men. The available ore appears to be so marginal in value that hand-working by small teams probably offers the only scope for continuing extraction in Cerro Rico. Each miners’ co-operative has its own patch within the mountain, where they work one or more veins and gain access and ore transport out through the old levels (Fig. 3). The miners can work anywhere they want to, except where another group has already started. They then sell their raw ore to any of a dozen processing plants in Potosi (Fig. 1). These have required more capital investment, because they have had to install flotation plants to separate the sulphide minerals in the lower grades of ore. The effort involved in extracting the ore is enormous, and is nearly all without machinery. Mineral from a single Fig. 4. Diagrammatic section through a part of the working mine sample stope, visited by the writer inside Cerro Rico, was taking a tortuous path to daylight (Fig. 4). Ore that was visibly rich in sphalerite was broken from a vein that was about 500 mm wide; explosive was used in shot-holes created by hand with hammer and star-drill. It was scraped out by hand to where it was loaded into sacks and then dragged along a gallery. A hand-powered winch lifted it 20 m to the next level, where it was loaded into rail-tubs and pushed by hand along the transport level. The ore was tipped out (Fig. 5) and shovelled into leather sacks, to be hauled up the next shaft by electric winch. Re-loaded into larger tubs, the journey out to daylight was downhill (Fig. 3), though the empty tubs were pushed back up by hand. Working conditions are appalling - hot, dusty and low in oxygen (in thin air at an altitude of 4500 m). Many galleries require crawling to get through, and the only way into the small stope where two men were Fig. 6. Squeezing over broken ore in the only way into the stope, where miners wait with cheeks full of coca leaves Fig. 5. Tipping ore from a rail tub at the foot of the winze on the transport level 24 working was a squeeze over a slope of broken ore in the ore chute (Fig. 6). Ladders end on tiny platforms over deep shafts, timber supports vary considerably in their condition, and some galleries are protected only by old stone arches through tall and ancient stopes. The miners permanently chew wads of coca leaves so that they are too stoned to realise the awfulness of their environment. The miners earn about 800 bolivianos (£80) per month, which is more than the potential earnings from desert farming or urban sweatshops. Some auxiliary income is now created from taking visitors on tours round the mines - though Potosi attracts relatively few visitors, and not many of these are crazy enough to take a mine tour. These are not for the fainthearted. Hot, breathless, stooping walks, precarious ladderclimbing (Fig. 7) and flat-out crawling firmly place a mine visit in the “interesting experience” category. Furthermore, they start with a visit to the miners’ market to buy explosives, detonators and coca leaves to carry into the mine as a gift for the miners in the most distant stope. A handful of agents in Potosi run daily tours that are a very convenient way of seeing the mines; for anyone who joins a tour; the experience will not be forgotten. A silver future Not long ago, it seemed that the focus of mining was moving away from Potosi. A large open-pit mine has newly opened on a somewhat similar orebody exposed on the altiplano 250 km to the southwest. This is at San Cristobal, where a new mine town has grown on the desert road popular with tourists from Uyuni to Laguna Colorada. About 230M tonnes of workable ore should produce about 13,000 tonnes of silver, together with huge tonnages of zinc and lead from a huge, modern open-pit; this is a massive ore deposit, though its silver grade of 0.006% for the bulk ore of veins and wallrock is but a pale comparison to the 19% in the richest of the Cerro Rico veins. However, new geological explorations at Potosi have discovered more silver in a series of sedimentary deposits known as pallacos. There are two types of these. One group are crudely stratified gravelly clays with dacite clasts, thought to represent rain-triggered debris flows from screes on Cerro Rico. The others are totally unsorted, with dacite boulders up to 20 m across in a matrix of clay and tuff, and are interpreted as landslides or late-stage lahars off Cerro Rico. In both types, the dacite clasts are mineralised and silicified like their source material high on the mountain. Pallaco deposits up to 20 m thick are draped around the flanks of the mountain, and contain at least 14M tonnes of ore. Four of these pallaco ores are now being worked by the world’s newest silver mine, San Bartolomé, operated by an American company (Coeur d’Alene Mines) for the Bolivian national mining corporation (Comibol), which has owned nearly all the mining rights since nationalisation in 1952. The mine is a shallow opencast operation where excavation of the ore does not even require drilling and blasting; through stripping only the flanks of the mountain, it will not touch any of the old underground workings, some of which have significant historical values, though it will rework some of the old dumps. It came into production late in 2008, and should produce nearly 4000 tonnes of silver within a 15 year lifetime for the mine. Pallaco deposits have not yet been found elsewhere; they ought to exist on other mineralised and eroded volcanoes, but so far nobody has looked for them. Meanwhile, the San Bartolomé Project has given Potosi a new lease of life, with hundreds of miners arriving at the new boom town. Cerro Rico has not yet yielded all of its fabulous riches. ■ About the author Dr Tony Waltham lectured in engineering geology for many years at university in Nottingham, UK, when he wrote his textbook Foundations of Engineering Geology, which is now widely used for university courses and is into its third edition. He has always travelled extensively in pursuit of his main interests in geology underground, whether they lie in natural caves or working mines. His research has been into ground collapse, especially through sinkhole development in karst terrains. Since retiring he has continued to travel and finds underground rivers and active volcanoes equally exciting. Acknowledgement An earlier version of this paper appeared in Geology Today (v.21, no.5, pp.187-190, 2005), and is reproduced by kind permission of the editor. Fig. 7. Ladders down to the lower levels 25 We open up perspectives. Oil and gas is our business. From Argentina to Russia we operate successthe exploration, production and marketing of hydrocarbons. In order to and grow our position as Germany’s largest producer of crude oil and we are seeking engineering and geoscience graduates for our fully in strengthen natural gas Special Professional Experts Accelerated Development (SPEAD) Programme The aim of the SPEAD programme is to develop young and highly qualified university graduates within our company. We offer you a tailor-made combination of “on the job training” supplemented with dedicated technical training over a 2-year period in order to equip you with the skills and competencies to excel in your future role within Wintershall. Prerequisite for the SPEAD programme, and for employment with Wintershall, is your mobility and enthusiasm to take on demanding international positions for several years. For further information about the SPEAD programme and the application process please visit our website or contact us directly: Wintershall Holding AG Human Resources P.O. Box 10 40 20 34112 Kassel Germany [email protected] www.wintershall.com Shaping the future. 27 MSc Thesis The Depositional Environments and Shallow Subsurface Architecture of the Northeastern Caspian Sea By V. Verlinden Supervisors: Dr. A. Moscariello, Dr. R.M. Hoogendoorn. The Caspian Sea is the largest continental water body on Earth and located at the border of Europe and Asia, East of the Caucasus, and North of the Elbruz mountain range. The sea forms a completely enclosed basin. Because the Caspian Sea is not connected to any ocean, the water level is dependent on the inflow of river water and evaporation. This causes the water level to be very dynamic. Therefore, sea-level cycles at multiple scales have taken place frequently in the past. The last full sea-level cycle occurred between 1929 and 1995 and had an amplitude of 3m (Kroonenberg et al. 2000). Sea-level change has a large effect on sedimentary processes in coastal areas. The Caspian Sea is often used to study the effects of sea-level change on coasts (Kroonenberg et al. 2000, Overeem et al. 2003, and Hoogendoorn et al. 2005). The results of these studies are of great importance to study the effect of eustatic sea-level change and analogue studies for hydrocarbon reservoirs. Relatively less research has been done in the Northeastern Caspian Sea, which is the flattest and shallowest part of the sea. In the last couple of years, more interest has been shown for the deep and shallow geology of the Northeastern part of the Caspian Sea. Multiple hydrocarbon fields are developed in the area, including the Kashagan field, one of the world’s largest new discoveries. The field is developed from manmade artificial islands. Information about the distribution of sediments in the shallow subsurface “the subsurface architecture” is crucial for the construction of these offshore production facilities. The subsurface architecture is largely governed by changes in depositional environment through time, which is the combination of physical processes that lay down sediments. The Caspian sea-level change has a large effect on the depositional environments in coastal zones. Therefore, the objective of this study is to increase the knowledge of the depositional environments and shallow subsurface architecture of the Northeastern Caspian Sea. This was achieved by analyzing 6 newly drilled cores, existing geotechnical cores, seismics and cone penetration test data. The depositional environments were determined and a sequence stratigraphical framework was developed. Finally, a 3Dsubsurface model was build to visualize the subsurface architecture and test the developed concepts. The results can be used for the development of the North Figure 1: Caspian offshore-petroleum-production Satellite image showing the Caspian Sea and the study facilities, as an analogue for reservoirs area deposited in similar conditions and to study the effects of sea-level change on other low gradient coasts. 28 The present coastal zone of the Northeastern Caspian Sea can be divided into four areas, a coastal plain, mud flats, a reed-bed barrier zone and the open sea bordering the reed-bed barriers. Because of the gradual change from sea to land with reed in between and the dynamic sea level, the coastline is hard to define, it can shift over tens of kilometres in a couple of years due to sea-level change. Satellite images show that during the latest sealevel rise of 3m, the coastline shifted 40km landward. The six new drilled cores have been drilled to a depth of 10m in the Northeastern Caspian Sea. The water depth at the drilling locations is very shallow and ranges between just 2m to 4m. A part of the project was to drill the actual cores on location offshore with Fugro. Because it was not allowed to transport the cores out of the country, also the core analysis was done in Kazakhstan in the oil-boom town of Atyrau. A sedimentological analysis was performed and samples for radiocarbon dating and biostratigraphical analysis were gathered. In addition, a large amount of shallow subsurface data was already available from cores, cone penetration tests and seismics, which were acquired during the development of offshore hydrocarbon-fields in the area. Figure 2: The Fugro drilling barge at location in the Northeastern Caspian Sea. Four different units were recognized in the cores. The deepest sediments found, below 9m below seafloor (bsf), was a hard overconsolidated sand unit. This unit was named “the overconsolidated sands”. Above the overconsolidated sands, a thick silty clay unit between 4 and 9m bsf was found, containing organic rests. This unit was obviously named “the silty clays”. Above, between 1,5 and 4m bsf, a homogenous brown medium to fine grained sand unit was found. This unit was named “the brown sands”. The shallowest unit was observed between 0 and Table 1 Table with the 4 units, properties, depositional environment and radiocarbon dates. 1,5m bsf and consists of a grey sand layer with a high amount of shell fragments and silt, clay and gypsum laminations. This layer was called “the grey sand” unit. Using the sedimentological, biostratigraphical and seismic data, interpretations for the depositional environments of these units could be made. Some resemble the present morphological zones in the area. The overconsolidated sands were interpreted as being deposited as longitudal aeolian dunes, which were partly reworked by coastal processes. The silty clays were interpreted as being deposited in a lagoonal environment and the brown sands in a barrier-like environment. The grey sands were deposited in the most recent depositional environment, characterized by a low sediment influx and frequent small scale sea-level changes. Radiocarbon dating of molluscs was performed and resulted in dates between 27.000y BP and at least 48.000y BP. Sequence stratigraphy was used to link the sediments to sealevel change. The sequence stratigraphical analysis showed that the overconsolidated sands have been deposited during a lowstand and reworked during a subsequent transgression. The silty clays and brown sands have been deposited during at least one sea-level rise, but possibly multiple sea-level cycles. The erosional surface between both units can either be interpreted as a ravinement surface or a subaerial unconformity. Between the deposition of the brown sands and grey sands, erosion occurred. From this, the conclusion can be drawn that the sediments encountered in the cores are deposited during at least three but more likely 4 large scale sea-level sequences. When placing the results from the sequence stratigraphy and dating in a historical context, multiple sea-level graphs can be constructed, based on the dated samples and already known sea-level history (Dumont 1998, Kroonenberg 2008, Mamedov 1997 and Rychagov 1997). A sea-level lowstand can be placed during the deposition of the verconsolidated sands, between the deposition of the silty clays and brown sands or after the deposition of the brown sands. The erosional surface between the brown sands and recent grey sands is probably created during the a sealevel lowstand known as the Mangyshlak regression or Derbent regression. A subsurface model in Petrel was build to visualize the sediment distribution in 3D. Correlations between the new drilled cores, geotechnical boreholes and cone penetration tests were made. The 4 lithofacies Figure 3: Image showing the results in a sea-level graph; The C14 dated samples (dots)The erosional surfaces found in the cores (red spotted lines); Three possible Caspian sea-level curves for the period between 60.000y BP and 20.000y BP (the three dotted lines); The four different phases of deposition (indicated in grey); The Composed Caspian sea-level curve from literature (grey line) (after Dumont 1998, Kroonenberg 2008, Mamedov 1997and Rychagov 1997). units can be correlated over large distances, in the range of 10-30km. Between the correlated units, 3 dimensional surfaces were created. Figure 4: Correlation between the core logs, geotechnical logs and cone penetration tests. To determine the variation in sediment distribution within the main units, variog rams were made for all types of sediments in each unit. These were later used to model the sediment distribution in the 3D model. The sediment distribution in a vertical direction was determined by making curves, showing the percentage of each sediment type encountered in the cores versus their depth in the model. These curves were made for all sediment types, all with the data from the geotechnical and CDS-cores. They indicate that the sediments within the overconsolidated sands are uniform distributed vertically. Within the silty clay unit, the silt content increases towards the top of the zone. Within the brown sand unit, a slight increase of silty clay ► Figure 5: Modeled surfaces, separating the 4 different units. 29 towards the bottom of the unit was noticed. In the grey sands, an increase in shell debris towards the top was noticed. The sediment distribution in the horizontal plane was determined with maps showing the summed thickness observed in the wells. In the silty clay unit, they indicate an increase in silt seaward. In the brown sand unit a high sand content parallel to the shore is observed with more silty clays coastward and silt in a seaward direction. To “fill-in” the model with sediments, a process called facies modelling was performed. With all the available data, an expectation to find a specific sediment at a certain place in the model can be calculated. These values are used to generate a deterministic model. The overconsolidated sands are modelled with object based modelling, which creates sediment shapes, with dune shapes and sizes derived from the seismic data. The other zones are modelled with truncated Gaussian modelling, which is a stochastic technique that can use the sediment thickness maps, vertical sediment percentage trends and data driven variograms of the sediment distribution. The object-based modelled overconsolidated sands, show similar shapes, sizes and orientations as the longitudal-dune features observed in the seismics. The facies model of the silty clays shows an increase of coarser sediments towards the top of the unit on the seaward side of the study area. These coarser deposits can be related to overwash deposits of a barrier complex seaward of the study area. Lithology thickness maps within the brown sand unit show an accumulation of sand parallel to the coast, with a higher clay fraction coastward and a higher silt fraction seaward. This sand accumulation is interpreted as a relict barrier complex and enforces the concept of deposition in a barrier-like environment. The model of the grey sands shows a high heterogeneity, especially perpendicular the shore, and has a high shell fragments content in the top layers. The research shows that four lithofacies, deposited in different depositional environments were found in the cores. The oldest deposits are dated before 48.000y BP, they have been deposited as aeolian dunes during a lowstand and were reworked during a sea-level rise by coastal processes. On top, lagoonal sediments are deposited between at least 48.000y BP and 42.000y BP during multiple centennial to millennial or less frequent sea-level cycles. These deposits are overlain by barrier-like sands, deposited during sea-level rise. They have been radiocarbon dated around 27.000y BP. The sediments in the top of the cores have been deposited after the sea-level lowstand known as the Mangyshlak or Derbent regression in an environment with a low sediment influx and frequent sea-level changes. The 3D-subsurface model shows how these sediments are expected to be distributed in the subsurface by the different depositional environments which occured side by side in the low gradient environment of the Northeastern Caspian Sea. ■ References Kroonenberg, S.B., Badyukova, E.N., Storms, J.E.A., Ignatov, E.I., Kasimov, N.S., 2000. A full sea-level cycle in 65 years: barrier dynamics along Caspian shores. Sedimentary geology, 134, 257-274. Overeem, I., Kroonenberg, S.B., Veldkamp, A., Groenesteijn, K., Rusakoc, G.V., Svitoch, A.A., 2003. Small-scale stratigraphy in a large ramp delta: recent and Holocene sedimentation in the Volga Delta, Caspian Sea. Sedimentary Geology, 159, 133157. Hoogendoorn R.M., Boels, J.F., Kroonenberg, S.B., Simmons, M.D., Aliyeva, E., Babazadeh, A.D., Huseynov, D., 2005. Development of the Kura delta, Azerbaijan; a record of Holocene Caspian sea-level changes. Marine Geology, 222/223, 359-380. Dumont, H.J., 1998. The Caspian Lake; History, biota, structure and function. Limnology andOceanography, 43, 1, 44-52. Kroonenberg, S.B., Kasimov, N.S., Lychagin, M. Y., 2008. The Caspian Sea, a natural laboratory for sea-level change. Geography, 1, 22-33. Mamedov, A.V., 1997. The late Pleistocene-Holocene History of the Caspian Sea. Quarternary International, 41/42, 161166. Rychagov,G.I., 1997. Holocene oscillations of the Caspian Sea and forecasts based on palaeogeographical reconstructions. Quarternary International, 41/42, 67-172. Picture 6 3-dimensional-subsurface model, showing the sediment distribution in the shallow subsurface of the Northeastern Caspian Sea. 30 European Mining Course 2008 - 2009 In your fourth year of Mining Engineering, there are several possibilities. You may either study abroad (Canada, USA, South Africa, Australia) or participate in one of three existing Erasmus Mundus Minerals and Environmental Programs (EMMEP). I preferred the EMC, because the program is especially created to shape participants into all round mining engineers, has a high degree of company exposure/involvement, and because it is supposed to be a lot of fun. The program is hosted by four different technical universities in Helsinki, Aachen, Falmouth, and Delft which are attended in that order. It all started in Finland. Not knowing what to expect I arrived fully packed at the hostel just before nightfall, where I was told at the reception that my roommate was already in the room. ´Put your bags down. Do you fancy a beer later on?´ What a relief... As Chris Penna (UK) introduced himself I realized that we were going to get along well. Important given the size of the room and the fact that we were going to share it for the next two months. The next day I met the rest of the group. Eighteen people from all over the world. One of them I knew, Manu Shikongo. I had met him before during an internship at an uranium mine in Namibia. Nice guy. During that first day I think I spoke to everyone on the course, which was a good thing because (as is customary in Finland) we ended up in the sauna. During the next four weeks we attended classes together, went to the sauna immediately thereafter (which we had arranged for free at the hostel, due to the fact that the showers were broken on our floor), and either had assignments to finish or explored Helsinki at night. After these weeks followed nearly two weeks of excursions. First to Estonia to visit oil shale operations and a limestone quarry. We were welcomed warmly by the local students who accompanied us on the company visits and later invited us to the initiation of their first year students in the cellar of a castle which was interesting. Then a trip through Sweden and Finland followed which started on a party boat from Helsinki to Stockholm and proceeded to some of the world´s most high tech mines (and usually a sauna afterwards). Exams in Automation & Maintenance, Surpac Training, Mining Technology & Mineral Economics, and Rock Mechanics concluded our stay in Helsinki and the group continued on to Germany. In Aachen everything had been arranged very well. In Vaals (where we stayed) I shared a bungalow with Chris and a Fin called Juhani. We had more space than in Helsinki but also needed it. Studying in Germany is hard work. Seven weeks of long days were fortunately interrupted by the Christmas market, the FEMP reunion in Poland (where old and new students meet the sponsoring companies), some excursions, and a fire rescue training. The program was challenging, mostly due to the quantity of material to study and nature of assignments given. Courses included Open Pit Mining, Environmental Issues, and Mine Ventilation. Like in Helsinki, all exercises were group exercises. Tensions started to build up as everyone was continually under pressure. The fact that exams were given immediately after the course itself was nice, but this meant that you would spend your weekends either completing assignments or preparing for an exam. In hindsight however, I realize that the pressure was probably intentionally brought on and useful to have experienced. In addition, I got to know the other EMC students better. The girls organized a Christmas get together and I learned from Abdul Rashid Sesay (Sierra Leone) that he had 22 brothers and sisters (among other things). It was interesting. After Christmas we were expected in London for some company visits: BHP Billiton, Anglo American, ING, and the London Metal Exchange. Afterwards I travelled to the southernmost part of England with Joe Carr (UK). Once we arrived in Falmouth we set up camp in an enormous secluded mansion with a heated pool. What a contrast with previous accommodations. Juhani, Mark Fry (UK), and Claire Barr (UK) – a girl from the EGEC group with whom we were joined during our time in England joined us in our house. The first week we spent at the CSM Test Mine, where we did some drilling, charging, blasting, and mucking. Due to the many nationalities in our course our presence there made it to the centerfold in the local newspaper. The Camborne School of Mines offered excellent classes, challenging exercises, but also a lot of free time to organize social events (when it snows in England the whole country grinds to a halt) and explore the English countryside (when it’s not raining…). And we did. With Claire I visited castles and beaches and together with Juhani, Mark, and Joe I did some sports and games. Falmouth itself is a nice student town with lots of places to eat and go out and it’s quite easy to meet people. Courses such as ´Surface Excavation & Design´ and ´Project Management and Financial Appraisal´ made our time in England interesting from an educational point of view. Last but not least I arrived in Delft: Happy to be reunited with old friends and grateful for all the comforts of home. Alluvial mining, Industrial Minerals and Mineral Economics were all interesting, but the case study was what we had been groomed for all year. We worked as one group on a single project for five straight weeks only to present our findings in four minutes each and not talk about it to anyone else (it was an existing project). The result was worth it. The EMC students especially enjoyed ´Queens Day´ and “Het Noorden“, but also the excursions to IHC Holland, Smals Bouwstoffen, Shell and a group intercultural therapy session. In conclusion I can personally state the following about the EMC. The EMC is a unique experience. The program offers a diverse package of subjects and is clearly designed to make better, all-round mining engineers out of us all. Although one is continually pressed for time (dealing with this pressure is one of the main challenges in the course), the program remains enjoyable due to good lectures, several excursions, company visits, some organized social events, and the fire rescue training. The program requires a significant amount of adaptability to continually changing circumstances which are often less than ideal. It is quite a thing to spend eight months in four different countries with 17 other students (whom you have never met before) from all over the world, 24 hours a day, seven days a week. All told I experienced the EMC as socially and intellectually challenging, but also rewarding. I have made friends whom I like to stay in contact with and I think that the EMC has been beneficial in shaping me into a better mining engineer. For these reasons I would recommend the program and like to thank FEMP and the industry for making this possible. ■ Glück auf! 31 Miners in the Movies Pulp Fiction Pulp fiction actually consists of multiple storylines which interact at certain points and are told in a nonlinear fashion. One of the main storylines is about two Mining students, Vincent and Jules, who are sent out to retrieve a briefcase that was stolen from their employer, Marcellus Wallace. The movie never clearly indicates what exactly is in the briefcase, we just know that is very important. When people open the briefcase a golden shine can actually be seen coming from within and people look in awe at the contents of the briefcase. Lesser mortals have been discussing endlessly on the internet what the contents of this magical briefcase might be, but for us Miners it is completely clear. The briefcase contains nothing less than Casper the Mining Ghost. Marcellus Wallace actually is no one less then the Beheerder of ‘Het Noorden’. Some 32 32 environmental terrorists stole Casper from the ever watchful eye of the Beheerder and were planning to unleash him upon the Mining world to sow death and destruction. The Beheerder cannot let this happen and sends two of his most trusty Miners to get Casper back. The second major story line is about Butch, a Miner who is asked by Marcellus de Beheerder to go down in a drinking game to win a bet. Butch agrees to go down after the fifth beerglass of gin (jenever), but when he finds out his opponent is a civil engineer he decides he cannot degrade his honor so shamefully. He goes on to win the game, as the fifth glass actually kills the puny civil engineer (‘man of concrete’, don’t make me laugh). Of course, the Beheerder cannot tolerate insubordination and goes after Butch. But when it is Miner against Miner things get tough and nasty very quick... My dear ladies and gentlemen, what you are reading right now is probably my final contribution to Miners in the Movies. It has already been two years since I started writing this column and sadly the time has come that I have to stop. For this last installment the initial plan was to do Ghostbusters, a movie I am very fond of and which is actually quite a bit different from all the other movies we have done so far. Sad to say, we were unable to tear four of our teachers away from their toils and troubles for an hour at the same time. So when the deadline kept creeping closer and closer we had to find an alternative quickly. Desperate times ask for desperate measures, and we grabbed back to what was familiar, what was reliable, and what was very, VERY cool. In other words; another Quentin Tarantino movie. To be more specific: THE Quentin Tarantino movie, ‘Pulp Fiction’, which many rate as his best movie (personally I think ‘True Romance’ is his best, but he only wrote it and did not direct). So I hope you enjoy this last installment of Miners in the Movies just as much as I have enjoyed putting some Mining in some of the classics. culprits are so scared of the two Mining students that they give up the briefcase like whiney little statisticians. But then Jules starts to sing the Glück Auf. And when Jules starts to sing the Glück Auf, people tend to start dying… ■ This scene Vincent and Jules are getting back the briefcase of Marcellus Wallace. They have just arrived at the apartment of the thieves and get their pick-axes from the trunk. Vincent has been asked by Marcellus to take out his wife Mia as he is going to be out of town and someone needs to entertain her. Jules warns Vincent and tells a story about what happened to the last guy who got involved with Mia. The man got thrown in a ball crusher, and the only thing he ever did was show her his rock collection. But as we all know, you never ever show your rocks to the girl of a Miner! You might as well strip down in front of her while singing “Ride it, my pony” and things would still have turned out better. Vincent and Jules continue with their mission and enter the apartment of the thieves to retrieve the briefcase. The four Jules Winnfield is played by Pacelli Zitha,chemical engineer, professor of petroleum engineering and he who actually played badass #2 in the original Shaft movie. Vincent Vega is played by Pascal de Smidt, student advisor and who I suspect to actually be no one less then Elvis. Don’t belief us? Just look at the picture to the right, take away the hair, and age it a little. There is a reason why Pascal shaves his hair that short, you know. Text: Nanne Boogaerdt Photo enhancement: Sanne van der Plas 33 33 The bright side of technology Getting as much oil as possible out of a reservoir has always been the industry’s prime goal. Where pressure has dipped, this often involves using water as a means of flushing it out. However, such methods only work to a certain extent, as water follows the path of least resistance, leaving tougher areas ‘unswept’. But, as Derek Smith discovers, new technology is helping BP lead the way in solving the challenge. Maximising oil recovery from existing resources has always been desirable. Now, it is a major priority. Doing so sustains the economic life of existing surface and sub-surface assets and is typically cheaper and less energy-intensive than new exploration-led developments. In an environment where energy security is high on the world’s political agenda, technologies that improve recovery have serious commercial and strategic value. With oil and gas set to remain the planet’s main source of energy in the coming decades, there is every incentive to recover the maximum amount of oil possible from known reserves. Oil recovery rates – the amount extracted from a reservoir – average just 35% worldwide. BP estimates that a one percentage point increased recovery from its reservoirs would yield an additional 2 billion barrels of oil equivalent. Clearly, within this context, technologies that improve recovery offer a valuable prize. A well-established method of improving oil recovery, is to inject water into a reservoir, creating what is known as a ‘water flood’ or ‘sweep’. By injecting water through a network of injection wells, the pressure in the reservoir is maintained as the oil is produced. The water effectively pushes out more oil from the porous rock structures where the oil is found. Approximately 60% of BP’s oil production already comes from water floods – a level set to rise to 80% by 2010. Across the petroleum industry, technologists have long sought to increase the effectiveness of water floods, tackling the key problem of how to improve that effectiveness deep in the reservoir. Within any reservoir, permeability variations, either vertical or aerial, stimulate the formation of water pathways. Once a continuous outlet exists, there is less attraction for the injected water to follow an alternative route. Consequently, the water injected to push the remaining oil from the reservoir simply bypasses it and flows through the easiest path. The end result – and undesirable outcome – of this, is that the production well delivers more water than oil and the efficiency of the process gradually diminishes. In some circumstances, the volume of water entering the production well, can actually cause it to cease flowing, leading to corrosion of the pipes and tubing. These challenges are common across the industry – and familiar, of course, to BP, who, as a result of them, produces more water than oil. Physical approaches, such as injecting cement, have been used to plug the layers producing the water and force more oil from the reservoir. These have had success, particularly when the 34 plug is located between impermeable layers of rock within the reservoir. But, experience has also shown that this method is not always effective. The heterogeneity of reservoirs and their different permeability characteristics, means that the water often finds a way round the plug and eventually communicates with other layers in the reservoir. BP and other technologists have been working for many years to make improvements. Now, a new technology – known as Bright Water™ has been developed. In the view of Andrew Cockin, director of the Pushing Reservoir Limits technology programme, “Bright Water is a groundbreaking technology, which can bring about a step-change in the industry’s ability to improve water floods.” Bright Water is a dispersion, comprising a tightly-bound, thermally-activated particle, sub-micron in size, which is injected into water. It flows with the water and warms as it passes through the reservoir. It heats fastest in layers where the water has pushed ahead of the main flood and is flowing between the unswept, hot rock above and below. It is here that the polymer essentially pops open or expands, blocking the better-swept zones deep in the reservoir. In layman’s terms, it is akin to the popping of a kernel of popcorn, creating an effect within the reservoir which blocks used water pathways and, by so doing, diverts water vertically or horizontally to zones that were previously poorly swept. One of the striking characteristics of Bright Water is that it activates where it is needed, without having to have detailed understanding of the reservoir’s geology. It can be made to expand or ‘pop’ at the precise location in the reservoir, where it is most needed. In addition, as the particles are so small, they have no impact on the capacity to inject water into the reservoir. The use of Bright Water, therefore, significantly enhances the recovery of oil without the ‘injectivity loss’, which typically results when materials are added to the injection water introduced to a reservoir. The development of Bright Water is a story of technological excellence, coupled with unusual personal dedication and perseverance. More than 10 years has gone into its creation – a body of work recently rewarded by winning a Helios Award in BP’s annual internal recognition programme. In 1997, a research joint venture formed between Mobil, BP, Texaco, and Chevron – called MoBPTeCh – was created to explore high-risk, highreward projects. At BP’s instigation, Bright Water was the first of its initiatives. Harry Frampton, a senior petroleum engineer within the reservoir applications team, has been an integral part of this project. On joining BP in 1997, Harry began work on water and gas treatments, tasked with developing innovative approaches to the challenge of maximising reservoir output. As one of the inventors, he has been involved in Bright Water’s development since its inception. Two years of sample development and evaluation in the labs at BP were rewarded in January 2000, when the chemical and technical potential of a product which became known as Bright Water, was proved in a laboratory environment. The successful formation of an effective block some six to nine metres (2030 feet) within a tube of sand consisting of multiple 10-foot sections demonstrated the approach’s potential. Initial field trials, carried out in the Chevron Minas field in Indonesia, focused on the logistical and practical challenges of manufacturing, supplying and using Bright Water in a production environment. Delivering, mixing and injecting the Bright Water and detecting the blockage in the reservoir were proven to be practical. In addition, although not the focus of these efforts, incremental oil was produced. As is the case with many technological breakthroughs, moving from demonstration trials to larger-scale applications was not without its difficulties. Further trials were designed and carried out in the North Sea. While Bright Water was successfully injected into the Arbroath reservoirs in 2002, the sale of these assets and the different imperatives of the field’s new operators meant that there were no usable results. The key developments occurred at BP’s fields in Alaska, at the mature assets of Milne Point and Prudhoe Bay. Again, the personal efforts of committed individuals, in planning the trials and carrying them out in remote environments and Arctic weather conditions, were crucial. Working with Danielle Ohms at Milne Point and Steve Carhart at Prudhoe Bay, commercial trials completed in 2004-2005, yielded successful results in 2005-2006. Seventy nine thousand barrels of incremental oil have been produced at Milne Point and 475,000 barrels to date from the three wells in adjacent geological patterns in the trials at Prudhoe Bay. Many factors have combined to bring Bright Water to its current position. At heart, is the sheer quality of the research, coupled with the tenacity needed to carry through an idea from concept to patenting, to extensive testing and practical application. This has involved navigating changing commercial environments, and responding to wider organisational factors, such as portfolio adjustments and changing operating priorities. In the view of Frampton, “the alignment, clarity of purpose and commitment of the team has always been crucial.” Further field trials were initiated through BP with Pan American Energy – a joint venture in which BP holds a considerable equity – in June 2007, at the onshore Koluel Kaike and Piedra Clavada fields in Argentina. Trials are also underway at two Figure 2: A pumpskid wells in the Tangri field near Karachi in Pakistan and the Chevron Strathspey field in the UK North Sea. Early indications, from monitoring of oil and produced water and pressure fall-off tests, suggest that they are looking promising. Comprehensive results will be available from mid-2008. The team is actively working with assets in Europe, Africa and Russia to introduce the technology into the best possible locations as quickly as possible. Factors, including reservoir characteristics, pH and salinity levels, and whether a project such as this comes sufficiently high on the priority list of the asset in question (who typically have several potential opportunities and challenges for continuous operational improvements), need to be taken into account. A decision on whether to apply Bright Water will always be stacked up against other options; but as a means of lowering the cost of incremental oil, the process has a strong story to tell and is likely to become evermore attractive as ‘learning-by-doing’ and scaling-up drive further reductions in the incremental cost per barrel. Enhanced oil recovery is coming of age – oil companies worldwide recognise there are fewer untapped areas to access, and the risks and costs of new development are high. On the north slope of Alaska, miscible gas injection, extended-reach drilling and coiled tubing, have steadily enhanced the recovery factor from an original estimate of around 40% to more than 60%. The future use of time-lapse or 4D seismic surveys and other reservoir investigation techniques will increase the ability to track water underground and improve the capacity to ► Figure 1: Bright Water technology has been successfully tested at Prudhoe Bay and Milne Point in Alaska. 35 increase yields. As part of BP’s technology programme to push reservoir limits, Bright Water sits squarely within this portfolio. BP believes that it will produce significant volumes of additional oil for the company over the next 20 years – roughly equivalent to finding a major new field – generating approximately 2-3% more recovered oil in fields where it is used. Ten years of development, testing and learning-by-doing stand it in good stead to gain future benefits. Arguably, what is even more exciting is the fact that it is just one of several areas with real potential being developed in BP’s technology leadership flagship programmes for research and development. Bright Water shows that great ideas, allied with tenacity, can bring such developments to fruition. Bright Water is now on the cusp of wider commercial dissemination. Market interest is high. In the meantime, existing applications continue. It is estimated that the benefits of Bright Water in the Prudhoe Bay field will continue for at least another ten years and its use there is on track to deliver a further 2 million barrels in total. ■ About the author Derek Smith is a writer and consultant on sustainable development issues, and has worked widely on issues of sustainability, technology and risk management in the oil and gas industry. Thanks goes to Illustrator Lance Bell who kindly has provided illustrations for this article. Bright Water is a trademark of the Nalco company. Figure 3: Above, as Bright Water is injected into the reservoir, it heats up and blocks used water pathways. In so doing, it diverts the water vertically and horizontally to zones that were previously poorly swept. 36 Weber Puzzle 37 Incorrect Addresses Ir. Prof. Ir. Ir. Dr. Ir. Ir. Ir. Dr. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Dr. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Dr. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Dr. Ir. Ir. Ir. Ir. The address file of the Mijnbouwkundige Vereeniging is since long time one of the best alumni databases in Delft. However because miners move all over the world in their careers, we sometimes find the data contains a former adress. If you happen to know an alumnus of the list below, you can help us by mailing his/her current adress to the Mijnbouwkundige Vereeniging. S P.E. A. M. E. J. H. A.H.F. P.J. F.G. J.P. H.G. A. R.J. E. P.E. J.P.M. E. J.F. F.J.H. G. J.W.E. P.W. R.L. H.P. R. J. J.W. C.A. J.P. K.A.T. F.D. W. P.K. M.P. S. R.A. A. J.M. M.G. A. J.T. R.M. E. E.F.M. H. L.B. F.M. L.A. M.J. H. H.H. B. J.W. E.P.T. H.L. C.G. C.P. G.C.J. S.A. L.W. M.L.P. M.P. M.W.P. P.A. A.G.M.T.J. E.J. van der van de van der van der van van den van van de van van van van van van Tigrek Poel Ziolkowski Berkel Vries c/o the Macneal Visman Laan Graadt van Roggen Johannes Hoeven Cruyningen Coleridge Waterreus Hofland Keddeman Stek Ruijsenaars Brand Houtzager Dirks Smeets Buitenen Wasterval Heuvel Klaassen Visser Ierland Brinkhorst Bruijnzeels Hofland Bours Vermeulen Ottes Manen Koster Sidharta Hulscher Kersen Zuidberg Dierendonck Hoogendoorn Boerma Bartstra Quadt Ham Gurcoglu Eleveld Kramer, FPB1 Latum Mes Nienhuis Tijhof Tanesha Put Smits Attema Waverijn Visser Holstege Keiman Koetsier Martens Kuppers Dillen Vercruijsse Moonen maarss 1932 1941 1945 1946 1946 1948 1955 1956 1958 1964 1966 1967 1967 1968 1969 1969 1970 1970 1973 1976 1977 1977 1977 1978 1978 1978 1978 1979 1980 1980 1980 1980 1981 1981 1981 1981 1981 1981 1981 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1983 1983 1983 1983 1983 1983 1983 1983 1983 1984 1984 1984 1984 Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. Ir. M.M. D.B. W.O. M. L.O.A. P.W. A.J.C. R.G. S.G. C.W.J. F.L.M. P.L. I. M. N.J. K.P. J.B. J.M.C. F. H. R.J. L.J. V. W.S. H.B.E. M.L.A. W. X. M. R.A. C.H.J. J.H. D. R.J.J. A.D. P.P. D. J.G. D. P.H. C.M.D R. B.R. P. G.T. B. F.N. M. K.A. C. J.P. K.R. E.F. F.T. M.K. W. A.J. F.A. J.J. J.K. F.G.C. T. M.G.H. F.J.T. M.R. R.P. R. J.B. van de de van de van den van van van van de van van van Soeters Bosman Rogaar Joachimsthal Alfers Wilbrink Pluym Borselen Hulshoff Weert Bever Brunings Hoogeveen-de Jong Vermaas Elzenga Labberte Hasselt Hoogenbosch Paleari Koningh Berkhout Rieter Hengst Schmoutziger Hylkema Boon Bharos Weert Bosch Felix Timmermans Terwogt Staalduinen Meijers Wormeester Lingen Niepce Heikamp Bongers Woerdings Kerstiens Spruit Joseph Kengen Meijer Rademaker-Vrind Mounzer Ruyt Olst Dijksman Elten Heuven Nederlof Fedor Keegel Miedema Beer Kamminga Hinthum Vandehoek Brouwer Lefeber Uijttenhout Degener Leeuwen Losenoord Formoso-Rafferty Castilla Kruyswijk If you are in contact with one of the miners listed above we would like to ask you if you could mail his/her personal data to [email protected] 38 1985 1985 1985 1985 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1986 1986 1986 1987 1987 1987 1987 1987 1987 1987 1988 1988 1988 1988 1988 1988 1988 1988 1988 1989 1989 1989 1990 1990 1990 1990 1990 1991 1991 1991 1991 1991 1992 1992 1992 1992 1992 1992 1992 1992 1993 1994 1994 1994 1995 1995 1995 1995 1996 1996 1996 1999 2003 2006 Graduation Subjects 17 juni 2009 Thai Son Tran: “Electromagnetic Assisted Carbonated Water Flooding in Heavy Oil Recovery” 8 juni 2009 Mathilde Robben: “Feasibility study on the use of NIRS sorting in the process of Skorpion zinc ore” 15 mei 2009 Stanley Slagmolen: “Economic Analysis of Deep Sea Mining Operation and Conceptual Design of Mining Machine” Subtitle: “The Case of Ferromanganese Cobalt-rich Crusts on the Ratak Guyot” 8 mei 2009 Tim Drummen: “Calibrating the TU Delft double wall cell for investigation of the unsaturated behavior of Maastricht carbonate sand” 27 april 2009 Vincent Verlinden: “Depositional environments and subsurface architecture of the Northeastern Caspian Sea” 7 april 2009 Thom van der Heijden: “Modeling of Miscible CO2 Foam Displacements with Oil” 1 april 2009 Nasrein Agage: “Fracture Network Connectivity” 27 maart 2009 Job Kruyswijk: “Pre-feasibility of Underground Coal Mining in the Peel Area” 20 maart 2009 Jaya Kisoensingh: “Geological interpretation and Modeling of an Oilshale-fire; Kimmeridge-England” MV Agenda 12 16 - 20 27 31 - 3 4 9 18 2 7 6 augustus augustus augustus aug./sept. september september september oktober oktober november • • • • • • • • • • “Het Noorden” weer open na vakantie OWEE MV en KIVI vieren 150-jarig jubileum van eerste olieboring in “Het Noorden” Nuldejaarschexcursie Barbaraborrel verzorgd door het epo-bestuur 118 Algemene ledenvergadering en bestuurswissel NoCo wissel Barbaraborrel Lezing over geschiedenis van Aardwarmte i.s.m. DAP en KIVI op fac. CiTG Barbaraborrel: de Mosselmaaltijd Colofon De Natural Resource is een uitgave van de Mijnbouwkundige Vereeniging, studievereniging van de opleiding Technische Aardwetenschappen. Het periodiek wordt vier keer per jaar uitgebracht en kosteloos verzonden naar alle leden van de Mijnbouwkundige Vereeniging. Tevens worden er 100 exemplaren ter promotie aangeboden. Het merendeel hiervan zal naar middelbare scholen in Nederland en naar relaties worden verzonden. Redactie Robert-Jan Pielkenrood Ko Korenromp Koen van Toorenenburg Ciarán Latooij Laura van Leeuwen Erik van der Putte Daan van Berkel (QQ) Colofon Stevinweg 1 2628 CN Delft E-mail: [email protected] tel. +31 (0)15-2786039 Design Shell, VMS, The Hague Oplage 1600 Redactiesecretariaat E-mail: [email protected] Druk Thieme Media Services, Delft 39 Protecting the environment isn’t just in our interest. It’s in our nature. We believe that developing energy and protecting natural resources go hand in hand. So when we look to the world’s future energy demands, we never lose sight of our planet. With some of the industry’s highest environmental standards, we’re helping ensure that our human energy will always be energy well spent. To learn more, visit us at chevron.com. CHEVRON and the CHEVRON HALLMARK are registered trademarks of Chevron Intellectual Property LLC. HUMAN ENERGY is a trademark of Chevron Intellectual Property LLC. © 2009 Chevron Corporation. All rights reserved.
© Copyright 2024 ExpyDoc