Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences – Intelligent Systems Radboud University Nijmegen Version: fall 2014 H. Geuvers Version: fall 2014 Matrix Calculations 1 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Outline Applications of Eigenvalues and Eigenvectors Inner products H. Geuvers Version: fall 2014 Matrix Calculations 2 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part I • Recall the political transisition matrix 0.8 0.1 P= = 0.2 0.9 1 10 8 1 2 9 • Eigenvalues λ are obtained via det(P − λ I2 ) = 0: 8 9 ( 10 − λ)( 10 − λ) − 1 10 · 2 10 = λ2 − = 1 2 17 10 ± q 289 100 = 1 17 2 10 1 17 2 10 ± q 9 17 10 λ + 7 10 =0 • Solutions via “abc” 1 2 17 10 ± q 17 2 10 − 28 10 = ± 3 10 − 280 100 100 1 14 7 • Hence λ = 21 · 20 10 = 1 or λ = 2 · 10 = 10 . H. Geuvers Version: fall 2014 Matrix Calculations 4 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part II −0.2x + 0.1y = 0 giving (1, 2) as eigenvector 0.2x + −0.1y = 0 0.8 + 0.2 1 1 0.8 0.1 1 • Indeed = = =1 · 0.2 + 1.8 2 2 0.2 0.9 2 λ = 1 solve: X λ = 0.7 solve: 0.1x + 0.1y = 0 0.2x + 0.2y = 0 giving (1, −1) as eigenvector • Check: 0.8 0.1 1 0.8 − 0.1 0.7 1 · = = = 0.7 0.2 0.9 −1 0.2 − 0.9 −0.7 −1 H. Geuvers Version: fall 2014 Matrix Calculations X 5 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part III • The eigenvalues 1 and 0.7 are different, and indeed the eigenvectors (1, 2) and (1, −1) are independent • The coordinate-translation TV ⇒B from the eigenvector basis V = {(1, 2), (1, −1)} to the standard basis B = {(1, 0), (0, 1)} consists of the eigenvectors: 1 1 TV ⇒B = 2 −1 • In the reverse direction: TB⇒V = H. Geuvers TV ⇒B −1 Version: fall 2014 = 1 −1−2 −1 −1 = −2 1 1 3 Matrix Calculations 1 1 2 −1 6 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part IV We explicitly check the diagonalisation equation: ! ! ! ! 1 0 1 1 1 0 1 1 TV ⇒B · · TB⇒V = · · 13 0 0.7 2 −1 0 0.7 2 −1 ! ! 1 0.7 1 1 = 31 · 2 −0.7 2 −1 ! 2.4 0.3 = 31 0.6 2.7 ! 0.8 0.1 = 0.2 0.9 = P, H. Geuvers Version: fall 2014 the original political transition matrix! Matrix Calculations 7 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part V 1 0 · T −1 is useful for iteration 0 0.7 1 0 1 0 −1 2 • P = T· ·T ·T · · T −1 0 0.7 0 0.7 1 0 1 0 = T· · · T −1 0 0.7 0 0.7 2 1 0 = T· · T −1 0 (0.7)2 n (1) 0 n • P = T· · T −1 0 (0.7)n 1 0 n • lim P = T · · T −1 since lim (0.7)n = 0 n→∞ n→∞ 0 0 1 1 1 0 1 1 1 1 1 1 = = 3 · ·3 2 −1 0 0 2 −1 2 2 This diagonalisation P = T · H. Geuvers Version: fall 2014 Matrix Calculations 8 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Political swingers re-re-revisited, part VI • In an earlier lecture we wondered how to compute Pn 100 · 150 • We can now see that in the limit it goes to: 100 lim P · = n→∞ 150 n 1 1 100 · 150 2 2 1 250 83 3 1 = 3 = 500 166 23 1 3 (This was already suggested earlier, but now we can calculate it!) Recall the useful limit result lim an = 0, n→∞ H. Geuvers for |a| < 1. Version: fall 2014 Matrix Calculations 9 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part I • Assume a car rental company with three locations, for picking up and returning cars, written as P, Q, R • The weekly distribution history shows: Location P 60% stay at P 10% go to Q 30% go to R Location Q 10% go to P 80% stay at Q 10% go to R Location R 10% go to P 20% go to Q 70% stay at R H. Geuvers Version: fall 2014 Matrix Calculations 10 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part II Two possible representations of these return distributions 1 As probabilistic transition system 0.6 ) GFED u ?>=< 89:; @ABC P eJo J 9 Q 0.1 t JJ t t JJ 0.1 0.2 ttt JJ t JJ t t JJ tt J tt 0.3 0.1 89:; . ?>=< p R J 0.1 0.8 0.7 H. Geuvers Version: fall 2014 Matrix Calculations 11 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part III 2 As a transition matrix 0.6 0.1 0.1 C = 0.1 0.8 0.2 = 0.3 0.1 0.7 6 1 1 1 1 8 2 10 3 1 7 This matrix C describes what is called a Markov chain: • all entries are in the unit interval [0, 1] of probabilities • in each column, the entries add up to 1 H. Geuvers Version: fall 2014 Matrix Calculations 12 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part IV Task: • Start from the following division of cars: P = Q = R = 200 ie. P 200 Q = 200 R 200 • Determine the division of cars after two weeks • Determine the equilibrium division, reached as the number of weeks goes to infinity H. Geuvers Version: fall 2014 Matrix Calculations 13 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part V • After one week we have: 200 C · 200 = 200 6 1 1 200 1 1 8 2 · 200 10 200 3 1 7 160 1200 + 200 + 200 1 = 10 200 + 1600 + 400 = 220 220 600 + 200 + 1400 • After two weeks we have: 160 C · 220 = 220 6 1 1 160 1 · 220 1 8 2 10 220 3 1 7 960 + 220 + 220 140 1 160 + 1760 + 440 = 236 = 10 480 + 220 + 1540 224 H. Geuvers Version: fall 2014 Matrix Calculations 14 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part VI • For the equilibrium we first compute eigenvalues and eigenvectors of the transition matrix C • The characteristic polynomial is: 0.6 − λ 0.1 6 − 10λ 0.1 1 1 1 0.1 0.8 − λ 0.2 = 1 8 − 10λ 2 1000 0.3 0.1 0.7 − λ 3 1 7 − 10λ h 1 = 1000 (6 − 10λ) (8 − 10λ)(7 − 10λ) − 2 i −1 (7 − 10λ) − 1 + 3 2 − 1(8 − 10λ) = ··· h i 1 = 1000 − 1000λ3 + 2100λ2 − 1400λ + 300 = −λ3 + 2.1λ2 − 1.4λ + 0.3. H. Geuvers Version: fall 2014 Matrix Calculations 15 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part VII • Next we solve −λ3 + 2.1λ2 − 1.4λ + 0.3 = 0. • We seek a trivial solution; again λ = 1 works! • Now we can write −λ3 + 2.1λ2 − 1.4λ + 0.3 = (λ − 1)(−λ2 + 1.1λ − 0.3) • We can apply the “abc” formula to the second part: −1.1± √ (1.1)2 −4·0.3 −2 = = = √ −1.1± 1.21−1.2 −2 √ −1.1± 0.01 −2 −1.1±0.1 −2 • This yields additional eigenvalues: λ = 0.5 and λ = 0.6. H. Geuvers Version: fall 2014 Matrix Calculations 16 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part VIII λ = 1 has eigenvector (4, 9, 7); indeed: 4 6 1 1 4 24 + 9 + 7 4 1 1 C · 9 = 10 1 8 2 · 9 = 10 4 + 72 + 14 = 1 9 7 3 1 7 7 12 + 9 + 49 7 λ = 0.6 has eigenvector (0, −1, 1): 6 1 1 0 0 1 1 8 2 · −1 = C · −1 = 10 3 1 7 1 1 −1 + 1 0 1 = 0.6 −1 −8 + 2 10 −1 + 7 1 λ = 0.5 has eigenvector (−1, −1, 2): 6 1 1 −6 − 1 + 2 −1 −1 −1 1 1 1 8 2·−1 = 10 −1 − 8 + 4 = 0.5 −1 C ·−1 = 10 3 1 7 2 −3 − 1 + 14 2 2 H. Geuvers Version: fall 2014 Matrix Calculations 17 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part IX • Now: eigenvector base V = {(4, 9, 7), (0, −1, 1), (−1, −1, 2)} and standard base as B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. • Then we can do change-of-coordinates back-and-forth: TV ⇒B 4 0 −1 = 9 −1 −1 7 1 2 TB⇒V 1 1 1 1 25 −15 5 = 20 −16 4 4 • These translation matrices yield a diagonalisation: C = TV ⇒B H. Geuvers Version: fall 2014 1 0 0 · 0 0.6 0 · TB⇒V 0 0 0.5 Matrix Calculations 18 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Rental car returns, part X • Thus: lim C n n→∞ n 1 0 0 0 · TB⇒V = lim TV ⇒B · 0 (0.6)n n→∞ 0 0 (0.5)n 1 0 0 4 4 4 1 9 9 9 = TV ⇒B · 0 0 0 · TB⇒V = 20 0 0 0 7 7 7 • Finally, the equilibrium starting from P = Q = R = 200 is: 4 4 4 200 120 1 · 200 = 270 . 9 9 9 20 7 7 7 200 210 H. Geuvers Version: fall 2014 Matrix Calculations 19 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Length of a vector • Intuitively, each vector v = (x1 , . . . , xn ) ∈ Rn has a length (aka. size or norm or Euclidian length), written as kv k • This kv k is a non-negative real number: kv k ∈ R, kv k ≥ 0 • Some special cases: • n = 1: so v ∈ R, with kv k = |v | • n = 2: so v = (x1 , x2 ) ∈ R2 and with Pythagoras: q and thus kv k = x12 + x22 kv k2 = x12 + x22 • n = 3: so v = (x1 , x2 , x3 ) ∈ R3 and also with Pythagoras: kv k2 = x12 + x22 + x32 and thus kv k = q x12 + x22 + x32 • In general, for v = (x1 , . . . , xn ) ∈ Rn , kv k = H. Geuvers Version: fall 2014 q x12 + x22 + · · · + xn2 Matrix Calculations 21 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Distance between points • Assume now we have two vectors v , w ∈ Rn , written as: v = (x1 , . . . , xn ) w = (y1 , . . . , yn ) • What is the distance between the endpoints? • commonly written as d(v , w ) • again, d(v , w ) is a non-negative real • For n = 2, d(v , w ) = q (x1 − y1 )2 + (x2 − y2 )2 = kv − w k = kw − v k • This will be used also for other n, so: d(v , w ) = kv − w k H. Geuvers Version: fall 2014 Matrix Calculations 22 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Length is fundamental • Distance can be obtained from length of vectors • Interestingly, also angles can be obtained from length! • Both length of vectors and angles between vectors can de derived from the notion of inner product H. Geuvers Version: fall 2014 Matrix Calculations 23 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner product definition Definition For vectors v = (x1 , . . . , xn ), w = (y1 , . . . , yn ) ∈ Rn define their inner product as the real number: hv , w i = x1 y1 + · · · + xn yn X xi yi = 1≤i≤n Note: Length kv k can be expressed via inner product: kv k2 = x12 + · · · + xn2 = hv , v i, H. Geuvers Version: fall 2014 so kv k = p hv , v i. Matrix Calculations 24 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner products via matrix transpose Recall matrix transposition For an m × n matrix A, the transpose obtained by mirroring in the diagonal: T a11 · · · a1n .. = . am1 · · · amn AT is the n × m matrix A a11 · · · am1 .. . a1n · · · amn The inner product of v = (x1 , . . . , xn ), w = (y1 , . . . , yn ) ∈ Rn is then a matrix product: y1 .. hv , w i = x1 y1 + · · · + xn yn = (x1 · · · xn ) · . = v T · w . yn H. Geuvers Version: fall 2014 Matrix Calculations 25 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner products and angles, part I O ? 0 / / _>> >> >> > / 0 h(1,0),(0,1)i=0 h(1,0),(1,1)i=1 h(1,0),(2,0)i=2 0 / 0 h(1,0),(−1,1)i=−1 0 o / h(1,0),(−1,−1)i=−1 / >> >> >> / h(1,0),(0,−1)i=0 / 0 h(1,0),(−1,0)i=−1 0> H. Geuvers / 0 h(1,0),(1,−1)i=1 Version: fall 2014 Matrix Calculations 26 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Reminder: cosine law A b C• γ •c c h d a ◦ c c c c c c D c• B c 2 = a2 + b 2 − 2ab cos(γ) Proof: By Pythagoras b 2 = h2 + d 2 and c 2 = h2 + (a − d)2 . Hence by subtraction: b 2 −c 2 = d 2 −a2 +2ad−d 2 = −a2 +2ad and so c 2 = a2 +b 2 −2ad Recall cos(γ) = db , so by substituting d = b cos(γ) we are done. H. Geuvers Version: fall 2014 Matrix Calculations 27 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner products and angles, part II w 0 * c kw k c c d(v , w ) = kv − w k c c c γ c - v • ◦ kv k The cosine rule says: kv − w k2 = kv k2 + kw k2 − 2kv k kw k cos(γ) That is: cos(γ) = kv k2 + kw k2 − kv − w k2 2kv k kw k Let’s elaborate it . . . H. Geuvers Version: fall 2014 Matrix Calculations 28 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner products and angles, part III Starting from the cosine rule: kv k2 + kw k2 − kv − w k2 2kv k kw k 2 2 x1 + · · · + xn + y12 + · · · + yn2 − (x1 − y1 )2 − · · · − (xn − yn )2 2kv k kw k 2x1 y1 + · · · + 2xn yn 2kv k kw k x1 y1 + · · · + xn yn kv k kw k hv , w i hv , w i remember this: cos(γ) = kv k kw k kv k kw k cos(γ) = = = = = Thus, anglespbetween vectors are expressible via the inner product (since kv k = H. Geuvers hv , v i). Version: fall 2014 Matrix Calculations 29 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Recall the cosine function H. Geuvers Version: fall 2014 Matrix Calculations 30 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Linear algebra in gaming, part I • Linear algebra plays an important role in game visualisation • Here: simple illustration, borrowed from blog.wolfire.com (More precisely: http://blog.wolfire.com/2009/07/ linear-algebra-for-game-developers-part-2) • Recall: cosine cos function is positive on angles between -90 and +90 degrees. H. Geuvers Version: fall 2014 Matrix Calculations 31 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Linear algebra in gaming, part II • Consider a guard G and hero H in: • The guard is at position (1, 1), facing in direction D = 1 , 1 with a 180 degrees field of view • The hero is at (3, 0). Is he within view? H. Geuvers Version: fall 2014 Matrix Calculations 32 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Linear algebra in gaming, part III 3 1 2 − = 0 1 −1 • The angle γ between D and V must be between -90 and +90! • The direction vector V is: V = hD,V i • Hence we must have: cos(γ) = kDk·kV k ≥0 • Since kDk ≥ 0 and kV k ≥ 0, it suffices to have: hD, V i ≥ 0 • Well, hD, V i = 1 · 2 + 1 · −1 = 1. Hence H is within sight! H. Geuvers Version: fall 2014 Matrix Calculations 33 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Linear algebra in gaming, part IV • Now what if the guard’s field of view is 60 degrees? √ • Inbetween -30 and +30 degrees we have cos ≥ 12 3 ∼ 0.87 • The cosine of the actual angle γ between D and V is: cos(γ) = hD, V i 1 · 2 + 1 · −1 p = √ kDk · kV k 12 + 12 · 22 + (−1)2 1 = √ √ ∼ 0.31 < 0.87 2· 5 • H is now out of view! (the angle γ = cos−1 (0.31) = 72 degr.) H. Geuvers Version: fall 2014 Matrix Calculations 34 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Inner product for vector spaces in general Definition We say that a vector space V has an inner product if there is a special function: h−,−i /R V ×V satisfying the following five requirements. 1 hv , v i ≥ 0 2 hv , v i = 0 if and only if v = 0 3 hv , w i = hw , v i 4 hv + v 0 , w i = hv , w i + hv 0 , w i 5 hav , w i = ahv , w i (similarly in w , by 3) (and similarly in w , by 3) Given such inner product, define length, distance and angle: p hv , w i kv k = hv , v i d(v , w ) = kv − w k cos(γ) = . kv k kw k H. Geuvers Version: fall 2014 Matrix Calculations 35 / 36 Applications of Eigenvalues and Eigenvectors Inner products Radboud University Nijmegen Hilbert spaces • The notion of inner product turns out to be very general and flexible • It combines algebra (vectors) and geometry (distance) • It forms the basis of Hilbert spaces (involving “completeness”) • Our examples: inner product on Rn • Many other examples exist, involving for instance distance between functions • Important topic in abstract analysis and (quantum mechanics) • Our main applications: projections and approximations H. Geuvers Version: fall 2014 Matrix Calculations 36 / 36
© Copyright 2024 ExpyDoc