Schip en W e rf - Officieel orgaan van de Nederlandse Vereniging van Technici op Scheepvaartgebied De Centrale Bond van Scheepsbouwmees ters in Nederland CEBOSINE Het Maritiem Research Instituut Nederland MARIN. Verschijnt vrijdags om de 14 dagen TIJDSCHRIFT VOOR MARmDHE-EM OFFSHORETECHHIEK SCHIP EN WERF Redactie Ir. J. N. Joustra, P. A. Luikenaar, Dr. ir. K. J. Saurwalt en Ing. C. Dam Redactie-adres Heem raad ssingel 193, 3023 CB Rotterdam telefoon 010-4762333 ICMES '87 Voor advertenties, abonnementen en losse num m ers Uitgevers W yt & Zonen b.v. Pieter de Hoochweg 11 I 3024 BG Rotterdam Postbus 268, 3000 AG Rotterdam telefoon 010-4762566* telefax 010-4762315 telex 21403 postgiro 58458 Abonnementen jaarabonnement 1987 ƒ 78,25 buiten Nederland ƒ 124,50 losse nummers ƒ 5,55 (alle prijzen incl. BTW) Bij correspondentie inzake abonnementen s.v.p. het 8-cijferige abonnementsnummer vermelden. (Zie adreswikkel.) Vormgeving en druk Drukkerij W yt & Zonen b.v. ISSN 0036 - 6099 CtHï* ir7 P o lltie b o o t: gebouwd op Scheepswert De Hoop - Schiedam. Voorzien van: 2 stuks MTU/MB OM 424 A mo toren van elk 350 KW. 'M TU, een Daitnler-Benz onderneming, produ ceert kompakte dieselm otoren van 131 tot 7400 kW (178 tot 10.064 pk) volgens de laatste stand der techniek, voor sta tionaire-, traktieen scheepstoepassing, alsmede diesel- elektrische aggregaten voor land- en scheepsinstallaties; ook in container uitvoe- Meer dan 37.200 M TÜ-motoren zijn wereldwijd in gebruik, waarvan meer dan 10.500 in de scheepvaart. Import: AG AM MOTOREN ROTTERDAM B.V. Inhoud ICMES '87 387 The Medina project 389 Conoco ontwikkelt V-gasvelden 395 Design aspects of floating production stations 400 Nieuwsberichten 407 Verenigingsnieuws 408 Application o f Technological Advances H et vierde Symposium van de Internatio nal Cooperation on Marine Engineering System (ICMES) vond van 9 to t en m et 11 september plaats in Malmö, de derde stad van Zweden en de bakermat van de scheepswerf Kockums A.B., die een niet onaanzienlijk aandeel had in de organisatie van d it symposium. Malmö is ook de plaats waar de W o rld Maritime University van de I.M.O., de In ternational Maritime Organisation van de Verenigde Naties, sedert haar oprichting in I983 is gevestigd. H et symposium w erd om die reden dan ook geopend door de Secretaris Generaal van de I.M.O. mr. C. P. Srivastava. In zijn openingsrede pleitte Srivastava vo or ken nisoverdracht op m aritiem gebied. De I.M.O. is namelijk de grootste sponsor van de W o rld Maritime University, een oplei dingsinstituut voor scheepvaart manage ment op nautisch, technisch en administra tie f gebied voor studenten uit opkomende maritieme naties (ontwikkelingslanden) m et als doel het bevorderen van de invoe ring der I. M.O. resoluties op het gebied van maritieme veiligheid en milieu. Een 40-tal studenten en docenten van deze Universiteit nam ook deel aan d it symposi um. De voornaamste deelnemers, totaal 102, kwamen uit 17 landen, voornamelijk Westeuropese, doch ook deelnemers uit China, Egypte en Israël luisterden m et veel interesse naar de 31 voordrachten die door sprekers afkomstig uit 11 verschillen de landen, wederom voornamelijk W e st europese, werden gehouden. Inhoud van h e t Sym posium De ICMES-organisatie bestaat u it een commissie van 7 leden onder v o o rz itte r schap van de Fransman G. C. Volcy, een bij velen bekende engineering surveyor superintendent van Bureau Veritas. V oor Nederland maakt ir. A. de Mooy van T N O IW ECO als lid deel u it van deze commissie. Iedere drie jaar organiseert ICMES een SenW 54STE IAAR G AN G NR 20 symposium dat is gebaseerd op de resulta ten van in totaal 9 werkgroepen (Technical comittees) die de volgende onderwerpen op het gebied van Marine Engineering be handelen: - Reliability and Maintainability. - Energy and Manpower Saving Systems. - C ontrol Engineering. - Noise on board Ships. - Shafting System Dynamics and Interac tions w ith the Ship. - Interaction between Diesel Engine and the Ship. - Interaction between Gearings and C ou plings and the Ship. - Operation and Maintenance o f the Ship. - Integrated Ship Systems: Design, O pe ration and Personnel Training. In vijf sessions werden 3 1 voordrachten, afkomstig uit de diverse werkgroepen, ge presenteerd. Een voordracht over 'Marine Technology, a Time fo r Change’ vormde de inleiding to t een bijzonder interessante paneldiscussie over de toekom st van Mari ne Engineering. Van de 3 1 lezingen werden er vijf door Nederland gebracht waardoor ons aandeel in d it symposium w eer goed to t uiting kwam. Ir. R. K. Hansen van Nedlloyd hield een inleiding over de voorstuwingsinstallatie van de nieuwe veerboten voor N o rth Sea Ferries. Ir. B. W . jaspers van T N O -IW E C O hield een inleiding over de technische conse quenties van de verminderde bemanning. Ing. R. U iterm arkt en ir. P. Kloppenburg van Techno Diagnosis verzorgden beiden een inleiding op het gebied van Condition Monitoring en Onderhoudsvoorspelling. En als laatste hield de heer H. F. Steenhoek van T N O -T P D een voordracht over de voortgang van de Geluidsbeheersing in Scheepsvoortstuwingsinstallaties. Uiteraard had Zweden een g ro o t aandeel in de presentaties die op een hoog peil stonden waar theorie en praktijk elkaar goed aanvulden. 387 H et Duitse aandeel in de presentaties w erd voornamelijk geleverd door Profes sor G. Grossmann van de Technische Universiteit in Berlijn. M et zijn medestanders en volgelingen verzorgde hij een aantal inleidingen over de technische installaties van het 'Schiff der Z uku nft’. H et Britse aandeel in de voordrachten was afkomstig van de University o f Newcastle upon Tyne en van British Shipbuilders. O o k de Volksrepubliek China liet zich op d it symposium horen m et een viertal voor drachten over torsietrillingen. Enkele slo to p m erkingen De stemming op d it symposium was niet pessimistisch vo o r wat b etreft de to e komst van de marine engineering in W estEuropa. Al in de paneldiscussie aan het begin van het symposium kwam naar voren dat in W est-Europa voldoende kennis en 'high tech’ aanwezig is om een belangrijk marktaandeel te behouden in de leveran ties van m aritiem technische installaties aan de wereldscheepsbouw. V o o r ons land kunnen dan als voorbeeld worden ge noemd, Lips, Hydraudyne, I.H.C. en de elektrotechnische bedrijven. O o k het aan deel van onze onderzoeksinstituten in de wereld van de hydrodynamica en m aritie me technologie mag enige naam hebben. Waar w ij in Nederland voor moeten vech ten is de instandhouding van de driehoek Onderwijs, O nderzoek en Industrie, waar bij de Industrie als basis onmisbaar is voor Onderwijs en O nderzoek (Research and Development). O p d it symposium heeft Nederland ge toond nog steeds volop actief te zijn, waar bij niet zonder tro ts mag worden vermeld dat nagenoeg alle dertien Nederlandse deelnemers lid zijn van onze Vereniging en alle Nederlandse presentaties verzorgd werden door leden van onze N.V.T.S. Het Gemeentebestuur van Malmö heeft zich een uitstekend gastheer getoond d oo r de beschikbaarstelling van de conferentie zaal in het St. G ertrudcentrum en de Guildhall voor een stijlvol banket vo or de deel nemers en de hen vergezellende dames. In Malmö was de reden vo or een o ptim isti sche toekom st niet ongegrond. M et enige tro ts maakte de directie van Kockums A.B. de ontvangst bekend van een opdracht vo or de bouw van zes onderzeeboten voor de Australische Marine. Hiermee was de werkgelegenheid van de 700 werknemers van Kockums A.B. voor enige jaren verze kerd. Tenslotte w erd het voorzitterschap van ICMES d oo r de heer Volcy (vo o rzitte r sedert de oprichting) overgedragen aan de heer Nils Dellgren, de organisator van dit zeer geslaagde symposium. P. A. L. 388 25 Fault D etection Appendix, Tables and Index. N ieuw e uitgaven M A R IN E R E F R IG E R A T IO N MANUAL by Capt. A. W . C. Alders. Price: US $ 6 5 .- + postage US $ 3.50 per copy. The book is available from : Rotterdam Marine Chartering Agents. RMCA Mod erato I. 2925 BL Krimpen a/d IJssei. Netherlands. Tel. 01807-19730. O ver the past decades both refrigeration engineering and the carriage o f refriger ated products have shown tremendous developments. Obviously, a great need arose fo r knowledge o f this area both amongst nautical and engineering staff on board refrigerated vessels and amongst all those ashore whose jobs involve dealing w ith refrigerated and frozen produce. This book was originally published in the Dutch language and immediately received wide acclaim. In his treatm ent o f aspects relating to specific cooling techniques, Captain Alders shows that he has research ed his subjects deeply and this explains the inclusion o f the latest techniques used in this field. The result is a well-presented book o f some 250 pages w ith the follow ing con tents: 1 The Refrigeration Plant 2 Theory o f Thermodynamics 3 A ir Circulation 4 Insulating Materials 5 The Insulation o f the Refrigerated Hold 6 The Installation and the Refrigerant 7 Acids, Salts, Bases and pH 8 The Condenser and the Evaporator 9 The Thermostatic Expansion Valve 10 Defrosting and Leak D etection 11 C onstruction o f the Installation 12 Compressors 13 Containerisation in Reefer Shipping 14 The Design o f a Modern Reefer C on tainer Ship 15 Cooling and Freezing in the Fisheries Sector 16 Receipt and Carriage o f the Cargo 17 General Guidelines fo r Transport o f Refrigerated Cargoes 18 Mechanical Freezing o f Foodstuffs 19 Carrying Conditions fo r Animal Products 20 Carrying Conditions fo r Fruits and Vegetables 21 Particular Requirements fo r Individual Fruits 22 The PE Diagram 23 Total load on the Refrigeration Plant 24 Electronic C on trol o f The Refrigera tion Plant The book is recommend to all those w o rk ing in the wide field o f refrigeration such as owners o f refrigerated vessels and their officers, shippers o f refrigerated and frozen cargoes, reefer brokers, technicians o f coldstores and shipyardsand, last but not least, students attending technical and nautical colleges. T y p e approved M aterials and E q u ip m en t Bureau Veritas has published a booklet listing every certificate o f approval for materials and equipment relating to Machinery and Piping Systems delivered until A pril 1987. This booklet supersedes the one published in February 1986. This booklet entitled 'Type approved materials and equipment — machinery and piping systems’ is divided in tw o parts, the first one related to products approved fo r a general application, the second one related to products approved fo r a specific applica tion. These tw o parts are themselves di vided in several chapters as follows: - p art I: General applications 1. Miscellaneous machinery & piping materials o r equipment. 2. Internal combustion engines, turbines & accessories. 3. Reduction & step-up gears, clutches. 4. Propellers, thrusters, shafting assemb lies, shaft couplings, shaft bearings & propeller shaft sealing glands. 5. Fire boilers, incinerators, pressure ves sels, heat exchangers & accessories. 6. Pumps, compressors, fans & blowers. 7. Pipes, pipe connections, gaskets, ex pansion joints, bellows & hoses. 8. Valves, valve actuation devices & safety piping devices. 9. Istrumentation. 1. 2. 3. Part II: Specific Applications Refrigerating plants. Prevention against sea pollution. Equipment o th e r than electrical ones fo r use w ithin hazardous areas. 4. Cargo process equipment fo r oil / pro duct / chemical tankers. 5. Cargo process equipment fo r liquefied gas carriers. 6. Special equipment fo r offshore, diving o r submarines. It refers to about 800 products manufac tured by about 360 Manufacturers around the w orld. This booklet is one o f the series covering all Marine and Offshore materials and equip ment eligible to the Society’s Type Approved and C ertification scheme (TYPEC scheme). It is available on request at: Bureau Veritas, Coolsingel 75, 3012 A D Rotterdam. SenW 54STE 1AARGANG N R 20 THE MEDINA PROJECT 5y Ch. van der Z w e e p * and E. David Stogdon M B E ** In tro d u c tio n When the chairman o f the KNZHRM , Mr. J. F. Dudok van Heel, together w ith the Dutch author o f this article, paid a visit to the RNLI in September 1980 and were given the o pportunity to make a trial run in the first Medina (O .N . 1069) 'M ountbatten of Burma’, they were, like many others, favourably impressed by the concept o f this type o f boat. The 'Mountbatten o f Burma’, driven by twin inboard diesel engines coupled to Stern Powr outdrive units, has a draught of 1.14 m, while the draught o f the Medina hull is only 0.68 m. Since the KN ZH R M would soon be needing a boat w ith a draught o f circa 0.70 m, capable o f operat ing in deep and shallow coastal waters, which would replace a number of afloat and carriage-launched beach lifeboats, it was thought that a Medina w ith w ater-jet propulsion might be suitable. Because o f the depth o f expertise and experience concentrated in the RNLI, the KNZHRM - instead o f starting develop ment itself - enquired if the RNLI would consider the development o f a w ater-jet driven Medina w ith financial participation by the KNZHRM. This development and the proposed participation were accepted and an informal Memorandum o f Under standing was drawn up and signed in November 19 8 1. As a result, the director of the KN ZH R M joined the RNLI Medina working party which remained the deci sion-making authority, and in 1983 the Medina O .N . 1091 was produced w ith water-jet propulsion. Meanwhile our sister-institution in R otter dam, the KZHMRS, also very enthusiastic about the exceptional sea-keeping qual ities and speed o f the first Medina, decided in 1982 to design and build its own Medina. This resulted in the P.P. w ater-je t driven ’Koningin Beatrix’, commissioned in A pril 1984 by her Majesty Queen Beatrix. W ith the information and experience gained since 1980, the KN ZH R M decided at the end o f 1984 to start its own project pursuing a line o f development to embody the lessons learnt. The aim was to design a next generation Medina w ith an enclosed wheelhouse (to give crew and survivor protection and to provide full self-righting capability) and w ith duplicated control from an open bridge. The ’Bureau voor Scheepsbouw W illem de Vries Lentsch’ was contracted to design the boat and to produce all the necessary drawings, assisted by an advisory team of the KNZHRM. W e are very fortunate that Mr. E. D. Stog don MBE, RNVR - ex-superintendent of the RNLI’s Cowes Base, Staff Project O fficer o f the Medina I (O .N . 1069) and one o f the pioneers in the Rigid Hull Inflat able Boat (RHI) concept, w ho served as an advisor/consultant on the building team o f the ’Koningin Beatrix’ - was also willing to join our team. R equirem ents Some o f the most essential requirements were: - The boat to lie afloat and to have the ability to be launched and recovered by means of a carriage o ff a gently sloping sandy beach; the fo rm e r being the more im portant initial requirement. - A crew o f four, but should be capable of being operated by a crew o f three, and at night as well as in daylight hours. - Aluminium construction. A deadrise o f approximately 26° in con junction w ith a 3 Vi° to 3^*° dynamic trim . The boat to be divided into 5 w atertight compartments; forepeak, middle com partment, each engine in a separate com partment, aft compartm ent w ith je t units. - An endurance o f six hours running at full speed - range 150 nautical miles. Fuel capacity; 2 x 600 litres. - Propulsion by tw in inboard diesel en gines coupled to KaMeWa w aterjet units w ith o u t reverse gear, to give a speed o f at least 27 Vi knots. This speed is based on the maximum wavespeed in the N o rth Sea of 24 knots (In deep water). The horsepower required to provide a top speed o f over 27 knots is the minimum pow er necessary to give a choice o f posi tion when running in unstable sea condi tions. The KaMeWa type 40 S 62/6 w ater-jet units w ere chosen on account o f the shape and position o f the ’bucket’, and o f the construction in stainless steel. A complaint about the existing Medinas Fig. 2. 13.3 m 3 zero static trim , wedge 2 ° andspray-scrip, speed 28.3 kn„ dynamic trim 3.6° * Director KNZHRM. ** RNVR. SenW S4STE IA AR G AN G NR 20 389 Fig. I. General Arrangement 390 SenW 54STE IA A R G A N G NR 20 with water-jets is the low astern power. Our opinion is that the KaMeWa units, whereby the astern thrust is achieved by a reversing ’bucket’ in the steering nozzle, may overcome this as the ’bucket’ is gra dually introduced into the jetstream redi recting it downward and forw ard thus pro viding more effective stern power. The stainless steel construction was chosen fo r its sturdiness and reliability, but in particular fo r its effective resistance against attack by sandladen water. This choice means however that we have to pay the penalty fo r the heavy weight involved. - The diesel engines to be mounted side by side and forw ard o f the wheelhouse. We considered that the side by side posi tion w ith the weight localised about the LCG is preferable to the staggered installa tion used in o the r Medinas (where the weight is distributed along the length o f the boat), because the weight concentration about the LCG reduces the longitudinal radius o f gyration. Having the wheelhouse aft o f the engines gives adequate height fo r engine mainte nance and fo r m inor repair facility at sea. Also engine replacement is easier, tem per ature in the wheelhouse is reduced and a better noise insulation can be achieved. - A closed cooling system fo r the engines to avoid sand blocking the cooling pipes when operating in shallow sandy areas. The hull was to o small however to allow a sufficient cooling surface fo r the required H.P. This led to the choice o f air-cooled engines: Deutz BF I2L 513, 480 PK/353 Kw ( 15 min.), 454 PK/334 Kw (cont.). This choice necessitates large air intakes (tw ice 100 x 40 cm) and even larger outlets (tw ice 80 x 80 cm). W e are not unduly w orried if some w ater gets inside, because adequate watertraps and the bilge suction pumps can handle it. The openings are closed by valves in the event o f a capsize and as they are only under water fo r a short time, the amount o f water that gets inside (if any) w ill be man ageable and o f little concern. - Buoyancy tube, diameter 80-82 cm, material Kleber, full Kevlar 6758. A coun te r stern (pinky stern) w ith the buoyancy tube continued around the transom to provide greater lift in this area. This con figuration improves the boat’s perform ance in open sea conditions w ith following seas, makes slow running safer when escor ting boats before a sea, and helps to pre vent pooping and keeps the boat dry. The tube w ill be subdivided into 10 com partments w ith recessed valves fo r air in flation. Each compartm ent w ill have w ithin it a rolled up tube made o f lighter material. This inner tube can be blown up through its own separate inflation valve in case o f damage to the o ute r tube. In order to save weight, glue and not mechanical means w ill be used to attach the SenW 54STE IA AR G AN G NR 20 tube to the gunwale and inboard side of the saddle. The tube w ill be constructed by Float Sassenheim. - Enclosed w atertight wheelhouse to provide a positive righting capability and an external steering position. When a lifeboat is fitte d w ith an enclosed wheelhouse we consider an additional ex ternal steering position a necessity. It gives the helmsman/coxswain much better visibility and hearing, when crossing a bar or in the search area, as well as the opportunity to communicate w ith the crew on deck, when near the casualty. This is particularly im portant during operations at night and in low visibility conditions such as fog and rain. • Windows Forward windows w ith layered, toughened glass; 15 m m o u ts id e -2 m m fo il w ith heating element - 5 mm inside. Side windows double glazed (to check conden sation) w ith polycarbonate Makrolon; 8 mm outside - 6 mm inside. Length overall (m) Length o f rigid hull (m) C W L (m) Beam overall (m) Beam o f rigid hull (m) Draught (m) Displacement (m 3) - Navstar 6 0 1D Navigator. - VHF radiotelephones: 2 S.P. Radio Sailor Multi-Remote sets, type RT-146. - VHF/DF: Skipper/Taiyo, type T D L1520 RDF. • Recovery o f survivors in the w ater by helicopter strop used from an RNLI-type A-frame mounted on the p o rt side o f the wheelhouse. Lines W hile drawing the lines based on these requirements it soon became apparent that the boat would have to be bigger and beamier than its predecessors and that much more horse pow er than the original ly planned total o f 2 x 355 PK would be needed, so the extra horse pow er o f the chosen Deutz air-cooled engines was a welcome bonus. The most im portant main dimension was the beam required to accommodate the tw in diesel engines side by side and each in a w atertight compartment. (See Appendix) This led to the following principal dimen sions: Prototype lifeboat Medina Kon. Beatrix 14.39 13.65 11.13 5.39 4.20 0.75 13.5 12.04 10.51 9.50 4.35 3.45 0.68 9.2 12.70 11.25 10.05 4.70 3.90 0.63 8.9 • Seating The four crew are seated in the wheelhouse, each w ith a view forw ard, on Atlan tic 21 type saddle seats w ith safety belts; one saddle seat in the open bridge. W e consider the saddle seat the best answer, because it is firm and one cannot ’b o tto m ’ on it. By pressing one’s knees and legs against the pedestal, like riding a horse, and by using footstraps, a b e tte r balance can be kept than by sitting in a (sprung) chair. M oreover chairs are cumbersome and p ro ne to buckle in heavy seas. Additionally, fo r survivors, there are four body-moulded seats w ith safety-belts as made by Messrs. Verhoef Aluminium In dustrie fo r th eir freefall lifeboats. • Maximum noise level to be between 75 and 80 dB. • Electronic equipment - electronic compass: I T. Holland, type 6 S, w ith daughter compass (and a magnetic compass) on the open steering position. - echosounders: Lowrance digital sound er, type 3200 M w ith repeater on the open steering position; Lowrance graph recor der, type X-16. - radar: Furuno. - video plotter: Furuno, type GD-170. W e rejected the possibility o f a softer ’strike’ area w ith a steeper section, fo r safety, fo r the following reasons: (1) the high thrust line of je t drive may cause a deep V-shaped bow to 'dig in’ when running at speed on the face o f a sea. (2) when there is a possibility o f broaching, jet steering does not provide the immediate ’feel’ to counteract a swing. As je t propulsion has no grip o f the w ater aft, a deep V-shaped bow may more easily dominate a broaching attitude. A fte r careful calculation, having reduced the weight as much as possible, the total weight was 13.439 tonnes w ith 75% fuel and 4 crew. W ith this figure, the lines o f the boat, and w ith the pow er specified in the design requirements, a com puter pre dicted the speed to be 27 - 27 Vi knots. A t this stage it was decided, on account o f the weight and dimensions o f the boat, to pursue the lying afloat ability only and to drop fo r the tim e being the requirement that the boat also had to be launched from a carriage. T o w in g ta n k tests Towing tank tests were carried o ut next in A p ril 1986 at the D elft University by Pro fessor Ir. J. Gerritsm a (fig. 2). A 1:9 scale 391 one direction tend to have disadvantages in others. In any case it might have been necessary to have another series o f tank tests w ith a modified model. As the after body wedges are only marginal, we de cided to leave the lines as they were. model was tested at speeds varying be tween 14 and 30 knots and w ith the displacements I 3.3 m 3and 14.3 m 3to m e a sure resistance, running trim and heave change. During the tests, as a result o f the experiments, the hull form was fitte d w ith an extra spray rail and small afterbody wedges (2°, 0.05 L) to reduce the running trim angle o f 4.8° to the required angle of 3.5° above zero static trim . The results w ith a speed o f 27 knots were as follows: Selfrighting test A fte r the tow ing tank tests the model was fitted w ith an enclosed w atertigh t wheelhouse and scaled to the exact weight, w ith the LCG and VCG in the co rrect positions, V = 27 knots cow-condition 8S degrees Z, m PE hp V = 13.3 m3 0si = — 1 degree 5.8 0.23 485 4.0 0.17 565 4.1 0.18 510 3.7 0.23 470 3.9 0.26 505 V = 13.3 m3 0si = — 1 degree wedge 2 degrees: 0.05 L V = 13.3 m3 0« = — 1 degree wedge 2 degrees: 0.05 L extra spray-strips V = 13.3 m3 0si = 0 degrees wedge 2 degrees; 0.05 L extra spray-strips V = 14.3 m3 0 „ = 0 degrees wedge 2 degrees; 0.05 L extra spray-strips 0„ 0, V Z PE - static trim dynamic trim displacement heave effective horse pow er The combination o f a zero static trim , a wedge o f 2 degrees and an extra spraystrip gave the best result: a dynamic trim o f 3.7 degrees, the lowest EHP and no pow er hump. W ith a speed o f 27 knots, a displacement o f 13.3 m 3 and a total p ow er yield o f 50% the shaft horse pow er needed was determined at 940 HP. To provide the required dynamic trim of 3 '/z0 to 3% ° from the waterline, the tank tests showed it was necessary to have a static trim o f — 1° o r 0° trim plus wedges. A reduction in the fore-body volume was considered. The possible increase o f deadrise o f stations 5, 6, 7 and 8, shortening the parallel lines by a small amount, may have provided the required dynamic trim w ith out either a static bow -dow n trim o r wedges. It is difficult to know w hat o the r conse quences might evolve from changing the lines however slightly: improvements in 392 to get an impression of its selfrighting properties and its behaviour in the w ater (fig 3 and fig. 4). A calculated curve o f righting levers had already indicated that all the righting arms were positive and this was proved by the model tests. The model righted w ithin 3 seconds. It also behaved perfectly when pushed and th ro w n around in the water. As a result o f these tests it was decided to give the wheelhouse sides more rake above the knuckle line and to ease the radius to the wheelhouse top. This would improve the vision from the open steering position to the sides o f the boat and also enhance the aesthetic appearance. Tenders In May 1986, three yards w ere invited to send in th eir tenders based upon brief specifications, the lines and preliminary drawings prepared by De Vries Lentsch. These yards had been preselected from interested contractors and the project and its requirements had been talked over. A luboot B.V. at Hindeloopen, a yard which had already built several lifeboats fo r the Institution, won the contract. U nfortu nately, but known in advance, the yard could not start building at once and finish the boat before the X V th ILC in Spain (June 1987), due to earlier commitments. The boat w ill however be ready in O c to ber 1987, after which extensive assess ment trials w ill be held before she is turned over to her allocated station at Ameland fo r fu rthe r evaluation. The total costs o f the boat, excluding the costs fo r the design, the various tests and the preparation o f the drawings, w ill be approximately Dfl. 1.100.000,— (£ 343.750,-, US$ 489.000,-, using rates o f exchange current on 5 Dec. 1986). Building Before the actual building o f the boat started, a full scale mock-up o f the wheelhouse was made by the yard fo r evaluation o f the space layout and equipment location. The steering console and control instru Fig. 3. SenW 54STE IA AR G AN G NR 20 ment panel, as well as the seating arrange ment o f the crew and the helmsman's posi tion were also established w ith the aid o f this mock-up. T ra in in g Parallel w ith the development o f boats of this type and size runs the necessity to train their future crews. Handling a rigid hull inflatable boat w ith water-jets, capable of 25-30 knots w ith fast acceleration and manoeuvrability, calls fo r a high degree of training. As the new boat had been allocated early to our station Ameland, the existing crew was locally trained in handling various types of RHIs w ith outboard engines and w ith w ater-jet units. In November 1986 those selected under went fu rthe r training at the Offshore Survival School at Stonehaven, Scotland, where all our crews fo r RHIs and fully inflatable boats have had th e ir final training. For this crew the usual course was adapted and special emphasis was laid on handling the boats driven by waterjets. A P P E N D IX Buoyancy condiderations in th e de sign o f rigid hull inflatables When considering the design of larger RHIs (over 10 m) it is im portant that the function o f the buoyancy tube (described below) is preserved, and not compromised for the sake o f convenience o r appearance. These functions are: 1. It provides a circle o r near circle o f totally enclosed buoyancy in excess o f the displacement o f the boat; the hull being positioned below it. Additional loading at deck level (e.g. survivors) therefore does not seriously affect stability. 2. It provides the stability o f a raft when stopped, w ith o u t impairing the boat's high speed performance. 3. It acts as an 'energy sink’ to absorb the weight o f a heavy sea. 4. If the tube is designed w ith sufficient volume and positioned correctly it should minimize the possibility o f a capsize. Fig. 4. side o f the boat is at least 65% o f the boat’s displacement, it w ill minimize the possibil ity o f capsize when the boat is on its beam ends, because the gunwale w ill have some support which w ill allow the boat to side slip. The total volume o f the buoyancy tube of the N o rth Holland lifeboat is 15.9 m 3 and the tube diameter would have to be in creased to 83.3 cm from its present dia m eter o f 80 cm to achieve a buoyancy on one side of the boat which is equal to 65% o f the boat’s displacement. Stabilisation o f tube The attachment of the buoyancy tube to the gunwale and deck, by a 'saddle' helps to stabilise the tube w itho ut reducing the 'energy sink’ properties. The saddle’s arc o f attachment o f the N o rth Holland lifeboat is 10.4% o f the tube’s circumference, which strikes a ba- Height o f bow The rigid bow height above the waterline and the volume o f buoyancy in the rigid bow section must be sufficient to carry the bow up the back o f a steep sea, w itho ut allowing it to penetrate. The height and volume o f the bow o f the N o rth Holland lifeboat fits closely to the empirical pattern of the associated height and volume o f the RNLI Medinas and so far the Medinas have not buried th e ir bow when running before a sea. W e hope that as the number and variety of large RHIs increase it w ill be easier to determine certain design parameters from operational experience. E. D. Stogdon January 1987 1. Fortran 77 fo r main frame computers of the IBM/370 type and its successors, under VM/SP and CMS. N ieuw e uitgaven Height o f tube The height o f the bottom o f the tube from the waterline is related to the rigid beam o f the boat and the beam must be sufficient for installation o f the engines and the associated access space. Having established the height o f the tube the after sections of the hull can than be drawn to support it. In the case o f the N o rth Holland lifeboat, the height o f tube from the w ater is 38 cm which matches the recommanded (R.A. Chatfield, 19 8 1) height fo r this size of boat (37.3 cm). ’G L Rules' c o m p u ter p ro g ram fo r the construction o f steel hulls; n ew edition The latest version o f ’GL RULES’ compu te r program fo r the construction o f steel hulls is now available from the classification society, Germanischer Lloyd. The prog ram covers Volume I , chapter 2 o f Germa nischer Lloyd’s rules book, and includes the latest changes, published in the Summer 1986 edition. Formulas are included fo r all the significant sections o f chapter 2, and some sections are covered more fully than in the 1982 edition. Volume o f tube If the volume o f the buoyancy tube on one The 'GL Rules' program is available in the following versions: SenW 54STE IAAR G AN G NR 20 lance between stabilising the tube, and allowing it to roll and absorb energy. 2. Fortran 77 fo r personal computers o f the IBM/XT type and its successors, under MS-DOS. 3. HP-Pascal fo r HP desktop computers 4. HP-Basic fo r desktop computers HP 9845 B 5. Fortran IV subroutine package fo r integration into other programs. For fu rthe r information contact: Germanischer Lloyd, Research Department, Hamburg. Tel.: Hamburg (040) 36 14 90. 393 V FIELD PARTNERSHIPS Vulcan Partners SOUTHERN BASIN GAS DEVELOPMENT (estimated reserves : 1020 billion cu . ft.) A CCOMMODATION P[ATFORM Vulcan straddles blocks 49/21 and Block 48/25b 48/25b and will be developed by two unmanned satellite platforms Conoco (50%) Britoil (50%) Block 49/21 Conoco Vanguard 200 billion cu. (37.5%) Arco (12.5%) Marathon (12.5%) Occidental (12.5%) ft.) Block 49/16 The Vanguard field lies in block Conoco (50%) 49/16 and will be developed by one Britoil (50%) unmanned satellite platform South Valiant (estimated reserves : 180 billion cu. South Valiant lies in block H.C.G. Schiedam Netherlands SCHEDULE Fabrication started March '86 Fabrication complete Feb '88 COMPRISES:- 5 Decks plus helldcck and Includes a sauna, gymnasium, cinema, recreation area, galley, laundry, dining area, sick bay, cabins and a communications module. COMPLEMENT: Maximum peak 125 Maximum operating 83 Normal operating A? LIFEBOATS: DECK CRANE: POWER GENERATION: 2 x 70 man 1 x 8t 2 x 600 kw units CAN STORE 126 m t s 3 Diesel fuel 141 m t s 3 potable water 3 x 600 gallons he 11 fuel CAN SUPPLY Sea water at 47 m t s V h r 94 m 3/hr Fire water at 2016 m t s V h r Potable water at 23.7 m 3/day Compressed air at 560 m 3/hr (25%) Britoil Partners (estimated reserves: FABRICATOR: Partners ft.) COMMUNICATIONS MODULE CONTAINS A:- MET. station, helicopter control centre, data system, micro wave system, private radio system, Inmarsat terminal, telephone, telefax and facsimile facilities and a solas system. Block 49/21 49/21 possibly extending into 49/16 and will be developed by one Conoco (25%) unmanned satellite platform Britoil (37.5%) Arco (12.5%) Marathon (12.5%) Occidental (12.5%) LIFT WEIGHT: 2600 t approx. Tabel II Tabel 1 Fig. 1. Lincolnshire Offshore Gas Gathering System (LDGGS) fconoco) ‘V ’ Fields Gas Area and LOGGS Viking Gas T e r m i n a ^ - ^ Theddlethorpe Lincolnshire To Viking & Victor complexes 36 in ch -7 5 mile pipeline 28 inch - 86 mile pipeline Gathering Station North Valiant 1 Vulcan 2 Vulcan 1 394 Vanguard North Valiant 2 South Valiant SenW 54STE IA AR G AN G NR 20 CONOCO ONTWIKKELT V-GASVELDEN door Ing. C. Dam Inleiding Conoco (UK) Ltd. brengt op d it moment het zgn. V-Gasvelden-project to t o n tw ik keling op het zuidelijke deel van het Engel se continentale plat van de Noordzee. Met de eerste fase van d it project is een investe ring gemoeid van £ 650 miljoen en geldt dan ook op d it mom ent als de grootste investering op het Engelse continentale plat. Deze fase van het project bestaat uit de ontwikkeling van de volgende drie gas velden Vulcan, Vanguard en South Valiant, waarop in totaal zeven vaste platforms worden geïnstalleerd. Conoco (UK) Ltd. zal als licentiehouder (operator) optreden voor deze velden in samenwerking met Britoil pic., A rco British Limited, Marathon Petroleum (UK) Ltd., en Occidental Pe troleum Cooperation. De tweede fase houdt in de ontwikkeling van het N o rth Valiant gasveld door C ono co (UK) Ltd. en het Audrey gasveld door Phillips Petroleum. Conoco is een dochteronderneming van Du Pont de Nemours. O ntw ikkelingsfase I De drie genoemde gasvelden zoals aange geven in figuur !, hebben een winbare gasvoorraad van 1020 biljoen cu. ft. en zullen voorzien in ongeveer vijf procent van de dagelijkse Britse gasbehoefte in het begin van de jaren 90. De eerste gasleve ranties aan de British Gas Cooperation worden verwacht in oktober 1988. De verdeling van de licenties van de gas voorraden is aangegeven in tabel I. V o or de ontw ikkeling van de drie gasvel den worden er vier onbemande putten platforms (wellhead platforms) geïnstal leerd, een in het Vanguard en het South Valiant veld en twee in het Vulcan veld Fig. 2. Gasbehandelingsplatform en accommodatieplatform (modellen) SenW 54STE IA A R G A N G NR 20 welke op de zeebodem onderling verbon den worden d.m.v. gastransportleidingen met het centrale gasbehandelingsplatform (Central Gathering Station). H et gasbe handelingsplatform heeft een ontwerpca paciteit van 1200 miljoen cu. ft. per dag en zal in eerste instantie bestaan u it twee platforms; een accommodatieplatform en een gasbehandelingsplatform (produktieplatform) figuur 2. Twee jaar na de eerste gasproduktie zal dit complex worden uitgebreid met een gascompressieplatform (figuur 3). Een 36" gastransportleiding met een lengte van 75 mijl zal op de zeebodem worden aangelegd welke gezamenlijk beheerd w o rd t door Conoco en Britoil. Deze gas transportleiding zal het voorbehandelde gas vanaf het produktieplatform trans porteren naar de uit te breiden Viking gastermina! in Theddlethorpe - Lincoln- Fabrikanten - Design and Project Management: Brown and Root (U K ) Limited, W im bledon, Surrey, U.K. - Onshore Design and Project Manage ment: John Brown U K Limited, London, U.K. - Pipeline Steel and Fabrication: Mannesmann Handel AG, Muelheim, W est Germany. - Jacket Fabrication: Howard Doris Limi ted, Wallsend, Tyneside, U.K. - Wellhead Platform Deck Fabrication: UIE (Scotland) Limited, Clydebank, U.K. - Production Deck Fabrication: Press O ff shore Limited, Wallsend, U.K. - Accommodation Module Fabrication: HCG, Rotterdam, Netherlands. - Pipe Route Survey: Racal Survey (UK) Limited, Great Yarmouth, U.K. - Template Fabrication: Turm eric Limi ted, Great Yarmouth, U.K. - Drilling Rig Hire: Taywood-Santa Fe Li mited, Aberdeen, U.K. - Theddlethorpe Office Extension: Clugston C onstruction Limited, Scunthorpe, U.K. Fig. 3. Gas gathering station shire, ook deze installatie w o rd t beheerd d oor Conoco en Britoil. H et gewonnen gas zal op deze nieuwe uitbreiding van de gasterminal w orden be handeld en op specificatie worden ge bracht alvorens het via gasmeetstations afgeleverd w o rd t aan de nabij gelegen in stallatie van British Gas Cooperation. H et is te verwachten dat de andere gas voorraden welke in de toekom st in d it gebied zullen worden gewonnen door d it nieuwe transportsysteem, beter bekend als het Lincolnshire Offshore Gas Gathe ring System (LOGGS), zullen w orden getransporteerd. De nieuwe gasterminal en het gasbehandelingsplatform hebben beide een piekcapacite it van 1200 miljoen cu. ft. per dag, waarbij nu reeds voorzieningen zijn g etrof fen om in de toekom st de capaciteit sterk te vergroten om aan de verwachte gasle veranties uit de overige velden in d it ge bied te kunnen voldoen. structors verantw oordelijk zijn vo or de uitbreiding van de bestaande Viking gaster minal in Theddlethorpe waarmee een in vestering van £ 50 miljoen is gemoeid. De fabricage en assemblage van de jackets (onderbouw) en de platform dekconstrukties, worden hoofdzakelijk door Engelse constructiebedrijven uitgevoerd, zoals in onderstaand overzicht is aangegeven, waarbij het opm erkelijk is dat de N eder landse offshore fabrikant HCG-Schiedam het accommodatieplatform heeft w eten te verwerven. N ederlandse d eeln am e H et accommodatieplatform v o rm t een onderdeel van het centrale gasbehandelingscomplex en bestaat uit een 4-poots jacket met daarop een geïntegreerde plat form accommodatie dekkonstruktie. Deze accommodatie bestaat uit vier ver diepingen en heeft een capaciteit vo or een permanente bezetting van 125 man (figuur 5 en 6). Boven op de konstruktie van het accom modatieplatform rust het landings- en behandelingsplatform vo or helikopters (Si korsky SN61). H et accommodatieplatform dat momen Fig. 4. V ’ fields development outline ‘V’ Fields Development Outline (conoco) H et nieuwe LOGGS-gastransportsysteem w o rd t een van de grootste transportsyste men van het zuidelijke deel van het Britse continentale plat en in de toekom st kan dit systeem voorzien in het transport van ca. 20% van de dagelijkse Britse gasbehoefte (figuur 4). Fabricage H et ontw erp en het project management van de offshore-installaties w o rd t uitge voerd door Brown & Root (U K ) Limited, te rw ijl John Brown Engineers and Con396 SenW 54STE IA AR G AN G NR 20 SECTION B - B Fig. 5 teel w o rd t gebouwd op de w e rf van HCG - S.O. - Schiedam (figuur 7) kan volledig onafhankelijk van de overige platforms functioneren daar het een eigen energie voorziening bezit. Tevens is d it platform voorzien van een onafhankelijke brandbestrijdingsinstallatie en mag dan ook als de veilige thuishaven voor de bemanning van het gehele platformcomplex worden beschouwd bij Fig. 6 IQiCOWft Mtmu eventuele calamiteiten. Hierbij kan gebruik gemaakt worden van de tw ee reddingsboten die de volledige bezetting van d it complex kunnen evacu eren. Alle telecommunicatie van het gehele complex w o rd t gevoerd via de centrale controlepost op d it accommodatieplatform. Verder is dit accommodatieplatform u it .~ I SECTPN A -A SenW 54STE IA AR G AN G NR 20 gerust m et een complete ziekenboeg, sau na, keuken, wasserij, recreatiezaal, sport zaal en bioscoop. De een/twee persoonskamers zijn vo o r zien van een eigen doucheruimte en zijn zeer smaakvol afgewerkt en ingericht en voorzien van Video/TV aansluiting. Het gehele accommodatieplatform is in de grote assemblagehal van HCG-Schiedam gebouwd dus vrij van weersinvloeden wel- ke de pro du ktiviteit en de hoge kw aliteits eisen van Conoco ten goede komen. De mechanische en elektrische installaties zul len in november 1988 worden opgeleverd waarbij de zgn. load-out gepland staat voor februari 1988. H et totale gewicht van het accommodatieplatform bedraagt 2500 ton en vo o r nadere details w o rd t verwezen naar tabel II. In stallatie buitengaats De vijf eerste jackets zijn binnen een zeer krap tijdschema van 5 1/2 maand gecom pleteerd en zijn d oo r het kraanschip van Mc D e rm o tt DB 101 geïnstalleerd. Elk wellhead platform jacket weegt onge veer 900 ton, het accommodatieplatform jacket weegt 6 10 ton en het produktieplatform jacket w eegt 1200 ton. De hoogte van de jackets varieert t.g.v. de verschillen de waterdiepten en bedraagt voor het produktie- en accommodatiejacket 130 ft, voor de Vanguard en Vulcan I jackets 154 ft en het South Valiant jacket 171 ft. Tijdens de installatie van het accommodatieplatform -jacket zijn tijdens het heien van de heipalen enige complicaties o n t staan waarbij beschadigingen aan de bracings/anodes zijn ontstaan. D it heeft ertoe geleid dat het jacket door het kraanschip van M cD e rm o ttD B 101 van Fig. 8. Lincolnshire Offshore Gas Gathering System m et de nieuwe o ntw ikke lingen Accom ‘V ’ Fields Gas Area and LOGGS 398 modatieplBtform m aanu w " - ' (conoco) SenW 54STE IA AR G AN G NR 20 Fig. 9. Overzicht van de gasvelden voor de Engelse oostkust Tabel III The North Valiant partnerships Block 49/16 - Conoco 50% de zeebodem moest worden gelicht voor nadere inspectie en reparatie. Deze tegenvaller zal volgens Conoco geen invloed hebben op het totale installatie schema. Het installeren van de reeds gecomple teerde dekkonstrukties w o rd t door het kraanschip van M cD erm ott DB 101 uitge voerd. Het leggen van de hoofdgastransportlei ding van 36" over een lengte van 75 mijl w ordt uitgevoerd door de semi-submersible pipelaybarge Castoro Sei. De vier in terconnectie zeebodemleidingen die het South Valiant, Vanguard en Valiant I en II met het centrale gasbehandelingsplatform verbinden zullen door de Semac pipelay barge worden gelegd en variëren van 10" to t 18” in diameter en hebben een totale lengte van 23 mijl. De ontw ikkelingsfase 2 In aanvulling op de boven omschreven o n t wikkeling zal ook het N o rth Valiant pro ject door Conoco (UK) Ltd. worden o n t wikkeld. De tw ee platforms worden ge plaatst in de blokken 49/16 en 48/20a en zullen van 12 putten w orden voorzien. Een van de platforms zal m et een brug verbon den w orden met het centrale gasbehande lingsplatform van het Lincolnshire O ff shore Gas Gathering System (LOGGS) het tweede satellietplatform w o rd t op drie mijl afstand daarvan geplaatst (figuur 8). Op het N o rth Valiant gasveld tre e d t C o noco (UK) Ltd. als operator op met als partners B ritoil, Shell (UK) en Esso Explo ration and Production vo o r een verdeling van de belangen (zie tabel III). SenW 54STE IAAR G AN G NR 20 Britoil 50% Block 48/20a - Shell 50% Esso 50% LOGGS Conoco 50% Britoil 50% Approximately 75 per cent of North Valiant's gas estimated to lie in block 49/16, H et N o rth Valiant project welke een in vestering vergt van £ 110 miljoen, is het vijfde gasveld dat aangesloten gaat worden op het LOGGS-systeem. O o k vo or d it project geldt dat het eerste gas in oktober 1988 aangeleverd w o rd t op de uitgebreide Viking gasterminal in Theddlethorpe. Hiermede w o rd t bereikt dat deze vijf gas velden tezamen in het begin van de jaren 90 voor ca. 12% kunnen voorzien in de dage lijkse Britse gasbehoefte. Een tweede investering in deze tweede ontwikkelingsfase zijn de activiteiten van Phillips Petroleum door het ontwikkelen van het Audrey gasveld in blok 4 9 /Ma waarmee een investering is gemoeid van £ 80 miljoen. In d it gasveld zal Phillips Petroleum als operator optreden vo or de partners C o noco (UK) Ltd en B rito il die vo or elk 35% deelnemen in d it project. De maximum gasproduktie van d it gasveld w o rd t geschat op 450 miljoen cu. ft./dag en dit gas zal door een nog aan te leggen gastransportleiding van 20" over een leng te van 10,5 mijl getransporteerd worden via Conoco’s centrale gasbehandelingsplatform naar de Viking gasterminal. reserves a r e 25 per cent in block 4 8 / 2 0 a . Een seperate 3" methanol-leiding zal vanaf het centrale gasbehandelingsplatform naar het Audrey platform worden aangelegd. Het totale platform gewicht w o rd t door de nieuw opgerichte ingenieursbureaucombinatie Brown & Root Vickers Ltd. geschat op 2500 ton. O ok van d it gasveld w o rd t verwacht dat het eerste gas en condensaat in oktober 1988 via het centrale gasbehandelingsplat form en het LOGGS-systeem kan worden aangeleverd. Een bijzonderheid is nog dat het centrale Conoco complex ook voor d it Audrey gasveld, de gascompressie zal verzorgen (figuur 9). C e rtific a tie Alle genoemde platformconstructies zul len worden ontworpen, gebouwd en geïn stalleerd volgens de eisen van het Departe ment o f Energy (SI 289) en zullen door Lloyd’s Register worden gecertificeerd. M et dank aan: - Conoco (UK) Ltd. - London Public Affairs Departm ent - HCG (S.O.) - Schiedam 399 DESIGN ASPECTS OF FLOATING PRODUCTION STATIONS* by H. Boonstra,* * S u m m ary Several design aspects o f and requirements fo r semi-submersible production platforms are discussed, in particular those which result in differences w ith drilling semi-submersibles, such as sailing and tow ing characteristics, load carrying capacity, free ventilated spaces and fatigue resistance. The N orring-4, a semi-submersible which is designed as a floating production station is introduced briefly. Intro d uctio n The number o f semi-submersibles is small when compared to ships; fo r instance the total number of semi-subs on ord er end of 1985 was 24, whereas in the same year 2 2 10 ships ( 100 gross tonnage and upward) w ere completed [5], It is estimated that the amount o f steel in those 24 semi-submersi bles is less than 5% o f the steel used fo r building o f ships in 1985. Only one o f the 24 semi-subs on order in 1986 is purposely built as a production station. A few o the r units have contingencies built in regarding deckload and deckspace in ord er to be converted to a tem porary floating produc tion station at short notice. This illustrates the fact that offshore production o f hydro carbons by means of floating platforms is still in its infancy. W hy is it then that several shipyards, con sultancy firms and engineering contractors market designs fo r floating production sta tions? The answer to this question is that there is a general feeling in the industry that offshore oil and gas reserves in deeper w ater can only be economically recovered by techni cal means o the r than fixed platforms of which the capital costs increase progres sively w ith the waterdepth. Experience gained in recent years w ith converted drilling semi-submersibles has shown that this type o f unit forms a reliable and stable platform fo r production o f hy drocarbons. In the next sections design aspects o f pur posely built semi-submersible production stations are discussed. The last section o f this paper introduces the N orring-4 semisubmersible floating production station. * Lecture presented at the W EMT Confer ence. ’Advances in Offshore Technology'. Am sterdam 25-27 Nov. 86. ** Fluor Marcon Offshore Haarlem. 400 S E M I-S U B M E R S IB L E PLATFORM S - GENERAL Semi-submersible platforms have been in use in the offshore industry fo r almost 25 years. A t the moment approximately 230 platforms o f this type exist w orldw ide, the m ajority is being used as mobile drilling platform [8], In table I a split-up is given. Although the semi-submersible type of platform is by far outnumbered by the jackup type (o f which approximately tw ice as much units exist), in deep and hostile wa ters the semi-submersible is the prominent type o f mobile offshore platform. The shape and geom etry o f semi-submersi bles covers a wide range, o f which only the most prom inent types are mentioned briefly. Some designs consist o f a number o f circular columns (generally three o r five), each provided w ith a footing o r low er hull. Structural integrity is achieved by a re latively complicated bracing system and by a truss type deck. Examples o f this m ulti hull type are the Sedco 135 series, the W est Venture and the Pentagon type. O th e r platforms consist o f tw o parallel low er hulls, provided w ith generally six or eight colums. The columns may be circular or rectangular in shape. The deck can be made up from trusses o r may be o f the stiffened plate type. Bracings are generally used to provide structural integrity o f the platform. Examples o f this configuration are the A ke r H3. the Sedco 700 series and the Pacesetter type. In the recent years several trends in the choice o f configuration and shaping of semi-submersibles can be discerned. - The multi-hull type has become old fashioned and is no longer prom oted by designers. Apparently the potential advan tages o f this type such as the possibility to achieve superior m otion characteristics fo r platforms w ith a relatively small displacement and the independence of angle o f attact o f current and waves do not justify the inherent poor tow ing char acteristics. Undoubtedly the accident w ith the Pentagon type platform Alexander Kieltand, where the structural failure o f one bracing caused the loss o f a complete column and resulted in capsizing o f the platform, has played a role in this respect. - The tw o -flo ate r type has increased in popularity in the recent years. It appears that fo r the latest designs o f this type the number o f bracings is gradually decreasing. Also there is a tendency to reduce the number o f columns, in some designs even to four (e.g. G V A 4000). As a result the unsupported span o f the deckstructure has increased and also the loading o f the column-deck connection is increased, both effects resulting in an increase in structural weight o f the deck. This apparently is accepted by the designers at the advantage of a clean structure and avoidance o f fatigue problems in the bracing connections. - The deckstructure o f most o f the mod ern semi-submersible platforms is built-up from stiffened plate instead o f a truss type structure. S E M I-S U B M E R S IB L E P LA TFO R M S FOR P R O D U C T IO N During the past tw o decades the semi- Table I, split up of semi-submersible platform s, w orldw ide, 1986 Num ber Mobile drilling Accommodation Production (converted) Maintenance, general service Craneage Pipe laying 180 18 15 6 5 4 Semi-submersible platforms, total 228 SenW 54STE IAAR.GANG NR 20 submersible platform, despite some se rious accidents, has proven to be a safe, reliable and stable w orkstation in the most severe sea states. This type o f platform therefore is well suited to be successfully used as a floating production station. The first floating production platform was installed by Hamilton Brothers Oil & Gas in 1975 at the Argyll field, using a converted drilling semi-submersible, The Trans world-58. Today the number o f semi-submersible based production platforms is 14, o f which tw o are located in the N o rth Sea (Argyll, Buchan) and ten in Brazilian waters [8]. These existing semi-submersible based production platforms are all converted drilling platforms. O f the three semi-submersible production platforms planned fo r installation in 1987, one is a new built platform (Sun Oil, Balmoral field using a GVA 5000 design) the o the r tw o are con versions of drilling platforms. A converted drilling platform may w ell be an economical, and from technical point of view an acceptable, floating production station, in particular fo r small oil reserves and a limited number o f wells to be de pleted in a few years. However in general the requirements fo r a floating productibn station differ consider ably from those o f a drilling platform. The most im portant aspect w ill be elaborated and highlighted in the next sections. The implication is that optimal configuration and layo utdiffe rfor both types o f platform. In the open literature only limited informa tion can be found on specific design aspects of floating production. An exception is a paper by Burn and Graaf [ I ] which de scribes the Semi-Spar concept developed by Shell. D E S IG N C O N S ID E R A T IO N S The most im portant aspects which dis tinguish a semi-submersible production platform from a drilling platform are dis cussed below. These aspects cause differ ences in design considerations and weighing o f aspects fo r both platform types and result in the end that different solutions regarding configuration and lay out w ill be chosen. Sailing and to w in g characteristics Drilling semi-submersibles have to be moved from one location to an o the r reg ularly, say once in six o r eight weeks. The distance may be a few miles (in one field), a few hundred miles (in one geographical area) o r in some cases a complete ocean has to be sailed across. All modern drilling rigs therefore are shaped in such a way that at transit draft a speed o f approximately 10 knots can be reached under to w o r even by use o f its own thrusters. For a production platform, which is designed to remain several years at one location there is no economic incen SenW 54STE IAAR G A N G NR 20 tive to choose a configuration and shape o f the floater which minimizes tow ing resist ance. In case a long ocean to w is required from the building yard to the field, a dry to w is the obvious method o f transport. The fact that optim ization o r sailing char acteristics are not required means that the configuration can be chosen in which all bracings are eliminated, which may im prove fatigue resistance greatly. Load carrying capacity and deckload Much confusion exists about the load car rying capacity o f semisubmersible plat forms. The confusion is probably due to the fact that the ’deckload' capability o f a mobile drilling platform is compared to the ’deckweight’ o f a fixed platform. Such a comparison is unrealistic because the deck load o f a mobile drilling platform is defined as its capability to carry variable loads such as mud, cement, chemicals, drillpipe, cas ing, BOP, riser joints etc. at deck (for most semi-submersibles this figure varies be tween 1700 tons fo r the older units to 3000 ton, o r even 4000 ton fo r modern rigs), but excludes weight o f deck struc ture, accommodation, pow er generation, utilities, derrick etc. The 'deckweight' o f a fixed platform comprises all weights o f the deckstructure, accommodation, utilities, pow er generation, production facilities etc. Knecht and Bernard [4] state the differences clearly. In order to make a realistic comparison between afloating and a fixed structure it is appropriate to define fo r a floating station the 'topside potential’, which includes all weight components above the to p o f the columns: structural steel, accommodation, utilities, pow er generation, production facilities etc. This ’topside potential’ roughly compares w ith the 'deckweight' o f a fixed structure. It should be realized however that also this comparison is not perfect: - The structural steel o f the deck of a semi-submersible platform generally w ill exceed the structural w eight o f the deck o f a fixed structure due to the larger unsup ported span o f the floater deck. - On the o the r hand the semi-submersi ble platform offers the possibility to store fuel and potable w ater in the low er hull, while this weight does not count fo r the ’topside potential’, contrary to the case fo r the fixed structure w here these items have to be included in the deckweight. Additionally it is possible, as pointed out by Burn and Graaf [ I ], to ta ilo r the equipment and lay-out to the specific situation at a floating production station. It can be concluded that in o rd e r to make a fair comparison between such various op tions as a fixed platform o r a floater a fron tend feasibility study is required in which o f various options the specific merits are in vestigated. Reserve buoyancy and free -v e n tila tion The hydrodynamic stability o f semi-sub mersible platforms in intact condition has in the past never caused mishaps o r danger ous situations. In damaged conditions however, the flooding o f one o r more compartments causes heeling moments which result easily in large angles o f heel. Investigations into the accidents w ith the Alexander Kiel land and the Ocean Ranger have shown that the safety o f a semi-submersible and its crew is greatly improved when sufficient reserve buoyancy is avail able to lim it the angle o f heel in case of an accident. The obvious method to create reserve buoyancy is to make (part of) the deckstructure watertight. A recent trend in the design and lay-out o f process plants is to create free-ventilated spaces in which the hazardous equipment is located. Apart from saving w eight and space by avoiding a complicated forced ventilation system, the safety is improved due to the fact that an explosion in an open environ ment causes less damage than in an en closed space. Both trends, the enclosed deck fo r reserve buoyancy and the open, free ventilated lay out o f production facilities are in conflict w ith each other. It requires intensive cooperation between engineers o f various disciplines such as na val architecture, process, piping and structural to provide in a specific case the optimal solution o r compromise. O ur ex perience is that a set-up o f the deck, based on a truss type structure, where required enclosed by stiffened plate panels, which contribute in the overall strength, offers a potential sound basis fo r a balanced de tailed design. S torage o f crude Semi-submersible drilling platforms gen erally do n ot have facilities fo r storage o f crude. It appears to be difficult to provide crude storage tanks at a later stage in semisubmersibles during conversion to p ro duction platforms, because rules o f Clas sification Societies regarding explosion safety are very strict. Ballast w ater tanks adjacent to crude storage tanks, as well as the pump room where the ballast w ater is being pumped are turned into hazardous areas and require explosion-proof pumps etc. In new built production platforms crude storage tanks can be incorporated in the low er hulls at no costs to stability. Although in case the offloading is taking place via a pipeline to the shore, crude storage is, strictly speaking, not required o r necessary, a small storage capacity (a few hours o f production) may be advan tageous in case repair to the offloading equipment (pump, riser) is required. This can be arranged in dedicated tanks. If offloading is done by means o f a shuttle 401 T DT T R A N S IT DRAUG H T Fig. I. N orrin g-4 sizing logic Fig. 2. Basic platform configuration Fig. 3. Deck lay o ut Fig. 4. Comparison heave transfer functions N orring-4 O RIG IN A L OESlON ... ALT, 1 MO OIF IE 0 CRO SS SEC T IO N ALT. 2 T R IA N G U L A R SEC T IO N S IN ALT BOTH 3 ALT. 1 A N D FL O A T E R C O R N E R S OF LOWER M U LLS ALT. 2 20 M EZZA NINE 402 DECK LFVFI 25 30 35 WAVE PERIOD IN SECONDS SenW 54STE [A A R G A N G NR 20 tanker via an S.P.M. installation, larger sto r age may be required in order to avoid shutin o f production in severe weather condi tions. One to tw o days production can be stored in displacement tanks which contain either ballast w ater o r crude. A rather com pli cated system fo r treatm ent o f bal last w ater has to be installed in that case. Periodic surveys/fatigue Classification Societies require fo r mobile drilling platforms periodic surveys. An annual survey can in principle take place on location, fo r the intermediate survey (w ith an interval o f 2.5 years) and the special survey (interval 4 years) the unit has to be brought into sheltered water. For a semisubmersible production platform a similar requirement would mean a considerable loss o f production. This can be avoided if the inspection and surveys are executed at location, similar to the procedures fo r fix ed, bottom supported structures. Alm ost all present-day drilling semi-submersibles suffer from fatigue, in particular at bracing connections, and (although generally small) repairs are required after survey of the structure. It is therefore necessary that semi-submersible production platforms are designed in such a way that the struc ture becomes less fatigue-sensitive, which justifies the survey at location and elimin ates the need to bring the platform to a sheltered location fo r repair o f the hull. An effective method to avoid fatigue is to eliminate stress concentrations in non-redundant parts o f the structure. This can be realized by om itting all bracings. The fati gue life o f critical parts of the structure, i.e. the connections o f the low er hulls and deck to the columns can be designed and fabri cated in such a way that the fatigue life exceeds the economic life o f the platform several times. Station keeping - thrusters Most modern drilling semi-submersibles are provided w ith propulsion devices, gen erally azimuthing thrusters which are also used to assist the catenary m ooring system by counteracting static forces from wind and current during severe weather condi tions. For a production semi-submersible the in stallation o f thrusters seems not economi cally justified; the system would only be used fo r assistance o f the m ooring system in severe weather conditions. It is easier and less expensive to invest in an increased capability of the catenary mooring system. In this way fuel is saved and the reliability (which is never 100% fo r a thruster sys tem) is increased. From safety point o f view the require ments fo r the m ooring system o f a produc tion platform should be in excess o f the requirements fo r a drilling platform. D ur ing severe weather conditions drilling ope SenW 54STE IA AR G AN G NR 20 rations are suspended and the w ell is secu red. In case o f a production platform, w ith a riser system which can remain operating during survival conditions, the platform is connected w ith live wells and a failure o f the mooring system leaves only the subsea valves to prevent a blow out. N E W B U IL T O R C O N V E R S IO N Before a decision is made by the operator o f an offshore field on the development scheme and before the choice o f platform type is made, generally a front-end study will be made in which various options are compared on economical and technical grounds. The viability o f a semi-submersible produc tion platform depends on aspects such as waterdepth, type and characteristics o f the field, its expected lifetime, etc. The decision w hether to go fo r a conver sion o r to o pt fo r a new built platform also requires a front-end comparison study, involving the current day rate of semisubs, the w eight and size o f the production facili ties (which not only depends on the expec ted maximum daily production, but also on requirements regarding injection o f gas o r water, gas lift, offloading etc.), pow er re quirements, field lifetime etc. In some cases the decision is easily made; heavy and spacious equipment, exceeding the carrying capacity o f existing semisubs, large number o f risers etc. call fo r a new built platform. On the other hand exten ded well test o r a simple production sche me w ith a few wells only, can easily be accommodated at a converted platform. Although conversions can be very compli cated in particular when part o f the exis ting equipment has to be removed for stability o r space problems and overrun in time and budget is hard to avoid (see Logan et. al.) [6], all 15 o r so present day conver sions have proved to result in economical production schemes. For small fields con versions still w ill remain an appropriate solution, however probably the most im portant aspect o f it is that a lot o f experien ce is gained w ith floating production, both regarding topside facilities and riser sys tems, which improves the confidence in floating production and which can be used in larger fields where new built platforms are required w ith the inherent large in vestments. P R O D U C T IO N RISER S Y S T E M The first riser systems used fo r the produc tion o f oil by means o f a semi-submersible platform w ere based on drilling riser tech nology. Individual flowlines are spread around and attached to a central core, used for the e xp o rt o f the crude, similar to the kill and choke line attached to a drilling riser. Tensioning devices at the platform prevent the riser structure from buckling. The tw o main arguments against this type of production riser are; - the riser has to be disconnected in se vere weather conditions, resulting in loss o f production - the system becomes very complicated in particular when the number o f flowlines is increased. Several alternative riser systems have been proposed in the recent past, ranging from buoyant articulated structures to com pletely flexible pipes, hung off from the platform. In the last years the use of flexpipe risers has gained increased confidence in the off shore industry. A lo t o f experience is ac quired in Brazilian waters (where 10 con verted semisubs are used fo r oil produc tion, all producing by means o f flexpipe risers). Early 1987 the Sun O il purposely built production platform fo r the Balmoral field w ill start producing also through fle x pipe risers [7], The flexpipe may contain several fluid lines (m ulti-bore type) and may be hung off either from the deck o f the floater o r be connected to steel pipes at the low er hull, depending on the choice between easy inspection and repair on one hand and the possible wear and decreased safety by passing of the wave zone. The flexpipe may be guided to the seabed connection by various shapes e.g. ’steep-S’, ’lazy-S' through a submerged buoy o r dis tributed buoyancy elements along the pipe, see Mahoney et.al., [7], O ther confi gurations are also possible fo r example by using an articulated, submerged, steel riser structure from the seabed to approxima tely 40 m below the surface, the flexpipes are then connected to the top o f the articu lated structure. The major advantage o f flexpipe risers is that the system can remain operational during severe N o rth Sea environmental conditions. Further aspects of flexpipe ri ser systems are: - the number o f individual flowlines, con tro l lines etc. can be increased far beyond the potentials o f a rigid tensioned riser system. - the position where the risers are at tached to the platform can be chosen more o r less freely; and can be adapted to the optimal layout o f the process facilities. - if required, the platform can be provided w ith a w o rk-o ve r o r complete drilling rig w itho ut interference w ith the production riser system. T H E N O R R IN G -4 F L O A T IN G P R O D U C T IO N S T A T IO N In this section the N orring-4, a four column semi-submersible w ith a low er hull fo rm ing a square ring, is introduced briefly. More detailed information is given in a paper by Van Holst [3], The platform is designed as a floating production station and major aspects discussed above are in corporated in the design. Because process plant parameters differ 403 considerably from case to case, resulting in different requirements regarding deck load and and space, main dimensions and particulars have to be established in each individual case in ord er to arrive at an optional solution. Sizing P ro g ra m C om puter programs based on algorithms fo r estimate o f steel weight, hydrostatic stability, m otion behaviour etc. are cost effective tools to generate a series o f preli minary designs. See fo r instance Penny et.al. [ 10]. For the N orring-4 type platform a com puter program was developed to perform a first pass sizing depending on topside weight, draught, underdeck clear ance and stability requirements. Figure I shows the sizing logic. A similar progam fo r a tw o floater drilling platform is described by Penny et.al. [10]. G en eral description and basic d ata For a process plant based on data shown in Table II a N orring-4 platform has been w orked o ut in detail, up to pre-certifica tion approval by Lloyd’s Register. The prin cipal dimensions, the weights o f equipment and structural steel can be found in Tables III and IV. The hull structure, as shown in Fig. 2, is completely built up from flat stiffened plate panels. It does not contain curved elements o r plates nor does it have any braces. Overall structural integrity is attained by stiff frames form ed by the low er hulls, the columns and the deck. Parts o f the structure vulnerable to fatigue are minimized and located in areas w ith sufficient redundancy. The structure is assessed by Lloyd’s Regis te r and has been granted a pre-certification approval. D eck structures T w o types o f deck structure can be applied in the N orring-4 design, depending on re Fluid Production Rate: Gas Production Rate: GOR: Maximum W ater Production Rate: Treated W a te r Quality: Crude Storage Capacity: T ab le II, design d a ta fo r process/N orring-4 Length - w idth overall floaters Length - w idth overall deck Elevation low er deck Elevation upper deck Height o f low er hulls W id th o f low er hulls Column dimension (side o f square) Draught, operating Draught, transit Displacement: operating transit 75,00 m 75,00 m 40,75 m 49,00 m 8,50 m 13,50 m 13,50 m 25,00 m 7,80 m 41 300 ton 26500 ton T ab le III, principal dim ensions, N o rrin g -4 quirements regarding free ventilated spaced and reserve buoyancy. The first type o f deck structure consists basically o f large trusses w ith a height o f approximately 12 m., spaced apart at 12 m. distance. The trusses may be enclosed by stiffened flat plate panels as required, fo r instance above the to p o f the columns to achieve reserve buoyancy and fo r protection o f the living quarters and the pow er generation equipment. The process facility and all ha zardous equipment can be located in com pletely free ventilated areas. The second option is a deck form ed by large box girders arranged in a square configuration. The box girders are housing the pow er generation and distribution equipment, the living quarters, the HVAC and utilities. The central area formed by the box girders T a b le IV , w e ig h t o f e q u ip m e n t and stru c tu ra l steel, N o rrin g -4 Steel w e ig h t Lower hulls Columns Decks 5700 ton 3450 ton 6300 ton Total D eck load Process equipment and utilities (w et) Riser system Living quarters Platform systems * Contingency 15450 ton 4450 250 1200 1350 1200 Total *) excluding systems in columns and low e r hulls 404 50,000 b/d (330 m 3/hr) 25-35 MMSCFD (27.5 - 38.5 x l0 3N m 3/hr) 500 - 700 20% at 50,000 b/d < 30 ppm oil 28,300 bbls (4.500 m 3) ton ton ton ton ton 8450 ton is bridged by three large trusses which support the decks fo r process equipment, stores, workshops and control room. This option results in less steel w eight than in the case o f a truss type deck due to the fact that structural steel o f the box girders is effectively used both as primary strength member and support o f equipment and facilities. On the o th e r hand it requires a comprehensive ventilation system in parti cular fo r areas w ith hazardous equipment. Efficient Fabrication In the recent years several attempts are made to reduce the fabrication and build ing costs o f marine structures. See fo r instance Goldan [2], Incase o f the N orring efficiency is obtained by avoiding curved and compli cated sections in the low er hull, the columns and the deck. D eck layo u t A possible layout o f the deck, assuming process facilities defined on basis o f data in Table II, is shown in Figure 3. It should be noted that o th e r arrangements are as well possible w ithin the same structural set-up o f the platform deck. M otions The configuration and shape o f the N o rring-4 have not in the first place been optimized w ith regard to wave induced m otion behaviour because flexpipe risers do not impose stringent requirements in this respect. However, the motions com pare well w ith average drilling semi-sub mersible platforms. See fo r example the heave response curve in Fig. 4. The solid line represents the calculated curve fo r the basic platform w ith rectangular low er hull sections. SenW 54STE IA AR G AN G NR 20 floating production station, tailored to specific design requirements and aiming at low cost fabrication and construction. ANCLE OF NEEL 1dcqr) Fig. 5. N orrin g-4 Intact Stability operational condition It has been investigated that the heave motion can be improved if required. The dotted lines in Fig. 4 show the effect of decreased added mass by cutting off the edges o f the low er hull sections, while keeping the to ta l displacement constant. Also the effect on the heave response of increased buoyancy near the column fo o t ings is shown. The improvements in m oti on characteristics result in a m ore com pli cated and consequently more expensive structure. Stability The N orring-4 design meets all intact as well as damage stability requirements o f all certifying authorities (e.g. Lloyds, DnV) and governmental organizations (e.g. NMD, DEn, USCG) w ith the restriction that in case o f the truss type deck the high impact requirem ent (buoyancy o f a com plete column lost) is not fulfilled complete ly. In case o f the box girder deck w ith its increased reserve buoyancy also this requi rement is met. In Fig. 5 the intact stability curve of both types o f deck structure is shown. tically shown in Fig. 6. The w aterdepth at the mating location has to be at least 40 m. Concluding Rem arks It is shown that design parameters fo r semi-submersible production platforms differ from those fo r mobile drilling units. Consequently an optimized production platform o f the semi-submersible type w ill differ in shape and configuration from a drilling platform. The N orring-4 design is a representative example o f a modern semi-submersible References 1. A. j. Bum and G. Graaf, 'Topside Facilities for Floating Production Systems Require New Engineering Thinking', Offshore Technology Conference, Houston, paper OTC 4543, 1983 2. M. Goldan, 'The application of modular elements in the design and construction of semi-submersible platforms', Thesis, Delft University of Technology, 1985 3. M. van Holst, 'Floating Production Station Norring-4', ConOff, Amsterdam 1986 4. H. I. Knecht and S. W . Bernard, 'Why mobile rigs can make reliable production units’, Ocean Industry, December 1985 5. Lloyds Register o f Shipping, 'Annual Sum mary of Merchant Ships Completed in the W orld during 1985', issued 1986 6. B. L. Logan et. al., 'Buchan Development Project-Conversion of a Drilling Rig into a Floating Production Platform’, Offshore Technology Conference, Houston, paper OTC 3985, 1981 7. T. R. Mahoney and M. J. Bouvard, 'Flexible production riser system for floating pro duction application in the N orth Sea', Offshore Technology Conference, Hous ton, paper OTC 5163, 1986 8. Ocean Industry, September 1985, 'Direc to ry o f Marine Drilling Rigs’ 9. Offshore Engineer, April (986 'Floating Production System Review' 10. P. W . Penny and R. M. Riser, 'Preliminary Design o f Semi-submersibles’, Trans NEC Institution of Engineers and Shipbuilders, 101, 1985 Fig.6. Proposed construction m ethod and deck mating procedure Mooring The mooring system consists o f 12 legs of 4" super quality chain. For a w aterdepth o f 300 m the length o f each line is 1700 m. The mooring system meets DnV (PosMoor) requirements. Preset piled anchor points are envisaged fo r a permanent m ooring arrangement, instead o f ship type anchors. Construction and deck m a tin g The tim e schedule fo r construction o f the unit probably can be decreased by building the hull and the deck separately. A fu rthe r advantage o f a separate building is that the equipment and facilities at deck can be installed and tested at surface level. A possible procedure fo r the mating o f deck and hull in a sheltered location is schema SenW 54STE IAAR G AN G NR 20 405 rfïp.? W M . W ' W m ' i % Jÿ * W «Motoren tot 4000 pk W/ 800- 1500 omw/min. HàtiideknKàfW>n: A M H I SAM O FA D I E S E L BV M IT S U B IS H I D IE SE L M O T O R E N Europese h o olävestiging van M itsubishi H eavy Industries-E ngine D ivision J a p a n Postbus 20, 3840 AÀ H ard erw ijk, T e l:0 3 4 1 0 -130+1 T ele x : 47330 T ele tax :0 3 4 1 0 -19060 Daarom buigt Seton de pijpen machinaal. Elke gebogen bocht scheelt 2 lassen. Dat leidt regelrecht naar een betere kwaliteit van de pijpen. En het laswerk dat resteert wordt door ervaren en goed geschoolde vakmensen zeer nauwgezet gedaan. H O E MINDER LASSEN, H O E BETER D E PIJP. Seton fabriceert enkel en alleen pijpleidingen. Volgens 't Prefab-systeem. Deze specialisatie is onze kracht. Het resultaat is dat alle pijpen van Seton al volledig afgelast (en zelfs met de juiste oppervlaktebehandeling) maatklaar naar het werk gaan. Dat komt de kwaliteit van de installatie ten goede. Verder scheelt het een hoop heen-en-weer gesjouw. Dus tijd. Seton is erbij. Vanaf het eerste ontwerp tot en met de komplete installering. Informatie en offertes: Ketelweg 30, 3356 L E Papendrecht. Telefoon (078) 152011. Want wat waard is gedaan te worden, is waard goed gedaan te worden. SETON PIJPLEIDINGEN A3 NIEUWSBERICHTEN House, 55/59 Fife Road, Kingston upon Thames, Surrey KTI ITA. Tel: 01-549 5831. Agenda 4th Cruise Shipping C onference & Exhibition Seatrade's annual Cruise Shipping event now firm ly established as the annual forum for the international cruise industry-takes place on February 23-25, 1988 at the Fon tainebleau H ilton in Miami, USA. The shape o f the cruise industry as it moves into the nineteen nineties w ill be a principal theme o f Cruise Shipping 88, w ith expert speakers looking ahead to how and where the next generation o f cruise ships w ill be designed, built, financed, and positioned in the market place, in order to broaden the appeal o f the cruise product. Sessions on subjects ranging from on-ship operations and insurance through to marketing and promotion w ill give this event a broad appeal to all segments o f the cruise in dustry. The conference w ill be introduced by A. Kirk Lanterman, President, Holland A m er ica Line - Westours, Inc., and o the r speak ers w ill include Robert H. Dickinson, Senior Vice President, Sales and M arket ing, Carnival Cruise Lines; Carmen J. Lunetta, Port D irector, Port o f Miami, Jay Silberman, President, National Associa tion of Cruise Only Agencies (N A C O A ) and A lf P. Poliak, Managing D ire ctor, Seetours International GMBH, Frankfurt. For further information please contact Seatrade, Fairfax House, Colchester COI IRJ U K Tel: (0206) 45121. Sixth offshore c o m p u te r show The sixth Offshore Com puters C onfer ence and Exhibition w ill be held 22-24 March 1988 at the Aberdeen Exhibition and Conference Centre, Aberdeen, UK. The theme o f the three day event, orga nised by Offshore Conferences and Exhibi tions, wi II be the e xten t to which the use o f computers applications increasingly aids cost efficiency in the offshore oil and gas industry. The exhibition w ill reflect current ad vances in hardware and software fo r use by the offshore oil and gas industry. A call fo r papers outlining the main areas o f interest in the associated conference is being pub lished shortly and full information on ex hibit costs w ill be available from Offshore Conferences and Exhibitions, Rowe SenW 54STE IÂAR G AN G NR 20 Technische informatie N ie u w d e m o n s tra tie c e n tru m voo r oppervlaktebehandelingstechnieken en onderdelenreiniging C.T. (BENELUX) B.V., Dordrecht, de al leenvertegenwoordiger in Nederland voor de Guyson range aan straalreinigingsmachines, heeft recentelijk een nieuw de monstratie- en testcentrum geopend in hun pand in de Réaumurstraat. D it centrum is van g ro o t belang vo or managers van grote en kleinere werkplaatsen, b etrok ken bij de reparatie van benzine- en diesel motoren en gasturbines uit de automobiel-, scheepvaart- en luchtvaartindustrie en eiektriciteitsopw ekki ng. H et GUYSON systeem w e rk t d.m.v. het gecontroleerd opbrengen van miljoenen glasballetjes bij een hoge snelheid op het te behandelen onderdeel, waarbij van nor maal onbereikbare plaatsen koolaanslag, roest, walshuid, en andere verontreini gingen worden verw ijderd zonder dat de maatvoering w o rd t aangetast o f insluitin gen in het oppervlak plaatsvinden. Bovendien ontstaan voordelen zoals het peen-effect, welke niet alleen een zijdeglans finish veroorzaakt, maar ook de ver moei ingsfactor opvoert, haarscheuren zichtbaar maakt, een verbetering geeft aan het smerend vermogen en een grotere weerstand biedt aan koolaanhechting. A lternatief kan in het zelfde systeem een hard scherpkantig medium worden ge bruikt voor het snel verwijderen van har dere neerslagen, zoals verfresten en zware walshuid, waarbij een egale matte finish o f een hoge mate van reinheidsgraad verkre gen w o rd t als voorbehandeling voor me taal- en plasmaspuiten, verven, lijmen o f coaten. Guyson parel- o f gritstralen biedt belang rijke kosten- en omgevingsvoordelen in vergelijking m et methodes als chemisch badreinigen o f het traditionele borstelen en schrapen en geeft bovenal een absoluut superieure finish. V o or nadere informatie: C.T. (BENELUX) B.V., Réaumurstraat 4A, D ordrecht, 078311955 B ureau V e rita s publication, H u ll stru ctu re fo r ships of less than 65 m . in length The first aim o f the amendments is to incorporate in the main Rules, the rules applicable to fishing vessels, launches and sea-going launches. A t the same time, part II (Hull) is subvided in: - rules applicable to ships of more than 65 m. in length, - rules applicable to ships of less than 65 m. in length. To this effect the rules fo r seagoing ships are now subdivided as follows Part I: contains tw o chapters dealing w ith the general requirements of classification and surveys. Rules applicable to fishing vessels, launches and sea-going launches have been incorporated and up-dated. Part II: ships o f more than 65 m. in length: contains the requirements governing hull structure of ships o f more than 65 m. in length. Part II (new): ships o f less than 65 m. in length: contains the requirements governing hull structure fo r ships o f less than 65 m. in length. This part also precises the conditions upon which these rules may be extended to cover certain classes of ships o f more than 65 m, but not greater than 90 m. in length. This part incorporates the rule rules applic able to fishing vessels o f less than 65 m. in length, launches and sea-going launches. Part III: contains the requirements applicable to all size o f ships and governing machinery, electricity and automation. A new section fo r fishing vessels has been added. Bureau V e rita s guidance n o te 199 - S teel stru c tu re fatigue Following its action in view o f improving safety o f units, Bureau Veritas just pub lished the Guidance N ote: ’Cyclic fatigue o f nodes and welded joints o f offshore units’. This N ote comes as a complement o f the Rules: ’Rules and regulations fo r the con struction and classification o f offshore plat form s’. The methods described and the criteria used are based on the up-to-date results o f the European research programme on the fatigue strength o f welded joints fo r offshore units and the w o rk performed in ARSEM (Research Association o f the Be haviour of Steel Offshore Structures) to which Bureau Veritas is associated. The document fo r design offices defines the procedures for: - the calculation o f loads due to waves, - the calculation o f stresses in joints, - the calculation o f long term histogrammes 407 It provides information on the concept o f S-N curves and gives the relevant data to: - choose the necesarry S-N curves fo r verification - calculate the cumulative fatigue and de cide the acceptability o f the results - minimize the risk o f fatigue in the design and construction o f the units. The document w ill be a valuable to o l fo r all those in charge o f verifying the reliability w ith respect to fatigue o f projects of marine units o r installations. Giassflake coatings in arctic o f tro p ical w a te rs Besides having good anti-corrosive prop erties Sigma C o ltu rie t Giassflake Coating is proving remarkably resistant to impact and abrasion damage - to such an extent that it is now specified fo r ships’ main decks, cargo decks and even cargo holds and hatch coamings. It is also used fo r w orking decks o f offshore rigs, the protec tion o f oil and petrol storage tanks, rail hopper cars and numerous o th e r types of equipment. N ew areas o f use fo r C o ltu rie t Giassflake Coating have exceeded the most hopeful predictions; it has proven to be extrem ely tough and has excellent resistance to abra sion damage caused by berthing, anchor cables, tugs, etc. and to general mechanical damage such as ice, hatches, containers and heavy wear and tear. M oreover, it is highly resistant to splash o r spillage o f a wide range o f chemicals and oils. This quality is also im portant fo r the protection o f sur faces in chemical plants, breweries, tan neries, etc., including drilling rigs. C o ltu rie t Giassflake Coating is being parti cularly applied to such areas as sea chests, boottopping, rudders, stern frames and thruster tunnels, even fo r deck machinery, fore and aft gangways, cargo and bunker manifold, decks, hatches and many o the r parts where most deck wear and damage is encountered. A C o ltu rie t Giassflake coating requires mixing the base material w ith a hardener and it can then be applied economically in layers o f 500 microns o r more. Time re quired fo r a full cure w ill vary according to the substrate tem perature but in average conditions C o ltu rie t Giassflake can be touch dry after only tw o hours and can be overcoated in 16 hours at 20 °C, o r in 36 hours at a substrate tem perature o f 10 °C. Full cure at 10 °C take seven days but only tw o days is required at 40 °C. The holding prim er used is a highly special ist product which incorporates effective anti-creep agents assuring b e tte r bonding and preventing the electro-osmosis pro cess which is stimulated by cathodic pro tection systems should the coating be dam aged. Encouraging results in a variety o f extrem e conditions have led to C o ltu rie t Giassflake Coating being applied to 408 offshore service vessels, pipelaying barges, and others where anti-corrosion but highly durable coatings are necessary. More information from : Sigma Coatings BV. P.O. Box 42 1420 A A U ithoorn tel. 02975 - 41247. are welding (powder). - Solid wire-shielding gas combination. - Flux-cored wires w ith o r w ith o u t shiel ding gas. - D ifferent combination fo r special wel ding processes. A p proved F iller Products for Electric A rc W eld in g Bureau Veritas has published a booklet listing all approved Filler Products fo r Elec tric A rc W elding updated to A p ril 1987. This booklet supersedes the 20th issue, published in August 1986. This booklet title d ’Approved Filler Pro ducts fo r Electric A rc W elding - 1987’, 2 1st issue, contains the follow ing chapters: - Electrodes fo r manual arc welding. - W ire-flu x combination fo r submerged It refers to about 2325 products manufac tured by more than 200 manufacturers around the w orld. This booklet is one among the dozen covering all Marine and Offshore materials and equipment eligible to the Product Type Approval and C ertification (TYPEC) scheme o f the Society. This booklet is available on request at: Bureau Veritas, Coolsingel 75, 3012 AD Rotterdam. Tel. 010-41 19733. NEDERLANDSE VERENIGING VAN TECHNICI OP SCHEEPVAARTGEBIED t (Netherlands Society of Marine Technologists) V o o rlo p ig P ro g ra m m a van lezingen en e v e n e m e n te n in h et seizoen 1987/1988 Im plicaties M A R P O L A n n ex I en II voo r product- en chem icaliëntankers door E. Pieters van Gebr. Broere D o r drecht di. 13 o k t„ 1987 Groningen D e V e rb o u w in g van de Q ueen Elisabeth I I * * * door W . Ohlers M A N /B & W en door Ir. T. van Beek en Ir. J. J. M. de C ock van Lips B.V. Drunen wo. 14 okt. 1987 Amsterdam do. 15 okt. 1987 Rotterdam In h et kielzog van ’W ille m B are n ts z’ door A. Veldkamp, gezagvoerder 'Plancius’ do. 15 okt. 1987 Vlissingen O n tm o etin g sd ag M a ritie m e Tech n iek Dagbijeenkomst. Thema: M a ritie m e Veiligh eid en P rivatiserin g do. 12 nov. 1987 RAI Amsterdam (zie inlegvel) B ijzondere schepen door Damen Shipyards W o. 4 nov. TU D elft (voor afd. R’dam) Di. 17 nov. Groningen W o. 18 nov. Amsterdam Do. 19 nov. Vlissingen Berging ’H e ra ld o f F re e E n terp rise ’ door H. J. G. Walenkamp van Smit Interna tional W o. 25 nov. ’87 T.U. D elft N .B .: D it programma zal in de komende maan den worden aangevuld en eventueel gewij zigd. * Lezingen in samenwerking m et de N e therlands Branch van het Institute o f Mari ne Engineers. * * Lezingen in samenwerking m et de afd. Maritieme Techniek van het Kvl en het Scheepsbouwkundig Gezelschap ’William Froude’. 1. De lezingen in Groningen w orden ge houden in Café-Restaurant 'Boschhuis' Hereweg 95 te Groningen, aanvang 20.00 uur. 2. De lezingen te Amsterdam w orden ge houden in het Instituut vo o r Hoger Technisch en Nautisch Onderwijs, Schipluidenlaan 20, Amsterdam, aan vang 19.00 uur. Vooraf gezamenlijk aperitief en broodmaaltijd om 17.30 uur. 3. De lezingen in Rotterdam worden ge houden in de Kriterionzaal van het Groothandelsgebouw, Stationsplein 45, aanvang 20.00 uur. Vooraf geza menlijk aperitief en broodmaaltijd, aan vang 18.00 uur. 4. De lezingen in Vlissingen worden ge houden in het Maritiem Instituut ’De Ruijter', Boulevard Banckert 130, Vlis singen, aanvang 19.30 uur. SenW 54STE IA AR G AN G NR 20
© Copyright 2024 ExpyDoc