VRIJE UNIVERSITEIT Interrelated Orogenic Building and Subsequent Extension at the Contact Between the Dinarides and the Pannonian Basin Evidence from low-temperature thermochronology ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. F.A. van der Duyn Schouten, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de Faculteit der Aard- en Levenswetenschappen op maandag 15 september 2014 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Uros Stojadinovic geboren te Paracin, Servië promotor: copromotor: prof.dr. P.A.M. Andriessen dr. L.C. Matenco The wreath's heavy, but the fruit is so sweet! Without death there is no resurrection. The Mountain Wreath Petar II Petrović Njegoš The research for this thesis was funded by the Netherlands Research Centre for Integrated Solid Earth Science (ISES) and the VU University Amsterdam. It was conducted at: Departments of Isotope Geochemistry and Tectonics Faculty of Earth and Life Sciences VU University of Amsterdam De Boelelaan 1085 1081 HV Amsterdam The Netherlands Members of the Reading Committee: prof. dr. Vladica Cvetković prof. dr. Giovanni Bertotti dr. Ernst Wilingshofer dr. Marinko Toljić dr. Jurgen Foeken Title: Interrelated Orogenic Building and Subsequent Extension at the Contact Between the Dinarides and the Pannonian Basin, Evidence from low-temperature thermochronology Translated title: De samenhang tussen gebergtevorming en de daaropvolgende extensie in de overgangszone tussen de Dinariden en het Pannoonse Bekken, afgeleid uit lage-temperatuurthermochronologie Author: Uros Stojadinovic Publisher: Copyright © 2014, U. Stojadinovic, Paraćin Printed by: "M-graf" Trstenik, Kruševački put bb Circulation: 100 copies ISBN: 978-86-917901-0-3 Cover: Panoramic view of the Bukulja Mountains, photo by Uros Stojadinovic Contents Acknowledgements .................................................................................. IX Summary .................................................................................................. XIII Samenvatting......................................................................................... XVII Rezime ...................................................................................................... XXI 1 Introduction .............................................................................................. 1 1.1 Introduction ....................................................................................... 1 1.2 Thesis outline .................................................................................... 4 2 The evolution of the NE part of the Dinarides .................................... 7 2.1 The Dinarides: Regional overview of the geodynamics ............. 7 2.1.1 Main unites of the Dinarides .................................................. 13 2.1.2 The Fruška Gora, Cer, and Bukulja Mountains of the NE Dinarides ..................................................................................... 18 2.2 Correlation of Mesozoic meta-sedimentary sequences in the NE Dinarides .............................................................................. 22 2.3 Cretaceous−Paleogene syn-kinematic turbidites (i.e. flysch) deposited along the NE Dinarides margin ................... 29 2.4 Oligocene−Miocene magmatism in the Cer and Bukulja Mountains .............................................................................................. 36 2.5 Miocene−Quaternary sedimentation in the southeastern Pannonian Basin ................................................................................... 40 3 Low-temperature thermochronology ................................................. 47 3.1 Introduction ..................................................................................... 47 3.2 Apatite (U-Th)/He thermochronology........................................ 48 3.3 Apatite and Zircon fission-track thermochronology ................. 53 3.4 Modeling of the time-Temperature histories .............................. 66 4 Miocene extensional exhumation in the NE Dinarides in the context of Pannonian Basin formation: constraints from lowtemperature thermochronology ............................................................. 77 4.1 Introduction ..................................................................................... 77 4.2 Geological indications for existence of extensional detachments in the NE Dinarides ...................................................... 80 4.3 Low-temperature thermochronology of NE Dinarides ............ 89 4.3.1 Cooling ages in the Fruška Gora Mountains ....................... 94 4.3.2 Cooling ages in the Cer Mountains ....................................... 98 4.3.3 Cooling ages in the Bukulja Mountains.............................. 102 4.3.4 Specific cooling histories of Cer and Bukulja intrusions.. 105 4.4 The exhumation history in studied areas of the NE Dinaridic margin ......................................................................... 108 4.4.1 The exhumation history of the Cer Mountains ................. 109 4.4.2 The exhumation history of the Bukulja Mountains .......... 111 4.4.3 The exhumation history of the Fruška Gora Mountains .. 115 4.5 The link between exhumation and processes associated with the opening of the Pannonian Basin ....................................... 116 4.6 Conclusions ................................................................................... 120 5 Thermo-tectonic evolution of the NE Dinarides: inferences from detrital thermochronology ........................................................... 123 5.1 Introduction ................................................................................... 123 5.2 Detrital thermochronology and interlinked tectonic and sediment-forming processes in the NE Dinarides ......................... 126 5.3 Detrital thermochronology of NE Dinarides ............................ 134 5.3.1 Detrital thermochronology of Late Cretaceous−Paleogene syn-kinematic sediments in the NE Dinarides .......................................................................................... 134 5.3.2 Detrital thermochronology of Miocene sediments in the Fruška Gora Mountains........................................................... 141 5.3.3 Detrital thermochronology of Miocene sediments in the Bukulja and Cer Mountains .................................................... 146 5.4 Cretaceous−Eocene thermal histories of syn-kinematic sediments deposited in the Sava Zone ............................................ 150 5.5 Miocene thermo-tectonic evolution of the Fruška Gora Mountains ............................................................................................ 158 5.6 Syn-rift sedimentation as an effect of exhumation of Bukulja and Cer Mountains core complexes .................................. 164 5.7 Conclusions ................................................................................... 167 6 Regional integration and conclusions............................................... 171 Appendices .............................................................................................. 183 Appendix A. Geological maps of the study areas with low-t thermochronology ages of the analyzed samples .......................... 183 Appendix B. Low temperature thermochronology analytical data ..................................................................................... 187 References ................................................................................................ 191 Acknowledgements A friend once told me that doing a PhD is like a roller coaster ride. Now, when the ride is over it is good time to remember people that made it happen and others that I met while it lasted. Paul, first of all thank you for hiring me for this project. Thank you for your help in the lab and with writing papers and for being patient and tactful also during the times when I didn’t completely deserve it. Liviu, thank you for showing me that there is so much more in geology besides column descriptions. Above all it is a quest for fundamental principles. Good luck with your further quests across the Mediterranean. Marinko, thank you for the ability to recognize the right moment. I will always remember the discussions we had in the field and in the office and the advices you and professor Marović gave me. Knowing that he would be content with the things we done makes me proud. I would like to thank the members of the reading committee: prof. dr. Vladica Cvetković, prof. dr. Giovanni Bertotti, dr. Ernst Wilingshofer, dr. Marinko Toljić, and dr. Jurgen Foeken, for the time spent reading this book and their constructive comments. IX When I first came to A’dam I met people that helped me a lot and made me feel welcomed. Marten, thank you for the advices about living in Holland and at the VU and for demonstrating personal integrity during all fieldworks, courses, meetings, and conferences we visited together. Anne, my bff, thank you for your company during the years spent at the VU and for the great moments we had in the town. I wish to thank my office mates during the early period Sandra and Elco. Sandra, thanks for taking care of me, for all good advices, and for amazing understanding of fission track methodology. Elco, sharing office with you made me realize what it takes for young scientist to become an outstanding one. I am equally grateful to my office mates during the later stage of my work. Inge and Catalin, thanks for everything and success with your research. Many thanks to my other fellow isotopes: Marlies, Jurgen, Klaudia, Jan, Marlies, Fenny, Leah, Brett, Diana, Ibrahim, Arnaud, Bad’r, Joaqium and all others. Jurgen, first steps in the lab were much easier with your support, confidence, and AC/DC. I want to thank Roel, Onno, Bas, and John, all real professionals in their work, for their help during the lab work. Tineke, although your help with fission track preparation was irreplaceable, there were times when your support as friend was helping me even more. I will not forget this. Good support and motivation I always found in discussions with: Dimitrios, Ernst, Ioan, David, Stefan, Javier, Mohamed, Karen, Maarten, Nico, and all other members of professor Cloeting’s European school of tectonics. I also need to mention some of the great people I met at the VU and through the VU: Teresa, Matias, Silvia, Slavka, Rasto, Andreas, Josepha, Brett, Emma, Jane, Ida, Alex, FransJan, Margriet, John, Martin, Kamil, Arjan, Martin, Wouter, and many master and bachelor students. Life in Holland would be much less interesting without Vale and Sjoerd, my Amsterdam family. List of the things I need to thank you both for would be too long for the acknowledgements. I also need to mention Eliene, Maarten, Willem, Sofia, Jeroen, Douwe, Jelena, Rene… During my studies in many different occasions I was meeting Serbian colleagues in similar positions, sharing similar hopes, motives, and problems. I am especially grateful to Erak and Miloš, samurai of geology, for their support during these years. Many thanks also to: Nikola, Dejan, Nevena, Milica, Zoja, Ivanka, Ana, Josip, Miloš, Darko, and Milorad. Through all these years, and especially in the final stage I had good support from colleagues at University of Belgrade. I am very grateful to professor Rundić, professor Knežević, Nataša, Nevenka, and all other collaegues and students in Belgrade. Many thanks to my friends and family in Serbia, especially to my sis Ana, the Keri family, and Natalija. Summary Low-temperature thermochronology in the Fruška Gora, Cer, and Bukulja Mountains of Serbia is testifying a complex, poly-phase thermo-tectonic evolution of the junction area between the Dinarides and the Carpatho−Balkanides from the end of Cretaceous times onwards. The north-eastern margin of the Dinarides was affected by the Cretaceous–Paleogene shortening related to collision between Adriatic- (i.e. Dinarides) and European-(i.e. Tisza and Dacia) derived units, closing the intervening ocean along what is commonly known as the Sava suture zone. Zircon fission track thermochronology of samples collected in syn-kinematic sediments of the Fruška Gora, Bukulja and Cer Mountains of the NE Dinarides yields the temporal constraints for the Europe–Adria collision, setting the peak tectonic activity to Maastrichtian, at ~70 Ma, but must have been prolonged in Early Paleogene times. The provenance ages that were obtained point to a rapid exhumation of source area that is most likely dominated by the Upper Cretaceous– Paleogene intrusive and extrusive magmatism recorded in the Banatitic‐Srednogorje Zone. Therefore, the main locus of the latest Cretaceous–Paleogene exhumation was shifted from the Dinarides margin and the Sava Zone of collision towards the Carpathian units. Our study confirms the general position of the Sava suture when compared with previous interpretations. However, it also demonstrates that its activity continued during Paleogene times, much longer than previously assumed, at least XIII by exhumation at the resolution of fission-track thermochronometers. Post-dating the Latest Cretaceous–Early Paleogene event, the Middle to Late Eocene cooling and exhumation ages obtained in this study are interpreted as a result of one other tectonic event. These ages are coeval with the Middle–Late Eocene phase of shortening that is widely observed in the External Dinarides, extending as far west as the Southern Alps. The novel observations demonstrate that the Late Cretaceous–Paleocene thrusting continued during Eocene times, when the Dinaric tectonic phase also significantly affected the Internal Dinarides, including the contact with the overlying European-derived units. Furthermore, we interpret the emplacement of the Cer Mountains I-type pluton and other genetically related late Paleogene granitoid bodies, as being associated with the Dinaric tectonic phase. Since the collisional processes between the Dinarides and the Carpatho−Balkanides have reached their peak in the uppermost Cretaceous–Paleocene times (starting with ~70 Ma), the Eocene (~40 Ma) contractional episodes of the NE Dinarides are interpreted to denote the onset of enhanced coupling between the two continental units in and near the former subduction zone. Hence, this coupling is likely the result of the continuing convergence between Adria/Africa and Europe that was accommodated by the Alpine Tethys subduction zone located more N-wards at the exterior of the Alps and their prolongation in the Carpathians. The present-day geometry of the junction area between the Dinarides and the Carpatho−Balkanides is the result of a Miocene extensional phase that has created the Pannonian Basin, a classical example of a back-arc basin formed in response to the retreat of a slab situated at the exterior of the Carpathians. The low-temperature thermochronology has demonstrated that the formation of the southeastern part of the Pannonian Basin and its southern prolongation along the Morava river valley was associated with coeval large-scale exhumation in the Fruška Gora, Cer, and Bukulja Mountains of the NE Dinarides. These findings disprove classical studies of the NE Dinaridic margin, which assumed that following the Cretaceous–Eocene period of orogenic build-up, the extension of the Pannonian Basin resulted only in subsidence in the normal faults hanging-wall and coeval deposition of up to 3–4 km of Miocene sediments. This study demonstrates that rocks that were previously buried to intermediate crustal depths by the subduction of the Sava ocean and the following collision that took place between European- and Adriatic‐derived units were subsequently rapidly exhumed in the footwalls of large-scale extensional detachments. This means that the extensional detachments reactivated the inherited subduction/collision contact between European and Adriatic units. Zircon fission track thermochronology record in the Fruška Gora Mountains has proven that the extension in the SE part of the Pannonian Basin was ongoing already at the Oligocene−Miocene transition at ~24 Ma, earlier than at ~20 Ma that was the general interpreted extensional onset age. The Pannonian extension along the NE Dinarides margin has established an interlinked exhumationerosion-deposition system, which was active during the entire late Early to early Late Miocene extensional period, with the average exhumation exceeding the rate of 0.5 km/Ma. The exhumation process was also associated with decompressional melting and emplacement of the Bukulja Mountains S-type pluton and other genetically related granitoid bodies, such as the Polumir and the Cer Mountains S-type two-mica granite. The Pannonian extension was characterized by a series of parallel, top-to-E oriented, detachments that are presently exposed in the Dinarides. The top-to-E extension cannot be associated with an E-ward movement of the intervening Carpathians units in this sector of the chain. The only other possible genetic option is the roll-back of a Dinaridic slab, a speculative hypothesis that would be compatible with the largescale extension that was recently quantified in this segment of the orogenic chain. Samenvatting Het overgangsgebied tussen de Dinariden en CarpathoBalkaniden kent vanaf het einde van het Krijt een complexe polyfase thermo-tectonische ontwikkeling. Dit blijkt uit lagetemperatuur-thermochronologie voor de Fruška Gora-, Cer- en Bukulja-heuvels in Servië. De noordoostelijke rand van de Dinariden ondervond gedurende het Krijt en Paleogeen verkorting als gevolg van de convergentie van tektonische blokken met een Adriatische (de Dinariden) en een Europese affiniteit (Tisza en Dacia). Bij deze botsing werd een tussenliggende oceaan gesloten en vormde zich een sutuur: de Sava-zone. Zirkoon-splijtingssporen-thermochronologie van monsters verzameld in de syn-kinematische sedimenten van de Fruška Gora-, Cer- en Bukulja-heuvels (Interne Dinariden) leveren het tijdskader voor de botsing tussen Europa en Adria: de tektonische activiteit piekte rond 70 Ma, in het Maastrichtien (Laat-Krijt), maar duurde voort tot in het Vroeg-Paleogeen. De verkregen data wijst op een snelle exhumatie van het brongebied, dat hoogstwaarschijnlijk gedomineerd werd door intrusief en extrusief magmatisme in de Banatiten-Srednogorje Zone. De zone waar exhumatie plaatsvond verplaatste zich gedurende het Laat-Krijt en Paleoceen van de noordoostelijke rand van de Dinariden en de Sava-zone richting de eenheden met een Karpaten-affiniteit. Alhoewel de studie eerdere interpretaties van de positie van de Sava-zone bevestigt, wordt ook aangetoond dat de zone veel langer actief bleef dan eerder XVII gedacht; exhumatie op de resolutie van de splijtingssporenthermochronometers vond plaats tot in het Paleogeen. De in deze studie gevonden Midden–Laat-Eocene afkoelings- en exhumatieouderdommen worden geïnterpreteerd als een aparte tektonische fase. Deze ouderdommen kunnen worden gecorreleerd aan de Midden–Laat-Eocene verkortingsfase die plaatsvond in de externe zone van de Dinariden en zelfs tot in de Zuid-Alpen. Hieruit concluderen wij dat de Laat-Krijt– Paleocene verkortings- en accretiefase in de Externe Zone van de Dinariden voortduurde tot in het Eoceen, gelijktijdig met de Dinarische tektonische fase in de interne zone van de Dinariden en de bovengelegen eenheden met een Europese affiniteit. Bovendien kunnen we het I-type intrusief in de Cer-heuvels en overige Laat-Paleogene granitoïden koppelen aan deze Eocene fase van verkorting. Aangezien de piek van continentale collisie tussen de Dinariden en de Carpatho-Balkaniden plaatshad tijdens het Laat-Krijt–Paleoceen (vanaf ~70 Ma), beschouwen we de Eocene (~40 Ma) verkorting in de noordoostelijke Dinariden het gevolg van de sterkere wordende koppeling tussen de twee continentale eenheden in en nabij de inactief geworden subductiezone. Deze sterkere koppeling is vermoedelijk het gevolg van de voortdurende convergentie tussen Adria/Afrika en Europa die verder noordwaarts, aan de buitenrand van de Karpaten en Alpen, geaccommodeerd subductiezone van de Alpiene Tethys. werd langs de In het overgangsgebied tussen de Dinariden en de Carpatho-Balkaniden bevindt zich tegenwoordig het Pannoonse Bekken, een klassiek voorbeeld van een back-arc bekken. Het werd gevormd werd tijdens de Miocene extensie die het gevolg was van het terugrollen van een subducerende plaat aan de buitenrand van de Karpaten. De lage-temperatuur- thermochronologie toont aan dat de vorming van het zuidoostelijke en zuidelijke deel van het Pannoonse Bekken in de Noordoostelijke Dinariden ook gepaard ging met grootschalige Miocene exhumatie in de Fruška Gora-, Cer-, and Bukulja-heuvels. Dit bewijst het ongelijk van klassieke interpretaties van de noordoostelijke Dinariden, waarin er vanuit werd gegaan dat de extensie in het Pannoonse bekken alleen zorgde voor daling en de afzetting van 3–4 km sedimenten boven de bovengelegen blokken van afschuivende breuken. Deze studie toont echter aan dat gesteenten die tijdens de subductie van de Sava-oceaan en de daaropvolgende continentbotsing tot op diepten van omstreeks 10 km in de korst begraven waren vervolgens snel geëxhumeerd werden als onderdeel van de onder de grootschalige ontkoppelingsniveaus gelegen blokken. Dit impliceert dat de oudere subductie- en botsingscontacten tussen de Europese en Adriatische eenheden gereactiveerd werden als ontkoppelingsniveau. splijtingssporen-thermochronologie laat ook zien Zirkoondat de extensie in het zuidoostelijke deel van het Pannoonse bekken al rond 24 Ma gaande was, vroeger dan de eerder aangenomen 20 Ma. De Pannoonse extensie langs de noordoostelijke rand van de Dinariden zorgde voor het ontstaan van een gekoppeld exhumatie-erosie-afzettingssysteem. Dit systeem was actief tijdens de gehele extensiefase, die duurde van het eind van het Vroeg-Mioceen tot in het begin van het Laat-Mioceen en resulteerde in exhumatie met snelheden van meer dan 0.5 km per miljoen jaar. Deze exhumatie ging samen met decompressief smelten en het intruderen van het S-type Bukulja-intrusief en geassocieerde granitoïden zoals de Polumir and Cer S-type twee-glimmergraniet. De Pannoonse extensiefase werd gekarakteriseerd door een groep van parallelle top-oost gerichte ontkoppelingsniveaus, die tegenwoordig ontsloten zijn in de Dinariden. Aangezien de top-oost extensie in dit gedeelte van de gebergteketen niet verklaard kan worden door een oostwaartse verplaatsing van de tussenliggende eenheden van de Karpaten, is de enige mogelijke verklaring het terugrollen van de Dinaridische subducerende plaat. Deze speculatieve hypothese zou de recent aangetoonde grootschalige extensie in dit gedeelte van de gebergteketen verklaren. Rezime Niskotemperaturna termohronološka istraživanja na prostorima Fruške gore, Cera i Bukulje, koji pripadaju severoistočnom obodu unutrašnjih Dinarida, pružaju dokaze o složenoj, višefaznoj termo-tektonskoj evoluciji spojnog područja Dinarida i Karpato-balkanida od kredne periode nadalje. Severoistočni obod Dinarida pretrpeo je značajna tektonska skraćenja kao posledicu kolizije između adrijskih (Dinaridi) i evropskih (Tisa i Dakija) kontinentalnih jedinica, pri čemu je samo područje kontakta poznato kao “Sava sutura“. “Fissiontrack“ termohronologija na cirkonima iz flišnih sedimenata Fruške gore, Bukulje i Cera definiše vreme kolizije evropskih i adrijskih jedinica, markirajući mastrihtski kat (~70 Ma) kao vreme najveće tektonske aktivnosti. Dobijeni podaci o starosti takođe ukazuju na ubrzanu ekshumaciju izvorišnih područja sedimenata, koja su najverovatnije predstavljena gornjekrednopaleogenim intruzivnim i ekstruzivnim magmatitima Banatitsko-srednjegorske zone. Na osnovu toga se može zaključiti da je glavno područje gornjekredne ekshumacije pomereno od dinarske margine i Sava suture ka jedinicama Karpato-balkanida. Ova studija, u skladu sa prethodnim tumačenjima, potvrđuje generalnu poziciju Sava suture. Međutim, takođe pokazuje da se tektonska aktivnost na ovom prostoru nastavila tokom čitavog paleogena, mnogo duže u odnosu na ranije pretpostavke. Eocenska faza ekshumacije sledi kredno-paleogenu fazu i predstavlja rezultat drugih tektonskih XXI događanja. Dobijene eocenske starosti istovremene su sa fazom tektonskog skraćenja koja je dobro definisana u jedinicama spoljašnjih Dinarida (“Dinarska faza”). Naša istraživanja ukazuju na to da se kredno-paleogena kompresija nastavila i kroz eocen, te da je Dinarska tektonska faza imala značajan uticaj i na jedinice unutrašnjih Dinarida, uključujući i sam kontakt sa jedicama evropskog afiniteta. Osim toga, utiskivanje I-tipa granitoida Cera kao i drugih genetski srodnih poznopaleogenih granitoida, interpretira se kao povezano sa Dinarskom tektonskom fazom. Budući da su kolizioni procesi između Dinarida i Karpato-balkanida dostigli svoj maksimum na granici krede i paleocena (~70 Ma), eocenske kontrakcione epizode (~40 Ma) u severoistočnim Dinaridima interpretirane su kao rezultat pojačane kompresije između kontinentalnih jedinica u blizini nekadašnje zone kolizije. Ova kompresija predstavlja rezultat kontinuirane konvergencije između jedinica adrijskog/afričkog i evropskog afiniteta, koja je kompenzovana zonom subdukcije Alpskog Tetisa lociranom severnije, u spoljašnjem delu Alpa i njihovom produženju u Karpatima. Današnja geometrija spojnog područja Dinarida i Karpato-balkanida predstavlja rezultat miocenske faze ekstenzije zaslužne za stvaranje Panonskog basena, koji predstavlja tipičan primer “back-arc” basena nastalog kao rezultat uzmicanja ploče locirane u spoljašnjem delu Karpata. Niskotemperaturna termohronologija ukazuje na to da je formiranje jugoistočnog dela Panonskog basena i njegovog južnog produženja duž doline Morave bilo povezano sa istovremenom ekshumacijom velikih razmera na područjima Fruške gore, Cera i Bukulje. Ovi zaključci opovrgavaju klasične interpretacije evolucije obodnih delova unutrašnjih Dinarida prema kojima nakon kredno-eocenskog perioda stvaranja orogena, ekstenzija Panonskog basena rezultirala isključivo subsidencijom u povlatnim blokovima normalnih raseda i istovremenom depozicijom miocenskih sedimenata debljine do 3–4 km. Ova studija dokazuje da su stene pohranjene do srednjih dubina zemljine kore (~10 km) tokom kolizije između jedinica evropskog i adrijskog afiniteta u kasnijem periodu bile ubrzano ekshumirane iz podinskih blokova ekstenzionih detačment raseda velikih razmera. To znači da su ekstenzioni detačment rasedi ponovo aktivirali nasleđene kontakte evropskih i adrijskih jedinica. Fission track termohronologija na cirkonima iz uzoraka sa Fruške Gore ukazuje na to da se ekstenzija u jugoistočnim delovima Panonskog basena odvijala već na granici oligocena i miocena (~24 Ma), znatno ranije od ~20 Ma koji se generalno interpretiraju kao vreme početka ekstenzije. Panonska ekstenzija uspostavila je duž severoistočnog oboda Dinarida jedan međusobno povezani ekshumaciono-eroziono-depozicioni sistem koji je bio aktivan tokom čitavog miocena, pri čemu je iznos ekshumacije tokom čitavog perioda prevazilazio iznos od 0.5 km/Ma. Proces ekshumacije je takođe povezan sa utiskivanjem S-tip granita Bukulje i drugih genetski srodnih granitoida, kao što su Polumir i S-tip granit Cera. Panonska ekstenzija odlikovala se formiranjem serije paralelnih detačment raseda, po kojima se ekstenzija odvijala u pravcu istoka i koji su danas prisutni u Dinaridima. Ekstenzija u pravcu istoka ne može biti povezana sa istočnim pomeranjem karpatskih jedinica u ovom delu orogena. Jedina alternativna genetska opcija bi bilo uzmicanje dinarske ploče. Ova spekulativna hipoteza odgovarala bi ekstenziji velikih razmera koja je dokumentovana u ovom delu orogena. tokom ove studije
© Copyright 2024 ExpyDoc