PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/20693 Please be advised that this information was generated on 2015-01-24 and may be subject to change. Int. J. Cancer: 60, 73-81 (1995) Publication of the International Union Against Cancer Publication de l’Union Internationale Contre le Cancer © 1995 Wiley-Liss, Inc. LOW-METASTATIC HUMAN MELANOMA Marian A .J, W e t e r m a n 1*3, Nasser A ju b i1, Irma M .R. v a n D i n t e r 1, Winfried G .J . D e g e n 1, G o o s N.P. v a n M u i j e n 2, Dirk J. R u i t e r 2 and Henri P J . B lo e m e r s 1 Departments of {Biochemistiy and 2Pathology, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. From a subtractive cDNA library» we isolated several cDNA clones which showed differential expression between highly and lowly metastatic human melanoma cell lines. One clone, desig nated nmb, showed preferential expression in the low-metastatic cell lines and was chosen for further characterization. Sequence analysis revealed that this clone represents a novel gene, encoding a putative transmembrane glycoprotein which showed the highest homology to the precursor of pMELI7, a melanocyte-specific protein. nmf> RNA expression was absent in most tumor-cell lines tested and not restricted to the melanocytic lineage. Transfection of a partial nmb cDNA into a highly metastatic melanoma cell line (BLM) resulted, in 2 of 3 transfectants, in slower subcutaneous tumor growth and, in I of 3 transfectants, in reduction of the potential for spontaneous metastasis in nude mice. © 1995 Wiley-Liss, Inc. Melanocytic tumor progression is thought to evolve through several distinct stages, from normal melanocytes to highly invasive melanomas capable of metastasis (Clark et al., 1984; Hcrlyn et al, 1987). Monoclonal antibodies have been pre pared recognizing antigens with a preferential expression in one or a few stages of this process. Many of these molecules have been cloned and mainly represent adhesion molecules or growth-factor receptors (van Muijen et a lt 1990; Lehmann et a l , 1989; Johnson et a l , 1989). Another approach, using the differential and subtraction hybridization techniques, led to the isolation of calcyclin (Wcterman etal, 1992) and thymosin (3-10 (Wcterman et a lf 1993/;) as potential progression markers for cutaneous melanoma. From a clinical point of view, such markers as indicators of metastatic potential would be very useful. Although many markers have been isolated so far, it is useful to obtain a large panel of such markers, since a single marker or a few markers often show overlapping expression between benign and malignant stages. Many proteins that are uprcgulated during progression arc also important in the normal physiology of the cell. Thus, discrimination can only be achieved when a large panel of markers is used. The study of single markers can still be veiy useful, since it can provide us with a better insight in the pathogenesis of tumor progression. cD N A clones, which are expressed only in non-metastic or low-metastatic cell lines or tumors, are candidates as tumorsuppressor genes. In the field of melanoma research, nm23 was isolated upon comparison of highly and lowly metastatic murine melanoma cell lines (Steeg et al, 1988). Although expression in ncvoccllular nevi was lower than in melanomas, /*w23 expression in melanomas, curiously, showed an inverse correlation with disease progression (Florencs et al, 1992). p53, another potential tumor-suppressor gene, was origi nally reported to be mutated in a very large percentage of melanoma lesions (Stretch et alf 1991). However, later reports showed mutations in p53 only in a small percentage of melanoma cell lines (Akslcn and Morkve, 1992; Luca et aI, 1993; Weiss et al, 1993). Another recently described gene, designated p i6, is frequently deleted or rearranged in mela noma cell lines (Kamb et al, 1994; Nobori et al., 1994). This gene encodes a cyclin-depcndent kinase-4 inhibitor which makes it a good candidate as a tumor-suppressor gene. The exact extent and timing of these genes has yet to be deter mined. In an attempt to describe a subtraction library, we isolated several differentially expressed cDNAs, 2 of which are ex pressed only in low-metastatic cell lines and corresponding xenografts and appear to represent novel genes. In this study, we describe the characterization of one of them. MATERIAL AND METHODS Cell lines and xenografts Hum an melanoma cell lines 1F6, 530, M14, McI57, B L M (van M u ije n ^ a/., 1991«), M V3 (van M uijen et a l , 1991b), and MV1 (van Muijen et al, 1991c) were cultured as described before (Weterman et a1, 1993a). MV1 and MV3 were derived from the same melanoma lesion after 1 and 3 passages in nude mice, respectively (van Muijen et a1, 1991c). The MV1 cells used for these experiments represent the lower metastatic phenotype, giving rise to spontaneous métastases in about 10% of the tumor-bearing animals. MV3 cells produce spontaneous métastasés in approximately 90% of the tumor-bearing ani mals. In this panel of cell lines, 1F6, 530, M.14 and McI57 are low-metastasizing cell lines, whereas B L M and MV3 represent the highly metastatic phenotype (van Muijen et al, 1991«). Approximately 3 x ID6 cells were used for s.c. inoculation into nude mice (nu/nu BALB/c; Bomholtgaard, Ry, Denmark). A Northern blot containing total R N A of various cell lines was generously provided by Dr, P, Quax (Gaubius Institute IV V O , TNO, Leiden, The Netherlands). It contained R N A from: Bowes1melanoma, HT1080 fibrosarcoma, Hela N IB SC and Hela S3 cervix carcinoma, M CF7 mammary carcinoma, A431 epidermoid carcinoma, Colo2Q5, CaCo2, HT29, SW620 and SW480 colon carcinoma, K ato III and I-IGT-1 gastric carcinoma, HepG2 hepatoma, K562, U937 D K and I-IL60 myeloid leukemia cell lines, and HS766T pancreas carcinoma cell lines. Human renal carcinoma cell lines, generously provided by Dr. J. Rom ijn (Rotterdam, The Netherlands), were all derived from the same patient (Weterman et al, 1993b). Rat organs that were used for a Northern blot were: spleen, brain, liver, heart, muscle, kidney, testes, thymus, prostate, lung, bladder, intestines and stomach. Human tissues After excision, large sections of melanoma métastases were immediately frozen in liquid nitrogen and stored at -80°C. Melanoma métastasés were processed individually and were taken from patients other than those from whom nevi were removed. For R N A isolations from common ncvoccllular nevi, dysplastic (atypical) or congenital nevi, a representative slice was taken. Most of the skin surrounding these lesions was removed before the material was frozen in liquid nitrogen. The remainder was processed for conventional histopathology. Dr. R. Koopman generously collaborated in obtaining fresh hu man material. It is guaranteed that this procedure did not 3To whom correspondence and reprint requests should be sent. Fax: 31 80540525. Received: May 11, 1994 and in revised form September 4, 1994. WETERMA.N ETAL. 74 A B • I C D E G F I H J K L M (kb) • I - -23 .v -. • y'A:<< >W •x.-J.V' --V- - 9.4 V\: :' - 6,6 - 4.4 ■ .■ issa» - - v.:vv'-’-:■ ?. :- l:-':v-;::.':-Vì?ì-.v;-.?:.=.^ ; r.i: ^V-1= :-.vf::.?.■ ' '-v-;':-;'>1<.!:v::; s :^ 'V^fr^i^V.r.sVóì-:: ". 0^ t ^ 2.0 W ïiX & P W W ïb ? 28 S rRNA figure 1 - Northern-blot analysis of human melanoma cell lines and xenografts. As a molecular-weight marker \ DNA restricted with Hindi!I was used; nmb was used as a probe. Lanes A, 1F6; B, 530; C3 M l4; D, Mel57; E, M V I; F, MV3 and G, BLM RNA isolated from cell lines; lanes H, 1F6; I, M l4; J, MV1; K, MV3 and. L, BLM RNA isolated from xenografts. As a control a ribosomal hybridization is shown. hamper diagnosis. When nevi or normal skin tissue samples were used, 6 to 22 lesions from 6 to 17 patients were pooled in order to obtain enough m aterial A Northern blot containing smooth-muscle-denved tumors (3 leiomyomas and 7 leiomyo sarcomas) and normal uterus ( 4 x ) and adjacent tissue (4x) was generously provided by Dr. T. Glouclemans (Utrecht, The Netherlands). RNA isolation and Northern-blot analysis Total R N A was isolated as described by Auifray and Rouge on (1980). 01'igo-deo.xy thymidine selections were per formed using oligo-deoxythymicline columns (type II, Collabo rative Research, Bedford, M A ); 10 ju-g of total R NA were blotted on Hybond N + (Amersham, Aylesbury, U K ) according to the procedure recommended by the manufacturer, after glyo.xylat.ion (McMaster and Carmichael, 1977) and size frac tionation on 1% agarose gels. To reconfirm equal loading, the blots were subsequently hybridized to ribosomal RNA probes. Construction ofcDNA and subtraction libraries cDNA libraries were constructed from 5 ¡ag of oligodeoxythy midine-selected RNA using a cD N A cloning kit (Invitrogen, San Diego, CA). For production of the subtracted library a sub tractor kit was used (Invitrogen). Construction was per formed as described before (Weterman at aI., 19936). Hybridization D N A probes were radiolabeled using the multi prime label ing method as recommended by Amersham. Hybridizations of cDNA libraries were performed as described ( Weterman et ciL, 19936). Hybridizations of Northern blots were performed according to the method of Church and Gilbert (1984) with the addition of 0.1 mg denatured herring sperm D N A /m l of hybridization mixture. Hybridization of Southern blots was carried out as recommended by the manufacturer (Amer sham). Conditions of lower stringency were obtained by lowering the temperature for hybridization and washes down to 15°C below the optimal temperature. (C (AGAT )GCCAGAAGAACACTGTTGCTCTTGGTGG.ACGGGCCCAGAGGAA 03 J.12 TTCAGAGTTAAACCTTGAGTGCCTGCGTCCGTGAGAATTCAGC ATG GAA TGT CTC TAG TAT TTC Glu Cya Leu Tyr Tyr Pha 139 166 CTG GGÀ TTT CTG CTC CTG GOT GCA AGA TTG CCA CTT GAT GCC GCC AAA CGA TTT Leu Gl y Phe Leu Leu Leu Ala Ala Arg Leu Pro Leu Asp Ala Ala Lya Arg Phe ,193 220 CAT GAT GTG CTG GGC AAT GAA AGA CCT TCT GCT TAC ATG AGG GAG CAC A AT CAA His Asp Val Leu Gly Ann Glu Arg Pro Ser Ala Tyr MET Arg Glu Mia Aon Gin 247 274 TTA AAT GGC TGG TCT TCT GAT GAA A AT GAC TGG A AT GAA AAA CTC TAC CCA GTG Leu Aan Glv Trp Ser Ser Asp Glu .Ran Aap Trp Aan Glu Lys Leu Tyr Pro Val 301 32 7 TGG AAG CGG GGA G AC ATG AGG TGG AAA A AC TCC TGG AAG GGA GGC CGT GTG CAG Trp Lys Arg Gly A0p MET Arg Trp Lya Aari Ser Trp Lyra Gly Gly Arg Val Gin 355 382 GCG GTC CTG ACC AGT GAC TCA CCA GCC CTC GTG GGC TCA AAT AT A ACA TTT GCG Ala Val Leu Thr Ser Asp Ser Pro Ala Leu Val Gly Ser Atan H e Thr Phe Ala 409 436 GTG AAC CTG ATA TTC CCT AGA TGC CAA AAG GAA GAT GCC AAT GGC AAC ATA GTC Val Asn Leu lie Phe Pro Arg Cyg Gin Lye Glu Asp Ala Aon Gly Awn lie Val 463 490 TAT GAG AAG AAC TGC AGA AAT GAG GCT GOT TTA TCT GCT GAT CCA TAT CTT TAC Tyr Glu Lys Aan Cys Arg A a ri Glu Ala Gly Leu Ser* Ala Asp Pro Tyr Val Tyr 517 544 AAC TGG ACA GCA TGG TCA GAG GAC AGT GAG GGG GAA AAT GGC ACC GGC CAA AGC Aan Trp Thr Ala Trp Ser Glu Asp ser Aap Gly Glu Awn Gly Thr Gly Gin Ser 571 S9B CAT CAT AAC GTC TTC CCT GAT GGG AAA CCT TTT CCT CAC CAC CCC GGA TGG AGA Hia His Aeri Val Phe Pro Asp Gly Lys Pro Phe Pro Hi a Hiss pro Gly Trp Axq 625 652 AGA TGG AAT TTC ftTC TAC GTC TTC CAO ACA CTT GOT CAG TAT TTC CAG AAA TTG Arg Trp Asn phe lie Tyr Val Phe H:Uj Thr Leu Gly Gin Tyr Phe Gin Lya Leu 679 706 GGA CGA TGT TCA QTG AGA GTT TCT GTG AAC ACA GCC AAT GTG ACA CTT GGG CCT Gly Arg Cya Ser Val Arg Val Se r Val Aan Thr AI a Aan Val Thr Lem Gly Pro 7 33 7 60 CAA CTC ATG GAA GTG ACT GTC TAC AGA AGA CAT GGA CGG GCA TAT GTT CCC ATC Gin Leu MET Glu Val The Val Tyr Arg Arq HLei Gly Arg Ala Tyr Val Pro 11« 787 014 GCA CAA GTG AAA GAT GTG TAC GTG OTA ACA GAT CAG ATT CCT GTG TTT GTG ACT A} a Gin Val Lya Asp Val Tyr Val Val Thr Aap Gin II® Pro Val Pha Val Thr 841 ' 667 ATG TTC CAG AAG AAC GAT CGA AAT TCA TCC GAC GAA ACC TTC CTC AAA OAT CTC MET Phe Gin Lye Aan Asp Arg Aan Ser Ser Arp Glu Thr Pho Lou Lym A a p Leu m'a 922 CCC ATT ATG TTT GAT GTC CTG ATT CAT Pro Ile KBIT Phe ftap Val Leu II© His 949 ACC ATT AAC TAC AAG TGG AGC TTC GGG Thr lie Aan Tyr Lyei Trp Ser Phe Gly 1003 AAT CAT ACT GTG AAT CAC AGO TAT GTG Aan Hio Thr Vai Atan ili a Thr Tyr Val 1057 ACT GTG AAA GCT GCA GCA CCA GGA CCT Thr Val. Lya Ala Ala Ala Pro Gly Pro ' 1111 CCT TCA AAA CCC ACC CCT TCT TTA GGA Pro Ser Lye Pro Thr Pro Ser Leu Gly 1.16 5 AGT AGG ATT CCT GAT GAA AAC TGC CAG Ser Arg ile Pro A«p Glu Afein Cya Gin 1219 ACC ATC ACA ATT GTA GAG GGA ATC TTA Thr H e Thr ile Val Glu Gly H e Leu GAT.’ CCT1 AGC CAC TTC CTC AAT TAT TCT Awp Pro Ser Hi,« Phe Leu A « n Tyr 3«sr 976 GAT AAT ACT GGC CTG TTT GTT TCC ACC Aap Aan Thr Gly Lem ph<3 Vai Ser Thr 1030 CTC AAT GGA ACC TTC AGC CTT AAC CTC Leu Asm Gly Thr Phe Sesr Leu A a n Leu 1084 TGT CCG CCA CCG CCA CCA GCA CCC AGA Gya Pro Pro Pro Pro Pro Pro Pro Arg 1137 CCT GCT GGT GAC AAC CCC CTG GAG CTG Pro Ala Gly .Aap Aan Pro Lau Glu Leu 1192 ATT AAC AGA TAT GGC CAC TTT CAA GCC Ile Afin Arg Tyr Gly Hiei Phe Gin Aia ’ 1246 GAG GTT AAC ATC ATC CAG ATG ACA GAC Glu Val An n Ile île Gin MET Thr A tip 127 3 CCT GAA Pro Glu 1327 GAG GTC Glu Val 1301 TGC AGC Cysj Ser 1300 GTG ACC Val Thr .1354 ACC TGC Thr Cyei .1407 TGT CTG Cya Lfâu GTC CTG ATG CCG GTG CCA TGG Val Leu MET Pro Val Pro Trp TGC CAA GGG AGC ATT CCC ACG Cya Gin Gly Ser Ila Pro Thr GAG ATC ACC CAG AAC ACA GTC Glu Ila Thr Gin Afin Thr Val AGC TCC CTA ATA GAC TTT GTC Ser Sor Leu Ile A cip P ha Val TGT ACC ATC ATT TCT GAC CCC Cya Thr 1.1© Ile Ser Aap Pro CCT GTG GAT GTG CAT GAG ATG Pro Val A «p Val Aililp Glu MfiT 143 5 1462 CTG ACT GTG AGA CGA ACC TTC AAT GGG TCT GGG ACG TAC TGT GTC» AAC CTC ACC Leu Thr Val Arg Arg Thr phe Aan Gly Ser Gly Thr Tyr Cya Val Aian Leu Thr 1409 1516 CTG GGG G AT GAC ACA AGC CTG GCT CTC ACG AGC ACC CT0 ATT TCT GTT CCT GAC Leu Gly Aep A tip Thr Sor Leu Ala Lau Thr ilcit: Thr Leu Ilei S *;r Val Pro Aïip 1543 1570 AGA GAC CCA GCC TCG CCT TTA AGG ATG GCA AAC AGT GCC CTG ATC TCC GTT GGC Arg Aap Pro Aia See pro Leu Arg HET Al?* Aan £ler Ala Leu H e Ser Val Gly 1597 .1624 TGC TTG GCC ATA TTT GTC ACT GTG ATC TCC CTC TTG GTG TAC AAA AAA CAC AAG Cya Leu Ala Ile Phe Val Thr Val Ile Sor Leu Leu Val Tyr Ly a Lya fii u Lya 1651 1678 GAA TAC AAC CCA ATA GAA AAT AGT CCT GGG AAT GTG GTC AGA AGC AAA GGC CTG Glu Tyr Aan Pro Ile Glu Aon Ser Pro Gly Aan Vai Vai Arg Ser Lys? Gly Leu 1705 ' 1732 AGT GTC TTT CTC AAC CCT GCA AAA GCC GTG TTC TTC CCG GGA AAC CAG GAA AAG Ser Val Phe Leu Aen Arg Ala Lya Aia Val Phe Phe Pro Gly Asm Gin Glu Lya 1759 1790 GAT CCG CTA CTC AAA AAC CAA GAA TTT AAA GGA GTT TCT T AA.ATTT CG A C C TT CiTTT C Aap Pro Leu Leu Lys Aan Gin Giù Phe Lyu Gly Val Bear . 1825 1861 TG. A AG C TC A CT Tï TC A G TG C CA T TGA T G TG AG AT G T G CT G G AG TG G CTA TTA A C CT T T T T TT C C T AAA GAT 1$96 1932 TATTGTTAAATAGATATTGTGGTTTGGGGAAGTTGAATTTÏTTATAGCTIAAATGTCATTTTAGAGATGGG 1967 2003 GAG AGGGAT T AT ACTGC AGGC AG CTT C AG CC AT GTTG TG AAACTG A ÏAAA AG CA ACTT AG C AAGG CTT CTT 2030 2074 ttcattattttttatgtttcacttataaagtcttaggtaactagtaggataoaaacactgtgtcccgagag 2109 2145 T AAGG AG AG AAG CTACT ATTG ATT AG AG CCT A.ACCC AGGTT A ACTGC AAG AAG ACGCCGGAT ACTTTC AGC 2180 2216 tttccatgtaactgtatgcataaagccaatgtagtccagtttctaagatcatgttccaagctaactgaatc 2251 2287 CC ACTTC AAT AC A CACTC ATG AA CT C CTG A TG G AA C AA TAACAG GCCC AAG C CTG TGG T ATG ATG TG C A CA 2 322 2 350 cttgctagactcagaaaaaatactactctcataaatgggtgggagtattttggtoacaacctactttgctt FiG U.RE 2 - Comp le te n ucl eotid.e sequenee of nmb (accession number X76534 EMBL human nmb RNA) and translated pre dicted protein. Brackets indicate the 5' end of the various PCR reactions, 2393 2429 ggctgagtgaaggaatgatattcatatattcatttattccatggacatttagttagtgctttttatatacc 2464 2 500 aggcatgatgctgagtgacactcttgtgtatatttccaaatttttgtatagtcgctgcacatatttgaaat 2535 2571 CATATATTAÀGACTTTCCAAAG ATG AGGTCCCTGGTTTTTCATGGCAACTTG ATC AGT AAGG ATTTCACCT 2606 2642 ctgtttgtaactaaaaccatctactatatgttagacatgacattctttttctctccttcctgaaaaataaa GTGTGGGAAGAGAC {A )n 75 EXPRESSION OF A N OV EL G E N E IN HUM AN M E L A N O M A DNA sequencing and computer analysis A set of deletion clones was constructed from cDNA inserts longer than 400-500 bp using the erase-a-base system (Promega, Madison, WI). DNA fragments were ligated into M13mpl8, M13mpl9, pTZ or pGEM vectors and sequenced according to the dideoxy method as described by Sanger et a l (1980). Sequences were determined from both strands of the cloned cDNAs. The sequences of PCR products were deter mined using 3 independent PCR reactions. Searches for known sequences were performed using the Genbank and EMBL databases (Devereuxe/ al., 1984; Pearson and Lipman, 1988), Searches for motifs, alignm ents and structure predic tions were perform ed using the C A M M S A programs M O T IFS, P IL E U P , C L U S T A L V , B E S T F IT , P E P T ID E S T R U C T U R E , P L O T S T R U C T U R E and M E M B R A N E P R O P E N SIT Y , which are all part o f the W isconsin Package V 7.0 (Devereuxef/a/., 1984). Primer extension A 149-bp A v a ll- N d e l restriction fragm ent (located at posi tion 331-480) was used as a prim er. The extension reaction using reverse transcriptase was based on standard protocols (Sam brook et a l 1989); 250 ng o f double-stranded c D N A was end-labeled using -y^P-ATP (A m ersham ) (specific activity 3 x 107 cpm/jxg), then 4 x 105 cpm were added to 10 jxg of oiigo(-deoxythymidine)-selected M V 1 R N A . A fte r denaturation for 10 m in at 85°C, annealing was perform ed at 45°C overnight. The extension reaction was perform ed at 37°C for 2 hr using M oloney reverse trancriptase (B R L , G ran d Island, N Y ), purified and analyzed on a sequencing gel containing sequence reactions as a size m arker for the length of the extension products. , 3.5 b7 YFLG FLLLAARLPLDAAK..RFHDVLGNERP SAYMREH NQLNGWS SDEN D 52 ft I ft I ft « 1 ] t CLLHLAVIGALLAVGATKVPRNQDWLGVSR..... ,*.QLRT.... KA 42 53 WNEKLYPVWKRGDMRWKNSWKGGRVQAVLTSDSPALVGSNITFAVNLIFP 102 II ’ III • : ‘ : • : 51I : I I • I : ** I • I • I : I • I ■I * • • I II 43 WNRQLYP. .EWTEAQRLDCWRGGQVSLKVSNDGPTLIGANASFSIALNFP 90 103 RCQKEDANGNIVYEKNCRNEAGLSADPYVYNWTAWSEDSDGENGTGQSHH ft » ft 9 L I ft • ft • ft • • t f « t • ft • * * t ft • * » w p I I » • m 152 ft 91 GSQKVLPDGQVIWVNN........ TriNGSQVWGGQPVYPQETDDAC. 12 9 153 NVFPDGKPFPHHPGWRRWNFIYVFHTLGQYFQKLGRCSVRVSVNTANVTL 202 • ft ft • • * ft ft I t I ft ft ft ft f I I * ft « ft ft ft * 130 .IFPDGGPCPSGSW5QKRSFVYVWKTWGQYWQVLGGPVSGLSIGTGRAML 178 203 GPQLMEVTVYRRHG.RAYVPIAQVKDVYVVTDQIPVFVTMFQKNDRNSSD 251 : ; 179 GTHTMEVTVYHRRGSRSYVPLAHSSSAFTITDQVPF5VSVSQLRALDGGN 228 * ♦ i * 9 I t » 4 ft # f ft + • « ft • 9 ft I* 9 * t * 4 ft • t ft V 252 ETFLKDLPIMFDVLIHDPSHFLNYSTINYKWSFGDNTGLFVSTNHTVNHT 301 :: 229 KHFLRNQPLTFALQLHDPSGYLAEADLSYTWDFGDSSGTLISRAPVVTHT 278 ft ft ft ft • ft ft ft • I ft ft « * ft I ft I ft . . 302 YVLNGTFSLNLTVKAAAP...................!......... ft ft ft V ft V ft » 319 ft 279 YLEPGPVTAQWLQAAIPLTSCGSSPVPGTTDGHRPTAEAPNTTAGQVPT 328 • ft ft • m 320 ___GPCPPPPPPPRPSKPTP........................... 336 • ft ft ft ft ft • I ft 329 TEVVGTTPGQA PTAEPSGTT SVQVPTT EVISTAPVQMPT AE STGMTPEKV 37B ft ft ft ft m 337 ..................... SLGPAGDNPLELSRIPDE. ..NCQINR 360 ft ft ■ * f Cloning o f the 5' end o f nm b cDNA The 5' end o f nmb was cloned using the am plifinder kit (Clontech, Palo A lto , C A ). Basically, after oligo-deoxy thym i dine-primed first-strand synthesis using 2 jxg of poly-A+selected M V1 R N A as a tem plate, an anchor adaptor prim er was ligated to this single-stranded c D N A and am plified. For amplification, this prim er and a specific prim er (located at 457-481) were used as P C R primers (5 cycles, using 10 pm ol of each prim er and Taq polymerase). For further P C R am plifica tion, another specific prim er was used (located at position 403-427), 35 Cycles o f am plification were performed: denaturation for 45 sec at 94°C, annealing for 45 sec at 60°C, and extension for 90 sec at 72°C. F inal extension was allowed to proceed for 7 m in. P C R products were analyzed on an agarose gel, treated with T4 D N A polymerase to create blunt ends and cloned into a blunt-end vector. ft 4 429 ELPIPEPEGPDASSIMSTESITGSLGPLLDGTATLRLVKRQVPLDCVLYR 478 361 YGHFQATITIVEGILEVNIIQMTDVLMPVPWPESSlilDFWT 3GSIPTE 410 i ft 0 ft ft ft ft ft ft ft • ft ft ft I I * +f • * I ft ft 479 YGSFSVTLDIVQG.....IESAEILQAVPSGEGDAFELTVS Q3GGLPKE 522 Transfection Transfection was perform ed in the B L M cell line using lipofectin (B R L ) and 20 jxg of p Z IP n e o (C epko et a l 1984; D o tto et a l, 1985) carrying the G418 resistance gene and a c D N A clone (416-2656) or the resistance gene alone. Stable transfectants were selected in the presence o f L m g/m I of G418 in the culture m edium . A fter selection, cells were grown in the presence of 0,25-0.5 m g /m I G418. , 411 VlClTIISDPT EITQNTV SPVDVDEf<VRRTF NGSGTVlCVNLTLGD 459 . i ft ft ft • 9 ft ft ft ft ft ft ft ft ft • ft 523 ACflEISSPGjC 2PPAQRl®PVLPSPAla3LVLHQlLKGGSGTYldLNVSLAD 572 460 DTSLALTSTLISVPDRD. ..PASPLRMANSALISVGCLAIFVTVISLLVY 506 ft ft ft • ft ft • ft | 1 • ft ft ft ft ft ft V 9 9 | 9 I 9 4 ft ft * ft ft ft 573 TNSLAWSTQLIMPVPGILLTGQEAGLGQVPLIVGILLVLMAWLASLIY 622 507 KKHKEYNPIENSPGNWRSKGLSVFLNRAKAVFFPGNQEKDPLLKNQEF 555 • 9 ♦ ♦ « ft ft 9 ft ft I ft 9 9 * § 9 ft M I ft ft I * ft m ft ft ft ft « f ft ft I ft ft 623 RRR..LMKQDFSVPQLPHSS..SHWLRLPRIFCSCPIGENSPLLSGQQV 667 Figuris 3 - Alignment of pM el l 7 (h) to the predicted protein of nmb (pnmb; a). Conserved cysteines are shown in boxes. 100 i ■i •• 5.0 In vivo assay for metastascs Approximately 3 x 106 cells were inoculated sx. into nude mice. Tum or volum es were m easured weekly and mice were m aintained for 3 m onths unless the tum or size interfered with their health. A fte r autopsy, the lungs were formalin-fixed, and 200 300 -100 500 i i i i I i i i i i I i i i I i i i i i i i i i I i i r i r i i i i I t i i ■i ' i i t I i i i i i KD h y d r ° -‘j.o P hospho S i „ , N - g ly c o ----------^ 5 3 3 5 ------ --------------- --------- ------ ■ -------------- ___________ l ■■■■ ■■■ " 11 c-p— c— C- ---- mmmm— ->-1______ I_____ I__ LJUUU_________________ U i i i i i i i i i I t t i i i i t i i j i i i i i i i i i I i i i i i i i i t |i i i i t i i i t |i i i i i 100 200 3QQ 40U 5D0 sequences In order to make it a biologically sequence is marked with an asterisk. 'jf t • r / - < í/; C> ;y. ',\\* I < . . • V'•y*.* . , / /i}/. .! .' / ..• .• t. \ '; / • - I/. - v .; . •*; \ ' .'y ’ y y ;::::f.‘ i / v . -.-A s S fy : it i * ^ ; : : / ; :V :: r ^ r i j ; r ü ! : f. ! y; : ¡ ; p -r; : : : y; ^ : v rí ; : ¡ Y :' Í ^ Í V :^ y ; s V : : ^ ; ' í . y ! . í ; : ' i :i:e X - 7 l,lV.¡s:!:r |, ' i J ..;J.V V i. . íC. . .. • ' y \ : y . y ( - . . ': ' • ; y j k . { y < t / ■': V /s • U i/ . '. ‘ s ,’ ’ '. '. '. i'. ■ ■ Y . i / , V -V-' -V> ■; ; '- ''/ y V I- '.- '.v .'ƒ • * v.** ~ y ; y y . \ . i / > { y y y . 'y ' S'.’ S > r . ' > i > : ; V : ' i v i - V :*:*!. V 'r < / / .' I - • y . V - : . rV .- i . n • i • J / .V ■ v a '.. / V ,V > • i\ v . r * / . * v ;.i> ' Y iv - < r- ^y: ¡ v '^ í ; i ' : ! /,A Y - Á S.'::; (v x - l' ' > v ^ ' i y ^ ' V - ' . . y . -(:.-. • ✓ -7 :V > ;. V ;- ! .\ :V :. ... : Y A k 'A '.- / .i/y \ '. V I . V - : - , . i y r v i| - ,: / / :'. i;:: : i ' ' / l ' v ; . ^ i v i v - : / < . / . , r / v: ' ' í.- !>.'■/; ; > > • : ; X v < ^ ' ; - í r ^ > v ¡ : ; / > v V O - > ■' >: : » '.' S .V • .V .•ry.'.'.’.v.i'. ’ 'y y y ..\z ) .*<./, , , / / / > ; / . V i •V * j r ',,- ,‘s ... l/ s r .'.' -% ! I ^ ,v > *V ' s?yJ, ■■/'•■¡■X' l ' s / y ’-’ y-j v! . : v' . ' ' . í ï Ù / '. y ï 'A I / ) : ' / ' , ; x ^ : t * 'i / . y y y y y y y j^ / : y y y y y y iy i!, • A : ;* ! /.*. ’. 1 1 ■ y , - - '. - '- ' ! - . í ^ - v . ' í c ; : ., .- í •vi ' *'Jy. :V / iv ¡-I'1': ; \ 'X ; v : ' ' :: í ' ' ! ' ' . . :v - .. .'.. ' • : : • • T / x ' X / . \ T • .y . ‘y > .< ; i- ; í ^ y . s .......................... » !> V : .• l ' V , ’ i : • • ; / , : ' y y :\ t s í : .- • o / : : t / ‘ iv j •,V V .'í:i . ty i" !- ! ty ' / . y . - ''.y .: >’ X * / . - í / . v ,y.‘ .\ >Y¿ : W : lv V !v :! / r .v : '<>,■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ;■í ; . <<>■ •V .N Í i s y Ï A U y . ’ .; i'' ..'.#»1 .y y — ■ :/.<■ :■ :<}y.y'M.trl ' y ; vi V1 / 'y : 7y > v -. ;' /S'■ ;, .y\\ 'y:ty<:• i . /\y < t i w m m k \í ,. -'i'y ’y V .^ * / :■í ' . - : " v \ : •' - V / . V y . v ; v.; :í« ¿ í > ; í .v ^ í >í ^ y y ,..: ; . y ^ . ^ V V •A - / r ,- ^ « ó ; , V i'- v v - .y ’/ ; \í ,. ; y * .- j * . y . f-V ■ /A •'y . • ’. y ’ . ■ y ; : . - V- fiM M r • r.J ■ f/y. i ' / , ' ‘ .’ yVyy \ V //. i / , : ’: <y. ■ .y /; ■ ■I V / , ' A - .,, y • x ty .l i- s i / « y /y y - (y > * ’ .y y y y ,v / : ,'v . ' y •. ';>■y .;/.. yy_. y •j •' ‘ ‘y y ' y s \ : • i ‘y y ’yÿ ; ' ■y -\ ‘ y ;> \ i; . ’ ’ ! í : ^ ' •* ■V; ::■ 'y i ' ' , .'y. ‘ ’ '/ . f i y. ‘ l 'y : •;.-,y< y ) / - . ’.% ‘ yy i". ■y‘y , <ÿ- ! '• '> !' y y y y y . 1 *. *;* 11 i l’y ‘ . - y ; , \ \ i >. y / y , ' ' . - ' y yÿ~' \ ; y y y ;:.y ■<-* - y , } . .' ’ y 1 ’ i •y ,*.':'. i .'..y ■ t* ;y i .! ¡V , • i'.'V ’’•‘ y y ' - ì y ■.y Y y .,y m i * -y • y \ l y . ''y \ . '.•!.-. i y .; • : : Í .y > ~ y :> y .' ' / S v '■ .* •\ y . - í :.'.;. I V i I ■y ! / ■ . '. i V v S Í i .v : y .- . ! U y '. , . ' . : i i /.: 'Y / J à^Â!PÏ®!Î!îi!i»iÉ!Îi; Vy r . i v y ••.'••, •••■ :.••/ ,•>, .i,-••• ' 1 ' •• •:. .• •,• I C 'I " . ' 'f / V - j y y '. ! 's 'y ■: > , ■V/: ’y >t* v r J y .t : If,.: iV y.:'Ars;:r/}> ' W U tìitf : : > i '> '.y .'^ .'S y . '.y y y ' y / ' î ;•y/v y 'y j 'í ‘y > ' s* , v ; ú /- : m \ \ Y:- v . v. - . i *’ y *. V • y, - •.'.-•.•i-:, i V , • > : i '.'v .'' ■-/■.-.■■■s-, i - 'V 'S j C■ \ 'y y y : : ^ y 'y y . \*[y.[.: ' ; i ■ \'. : J. • ! i ~ y ''.' / : y ; ^ y y y '/ / y ^ ^ 1'•••:;'. m •' i • V i i ' ' wV'-'J v • ,'•*,***;**' 1 v i'V .'..••••••! '■ «t -■ ;:■ :'■'.v/ ; -V: ’ \.'y.', i*/.• ■y;-y.o ! >;■'»■:;■. ' y-y;yiy.'.yy. f ryy.'-;;yu •' 'y.'.''. : • } •;.V-;vAi ' V:’.!.' J.\ '. :' î •' .• .- <.,vyyy.. ''■y-yyyy,■ ■ ■ ■ :■ ■ '.' ' ' f f lf f iiW iiiïS iiïW if f■i/ a iF'i * -i ’* '"''- ó w fe j —Ær- r. i ■IW 1 P P ■ ■ ■ -:'•Y :'■ :'''.■' 'y■'■ ;: \•'■ ■ ■ ■ '■ ::v.'•:'.•1■ ■ ,' ïÆÊêÊëmÊk^ ■e w m s s m S S • • ’ ■ :'./■ t • if i :: i ' m........ h W it. ; .: • •: i / ; i '^ 5 !•'• \ ! [. ': -.' y ' . .■ ■ ■ i:';: :;y y ' ■ ]'■' . ' -'■ ''■. m m m •.V. ■ V•f-E >-^E:-í-í>'-íi!ííííá>íí¿jifíí *fá : - :• V’ - ■' í ':i'.. ‘ ''yS.'.y¿S '.': 'iï/tttïi'y.ys'i/, ' •‘•']•'•■ rV, (: - ; VÍ :'f ' •U ; r ^ '; í í ; v í J : í V ^ / V. '■ ï'/jYy.i.A- \y y . • y .iï.o w ? X : •I 'y : f. M ';' ■' s ' ! ‘ ¡i--.'.. ¡ v :.. m m ** i 'S/S't'r i H 'A ' . 'y f.. ■ ' . y : - ' - ' - :, ,'i ; » K m f > ' . l ‘: : : ü J Ä 'Vf-líí?:;j i f ^ i i|^ :Í y.f!'■ ■ < :J» . ; > /■ ïb v & m ^v>m h ■^ y / . y 't ï y y / \ '\ '- ; i ■■Xïrÿ'Y'ïtWÏ ■ :y y é ^y > )ÿ y y - y . M itt/: '■■¿■■r-t'JSiSW-'ili • 'r ::■ ■ ■ : ■y.'yyy t *srAt* -- S .’ .' ; . ; • ! i S'.>. I* : :! t/ y . ; /;■> ’■ Il/ - - - ' ' VI ■'>f S iü ië i i m W iï - ■ •; ! ••• ' !,■ 'f/yyy/y.y */.V <>;/,■ ' . / y ’/. ' ) - ) /; ïM Ê$m mmíim ^iiÂÉS'.y I'z/yyi.oy/'.:-, •y/jr"'Syyy'i'y. ' '• :.y 'y - y y y y 'Üi.-'is'ï /: ‘ \'ƒ‘ i •y.IT . / ■ i &Wii '•rS/'.y.i', m - m $&&& % > IM O f * ' . y - y '. ' ' . 'y y y y , '. •r,;füXMis.is' r f.- l- v ,' ■'■ • • -• V?-:-;V if . . & ß m '•:% ($>/& ïM m : :.,'. y .'. '- * ' y y t S. •: y .-V r ¿-Ai ■:■■>'.y.', Ÿ&i-i :* b * ■ys\ m 7,% wm .V -y. '7.1 ®ïlr rï llir ¡siili iSSIl W #M h ;///. illlf ll iS fc l ¿®». 'vl! Ä Ä . r É; '/.! i * j.W W *• « ■nHv <-*r: # # *: SI '«# #:: #:M v Láa m % 79 EXPRESSION OF A N O V E L G E N E IN H U M A N M E L A N O M A A B VOLUME (om3) VOLUME (ofii3) WEEKS BLM Hpo BLM M o 1 BLM *141 BLM 2 1 » F ig u r e BLM 21.6 BLM Hpo BLM n to 1 BLM n«o 7 BLM 91.6 BLM 21B BLM S1.1t BLM n«0 10 10 - Growth curves of the tumors from parental, neomycin- and nwb-transfected cell lines in nude mice. Values are given as a mean of all animals tested, (a) and (b) represent separately performed experiments. The values were based on 5 animals per cell line except for 21.19 (4 animals) in (a) and 10 (21.8, neol, neol6), 9 (21.19, BLM, neo7) or 7 animals in the case of 21.5 in (b). 'FABLE I - RATES O F SPONTANEOUS LUNG METASTASIS AFTER S.G INOCULATION OF NEOMYCÎN-, AW/i-TRANSFECTANTS, O R PARENTAL CONTROLS IN N UDE MICE Cell line A (%) B (%) Parental BLM neo 1 neo 7 neo 16 21.5 4/5 2/5 N.D. N.D. 1/5 1/5 1/4 80 40 5/9 5/9 8/10 5/10 2/7 6/10 '55 '55 80 50 ’29 60 75 21.8 21.19 6/8 The parental cell line was mock-transfected with lipofectin without adding D N A . A and B represent separately performed experiments. * parental control ccll lines were readily observed. In particular, clone 21.5 had a tendency to cluster at lower densities (Fig. 9). Growth rales in vitro were comparable. Growth rates in vivo and metastatic potential were examined in 2 separate sets of experiments. U pon inoculation in nude mice, tum or growth was delayed in the case of d o n e 21.5, and to a lesser extent of clone 21.19 as compared to control cell lines (Fig. 10). After autopsy of the animals, the lungs were microscopically exam ined for métastases. In both sets of experiments, metastatic potential of 21.5 transfectants was reduced when compared to either parental or neomycin-resistent control transfcctant cell lines (Table I) while for the other 2 nm/>transfectants variable results were obtained. D IS C U S S IO N U pon comparison of expression in highly and lowly meta static cell lines, several cDN As were isolated showing a differential expression in the lowly and highly mctastatic human m elanom a ccll lines and derived xenograft lesions. c D N A clones that showed a difference in expression of only 2to 4-fold appeared to be related to growth and metabolism, e.g. ribosomal protein L8. Ribosomal cD N As were also isolated from a tumor-enriched colon subtraction library, in which expression was detected in both well- and poorly-diifcrcntiated cells. Increased expression correlated with progression in 2 pairs of cell lines derived from primary and metastatic lesions of the same patient (Kondoh et a l, 1992), Although the aim of this subtraction library was to enrich for sequences strongly expressed in the highly metastatic cell line, in 2 of the isolated cD N A s the pattern seen was the opposite of what was expected. Since an excess of MV1 sequences was used to hybridize to M V 3 sequences and the labeling o f M V 1 se quences by photobiotinylation, hybridization and separation of hybridized and non-hybridized c D N A s was not com plete, part of this library consists of cD N A s strongly expressed in the low-metastatic M V 1 cell line. Sequence analysis o f nmb, which showed expression only in the low-metastatic hum an m elanom a ccll lines and xenografts, revealed that this clone represents a novel gene. Based on the presence o f a signal sequence, a hydrophobic area o f 27 amino-acid residues, bordered by charged residues, which might cross the m em brane in a single helical span, the prediction of integral m em brane proteins by membrane propen sity programs for both signal sequence and transm em brane domain, and the homology with the precursor of p M e ll7 melanocytic-specific protein (Kw on et a l, 1991) which also shows a transm cm brane dom ain in this region, we assume that this d o n e is encoding a transm em branc glycoprotein. Since M e l 17 was described as a m em ber o f a family to which gp75 and tyrosinase also belong, which are both prom inently ex pressed in melanocytic lesions, we also aligned our clone to these sequences and 5 regions of homology were detected (Fig. 11). Overall identity and hom ology was 17.6% and 41.7% in the case o f gp75, and 16.7% and 40.8% in the case of tyrosinase. A ll are characterized by a short non-coding region at the 5' end o f the messenger, a signal peptide, and a transmcmbrane dom ain near the 3' end. Nearly all cysteines are conserved between tyrosinase and gp75 (C h in tam an e n i et a l, 1991), whereas all cysteines in the region preceding the transmcmbrane region are conserved between p M e ll7 and pnm b (Fig. 3). A lth o u g h these 4 proteins clearly belong to one family, gp75 and tyrosinase are m ore sim ilar to each other than to p M e ll7 or pnm b, and vice versa. Tyrosinase is the key enzyme in the synthesis of m elanin pigm ent. A lthough tyrosi nase, gp75 and p M e ll7 are described as melanocyte-speciiic, and tyrosinase and gp75 are localized to the melanosomes, nmb is expressed in other tissues and tum or cell lines as well. Therefore, it cannot be present exclusively in the melanosomes. Screening of several other ccll lines, rat organs and tumors indicated that the nmb gene has a restricted expression pattern, is not specific for the melanocytic lineage, and, secondly, is not well conserved d u rin g evolution o f vertebrates. A lthough nmb R N A expression is not significantly higher in pooled specimens of nevocellular ncvi than in m elanom a metastases, no final conclusions can be drawn about its potential as a protein m arker for particular stages in m elano cytic progression, since R N A levels do not necessarily predict WETERMAN ETAL. 80 C C 0 H V A D D S T W V S V L L K E G G N A V N L L S E W W N D H H Q L R R P P L Y L I F H T M L L F F L L A D R WE Q E R L E K D L H D L V L I H D I K P P D s F s L I ILS F V M V (1) Tyr gp75 Pm ell7 Pnmb (189) <196) (209) (234) Tyr (436) gp75 Pm ell7 Pnmb (1) (2) (2 ) (147) (153) (158) (184) H F P R A 3 F P R Q K V P R N - R F K Tyr gp75 Pm ell7 Pnmb F F F F L (426) L (558) L {437) L L L L L P T R K G yId Y G y T y A D T N G D D T 1 y l q d E I 2 WP S L A V V s L A L T S S s s M R R R D R T T P E Q L Q Q S S K E G H P Ü F N D I N I y D L F V WMH y L M Y F T P£ F E N I S I y N y F V W T H y T H T ME V T V Y H R R G S R 9 y P Q L ME V T V y R R H G - R H y GD E N F T 1 L Q E P S F S h L A E A D h s y S T I N y L N |e K Q (486) A N Q (635) rs] N S (524) E K D p y w D W p Y w N F w D F T w S F K - m* P P P P L L L L L L L L M S K R D A T G D G D E K E D y ~ T D Q y G 0 M E, - - - Multiple alignment of tyrosinase, gp75, p M e l!7 and pnmb. Positions were based on mature peptides. The regions shown were part of the alignments of the complete sequences, as performed by the PILE UP or CLUSTALV alignment methods. F i g u r e 11 protein data. Earlier studies showed that, although an elevated R N A expression of calcyclin was detected in melanoma metastases, this did not lead to a m uch higher expression of the protein since often only a small percentage o f the tum or cells within such a lesion was stained (W eterm an et a l, 1992, 1993a). Since the most im portant step in tum or progression is acquisition of the metastatic phenotype, we were interested to determine whether nmb could reduce the metastatic potential of a highly metastatic «mfr-negative m elanom a cell line. Based on their expression pattern of nmb , calcyclin and thymosin (3-10, 3 /wiZ?~transfectants (21.5, 21.8 and 21.19) were chosen for further characterization. Calcyclin levels varied in the transfectants, which was not surprising since other experi ments using various m elanom a cell lines showed that intrinsic calcyclin m R N A levels varied widely after transfection experi ments or changes within the cell lines themselves (unpublished observations). In a prelim inary series of experiments, a ten dency toward growth delay and reduction o f metastatic poten tial was clearly present in the case of transfectant 21.5. The other transfectants tested, 21.8 and 21.19, showed varying rates of metastasis, possibly due to lower protein levels, independent of the R N A level, which might condition the metastatic potential. It should be noted that a partial c D N A was transfected which lacked the signal peptide. Nevertheless, since the cytoplasmic part o f the peptide was present in the transfectants, these observations are probably meaningful and will be extended in further studies. ACKNOWLEDGEMENTS The use of the services and facilities of the Dutch National Expertise Center C A O S /C A M M , under grants S O N 326-052, and STW NCH99.1751 is gratefully acknowledged. W e thank Mr. G. Stoopen, Mr. J. Berkeljon, Ms. I. Cornclisscn, Mr. K. Jansen and Ms. J. Lemmcrs for their technical assistance. This work was supported by the D utch Cancer Society, grant N U K C 89-08. REFERENCES A k s le n , L.A. and M o r k v e , O., Expression of p53 protein in cutaneous R ie t h m u lle r , G., De novo expression of intercellular-adhesion mol melanoma. Int. J, Cancer; 52, 13-16 (1992). ecule 1 in melanoma correlates with increased risk of metastasis. Proc. nat. Acad. Sci. (Wash.), 86,641-644 (1989). A u ffr a y , C. and R ougeon, F., Purification of mouse immunoglobulin heavy chain m RNAs from total myeloma tumor RN A , Europ. J, Biochem., 107, 303-314 (1980). Cepko, C.L., R o b e r ts , B.E. and M u l l i g a n , R.C.} Construction and Kamb, A., G r u is , N.A., W e a v e r - F e ld h a u s , J., Liu, Q., H a r s h m a n , K., T a v tig ia n , S.V., S t o c k u r t , E., D a y , R.S., 111, Jo h n s o n , B.E. and S k o ln ic k , M .H ., A cell cycle regulator potentially involved in genesis applications of a highly transmissible murine retrovirus shuttle vector. Cell, 37, 1053-1062 (1984). of many tumor types. Science (Wash.), 264, 436-439 (1994). K o n d o h , N., S c h w e in fe st, C .W ., H e n d e r s o n , K .W . and Papas, T.S., C h tn ta m a n e n i, C.D., R a m s a y , M., C o lm a n , M.-A, Fox, M.F., P ic k a r d , R.T. and K w o n , B.S., Mapping the human CAS2 gene, the Differential expression of S19 ribosomal protein, laminin-binding protein and human lymphocyte antigen class I messenger RNAs associated with colon carcinoma progression and differentiation. Cancer Res., 52, 791-796 (1992). homologue of the mouse brown (b) locus, to human chromosome 9p22-pter. Biochem. biophys. Res. Comm., 178, 227-235 (1991). C h u r c h , G.M. and G i l b e r t , W ., Genomic sequencing. Proc. nat. Acad. Sci. (Wash.), 81,1991-1995 (1984). C l a r k , W .H., J r ., E l d e r , D .E ., G u e r r y , D „ E p s te in , M.N., G re e n e , M.H. and v a n H o rn , M „ A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol, 15,1147-1165 (1984). D e v e r e u x , J., H a e b e r li, P. and S m ith ie s , O ., A comprehensive set of sequence analysis program s for the V A X . Nucl Acids Res., 12.387-395 (1984), D o rro , J.P., P a r d a , L.S, and W e in b e r g , R.A., Specific genetic response of ras-transformed embryo fibroblasts to tumor promoters. Nature (LondJ, 318,472-475 (1985). F lo r e n e s , V.A., A a m d a l, S., M y k le b o s t , O., M a e la n d s m o , G.M., B r u l a n d , O.S. and F o d s t a d , O., Levels of nw 23 messenger R N A in metastatic malignant melanomas: inverse correlation to disease pro gression. Cancer Res., 52> 6088-6091 (1992). H e r l y n , M ., C l a r k , W.H., R o d e c k , U., M a n c ia n t i, M.L., Jamb ro s ic , J. and K o p ro w s k i, H., Biology of tumor progression in human melanocytes. Lab. Invest., 56,461-474 (1987). Jo h n s o n , J.P., S ta d e , B.G., H o lz m a n n , B., S c h w a b le , W. and K w o n , B.S., C h in ta m a n e n i, C .D ., K o z a k , C.A., C o p e la n d , N.G., G i l b e r t , D .J., Jenkins, N mB a r t o n , D ., F r a n c k u , U., K o b a y a s h i, Y. and Kim, K.A., A melanocyte-specific gene, P m ell7, maps near the silver-coat-color locus on mouse chromosome 10 and is a syntenic region on human chromosome 12. Proc. nat. Acad. Sci. (Wash.), 88, 9228-9232 (1991), L e h m an n , J . M , R ie t h m u lle r , G . and J o h n s o n , J.P., MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural ceil adhesion molecules of the immunoglobulin superfamily. Proc. nat. Acad. Sci. (Wash), 86, 9891-9895 (1989). L u c a , M., L e n zi, R mL e e ja c k s o n , D m G u t m a n , M., F id u e r, U . and B a r e li, M., p53 Mutations are infrequent and do not correlate with the metastatic potential of human melanoma cells, int. ./. Oncol., 3, 19-22 (1993). M c M a s te r , G.K. and C a r m ic h a e l, G.G., Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels using glyoxal and acridine orange. Proc. nat. Acad. Sci. (Wash.), 74, 4835-4838(1977). N o b o r i, T., M iu r a , K., W u , D.J., Lois, A., T a k a d a y a s h i, K. and C a r s o n , D mDeletions of the cyclin-dependent kinasc-4 inhibitor gene in multiple human cancers. Nature (Land.J, 368, 753-756 (1994). EXPRESSION OF A N O V E L G E N E IN H U M A N M E L A N O M A P e a rs o n , W.R. and Lipman, D.J., Improved tools for biological sequence comparison. Proc. nat. Acad. Sei. (Wash.), 85, 2444-2448 (1988). S a m b ro o k , J., F r it s c h , E.F. and M a n ia tis , T., Molecular cloning—a laboratory manual, pp. 7.79-7.83, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989). S a n g e r , F., C o u ls o n , A .R ., B a r r e l l , B.G., S m ith , A.J.H. and R o e , B .A ., C lo n in g in single-stranded bacteriophage as an aid to rapid sequencing./, mol, Biol, 143,161-178 (1980), S te e g , P.S., B e v ila c q u a , G., K opper, L., T h o rg e is s o n , U.P., T alm adge, J.E ., L io n a, L.A. and S o b e l, M.E., Evidence for a novel gene associated with low tumor metastatic potential. J. nat. Cancer Inst., 80, 200-205 (1988). J.R., G a i t e r , K.C., R a l f k i a e r , E„ L a n e , D.P. and H a r r i s , A.L., Expression of mutant p53 in melanoma. Cancer Res., 51, 5976-5979 (1991). S tre tc h , v a n M u ije n , G.N.P., C o r n e lis s e n , L.M., Jan se n , C.F., F ig d o r , C.G., Jo h n s o n , J.P., B r o c k e r , E.B. and R u i t e r , D .J., Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin, exp, Metast, 9, 259-272 (199\a). v a n M u ije n , G.N.P., Ja n s e n , C.P.J., C o r n e lis s e n , L.M.A.H., Sm eets, D.F.C.M., B eck, J.L.M, and R ijit e r , D .J., Establishment and charac- 81 tcrization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int. JCancer\ 48, 85-91 (19916). v a n M u ije n , G.N.P., R u i t e r , D.J., H o e f a k k e r , S. and J o h n s o n , J.P., Monoclonal antibody PAL-M1 recognizes the transferrin receptor and is a progression marker in melanocytic lesions. /. invest. Dermatol, 95, 65-69 (1990). v a n M u ije n , G.N.P., W e t e r m a n , M.A J ., Q u a x , P.H.A., V e r h e ije n , J.H. and R u i t e r , D.J., Phenotypic profile of two human melanoma cell lines isolated from the same patient with different metastatic behavior in nude mice. Proc. Amer. Ass. Cancer Res., 32, 62 (1991c). W eiss, J., S c h w e c h h e im e r , K m C a v e n e e , W .K ., I- Ie rly n , M. and A r d e n , ICC., Mutation and expression of the p53 gene in malignant melanoma cell lines. Int. J. Cancer, 54, 693-699 (1993). W e t e r m a n , M.A.J., S to o p e n , G.M., v a n M u ije n , G.N.P., K u z n ic k i, J., R u i t e r , D.J. and B lo e m e r s , H.P.J,, Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice. Cancer Res., 52, 1291-1296 (1992). W e t e r m a n , M.A.J,, v a n M u ije n , G.N.P., B lo e m e r s , H.P.J. and R u i t e r , D.J., Expression of calcyclin in human melanocylic lesions. Cancer Res., 53, 6061-6066 (1993u). W e t e r m a n , M.A.J., v a n M u ije n , G.N.P., R u i t e r , D.J. and B lo e m e rs, H.P.J., Thymosin £10 expression in melanoma cell lines and melanocytic lesions: a new progression marker for human cutaneous melanoma. Int, J. Cancer; 53,278-284 (1993/?).
© Copyright 2024 ExpyDoc