PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/26231 Please be advised that this information was generated on 2015-01-24 and may be subject to change. PHYSICS LETTERS B ELSEVIER Physics Letters B 352 (1995) 487-497 One-prong r decays with neutral kaons L3 Collaboration M. Acciarri2, A. Adamaq, O. Adriani13, M. Aguilar-Benitezy, S. Ahlen j, B. Alpatag, J. Alcarazy, J. Allabyq, A. Aloisioab, G. Alversonk, M.G. Alviggiab, G. Ambrosiag, Q. Anr, H, Anderhubat, V.P. Andreevak, T. Angelescu^, D. Antreasyanh, A. Arefievaa, T. Azemoon0, T. Aziz1, P.V.K.S. Babar, P. Bagnaiaaj,q, L. Baksayap, R.C. Ballc, S. Banerjee1, K. Baniczaq, R. Baiillèreq, L. Baroneaj, P. Bartaliniag, A. Baschirottoz, M. Basileh, R. Battistonag, A. Bayv, F. Becattinip, U. Becker0, F. Behnerat, Gy.L. Benczem, J. Berdugoy, P. Berges0, B. Bertucciq, B.L. Betevat, M. Biasiniag, A. Bilandat, G.M. Bileiag, R. Bizzarri^, J.J. Blaisingq, G.J. Bobbinkb, R. Bocka, A. Böhma, B. Borgiaaj, A. Bouchamd, D. Bourilkovat, at M. Bourquins, D. Boutignyd, B. Bouwensb, E. Brambilla0, J.G. Bransona£, V. Brigljevic I.C. Brockah, A. Bujakaq, J.D. Burger0, WJ. Burgers, C. Burgosy, J. Busenitzap, A. Buytenhuijsad, X.D. Cair, M. Capell0, G. Cara Romeoh, M. Cariaag, G. Carlinoab, A.M. Cartaceip, J. Casausy, G. Castellinip, R. Castello2, N. Cavalloab, C. Cecchis, M. Cerraday, F. Cesaroni^, M. Chamizoy, A. Chanav, Y.H. Changav, U.K. Chaturvedir, M. Chemarinx, A. Chenav, C. Chenf, G. Chenf, G.M. Chenf, H.F. Chen H.S. Chenf, M. Chen0, G. Chiefariab, C.Y. Chiene, M.T. Choia0, L. Cifarellih, F. Cindolo'1, C. Civininip, I. Clare0, R. Clare0, T.E. Coanw, H.O. Cohnae, G. Coignetd, N. Colinoq, V. Commichaua, S. Costantiniaj, F. C otorobaiB . de la Cruzy, X.T. Cuir, X.Y. Cuir, T.S. Dai0, R. D’Alessandrop, R. de Asmundisab, H. De Boeckad, A. Degréd, K. Deiters“ , E. Dénesm, P. Denesai, F. DeNotaristefani^, D. DiBitontoap, M. Diemozaj, C. Dionisia’, M. Dittmarat, A. Dominguez^, A. Doriaab, I. Dorned, M.T. Dovar’4, E. Dragoab, D. Duchesneauq, P. Duinkerb, I. Duranara, S. Dutta1, S. Easoag, Yu. Efremenkoae, H. El Mamounix, A. Englerah, F.J. Eppling0, F.C. Ernéb, J.P. Ernenweinx, P. Extermanns, R. Fabbrettiar, M. Fabrear, R. Facciniaj, S. Falcianoaj, A. Favarap, J. Fayx, M. Felciniat, T. Fergusonah, D. Fernandezy, G. Fernandezy, F. Ferronia->, H. Fesefeldta, E. Fiandriniag, J.H. Field8, F. Filthauta\ P.H. Fisher0, G. Forconi0, L. Fredjs, K. Freudenreichat, M. Gailloudv, Yu. Galaktionovaa,°, S.N. Ganguli‘, P. Garcia-Abiay, S.S. Gauk, S. GentileaJ, J. Gerald6, N. Gheordanescu S. Giaguaj, S. Goldfarbv, J. Goldstein\ Z.F. Gong1, E. Gonzalezy, A. Gougase, D. Goujon8, G. Grattaaf, M.W. Gruenewaldg, C. Gur, M. Guanzirolir, Y.K. Guptaai, A. Gurtu1, H.R. Gustafsonc, L.J. Gutayaq, B. Hartmann3, A. Hasanac, J.T. H ef, T. Hebbekerg, A. Hervéq, K. Hilgers3, W.C. van Hoekad, H. Hoferat, H. Hoorani5, S.R. Houav, G. Hur, M.M. Ilyasr, Elsevier Science B.V. SSDI 0370-2693(95)00509-9 488 13 Collaboration / Physics Leiters B 352(1995) 487-497 V. Innocenteq, H. Janssend, B.N. Jinf, L.W. Jonesc, P. de Jong0,1. Josa-Mutuberriay, A. Kasserv, R.A. Khanr, Yu. Kamyshkovae, P. Kapinosas, J.S. Kapustinsky w, Y. Karyotakisd, M. Kaurr, S. Khokharr, M.N. Kienzle-Focacci5, D. Kime, J.K. Kimao, S.C. Kimao, Y.G. Kimao, W.W. Kinnisonw, A. Kirkbyaf, D. Kirkbyaf, J. Kirkby^, S. Kirschas, W. Kittelad, A. Klimentov °’aa, A.C. Königad, E. Koffemanb, O. Kornadt3, V. Koutsenko 0,aa, A. Koulbardisak, R.W. Kraemerah, T. Kramer0, W. Krenza, H. Kuijtenad, A. Kunin°’aa, P. Ladrón de Guevaray, G. Landip, C. Lapoint0, K. Lassila-Periniat, P. Laurikainen u, M. Lebeauq, A. Lebedev0, P. Lebrunx, P. Lecomteat, J. Lecoqd, P. Lecoqq, P. Le Coultreat, J.S. Leeao, K.Y. Leeao, C. Leggettc, J.M. Le Goffq, R. Leiste“ , M. Lentip, E. LeonardiaJ, P. Levtchenkoak, C. Li '-r, E. Liebas, W.T. Linav, F.L. Lindeb, B. Lindemanna, L. Listaab, Y. Liur, Z.A. Liuf, W. Lohmannas, E. Longoa-i, W. Luaf, Y.S. Luf, K. Lübelsmeyer a, C. Luci a-i, D. Luckey0, L. Ludovici aJ, L. LuminariaJ, W. Lustermannar, W.G. Mal, A. Macchiolop, M. M a i t y L. Malgeri3-*, R. Malikr, A. Malinin 3a, C. Mañay, S. Mangla1, M. Maolinbayat, P. Marchesiniat, A. Marinj, J.P. Martin x, F. Marzanoaj, G.G.G. Massarob, K. Mazumdar1, D. McNallyq, S. M eleab, M. Merkah, L. Merolaab, M. Meschinip, W.J. Metzgerad, Y. M i v, A. Mihule, A.J.W. van M ilad, Y. Mirr, G. Mirabelli*, J. Mnichq, M. Möller3, V. Monacoaj, B. Monteleonip, R. Moorec, R. Morandd, S. Morganti3-*, N.E. Moulair, R. Mountaf, S. Müller3, E. Nagy ra, S. Nahn0, M. Napolitanoab, F. Nessi-Tedaldiat, H. Newmanaf, M.A. Niaz1, A. Nippe3, H. Nowak35, G. Organtiniaj, R. Ostonen“, D. Pandoulas3, S. Paolettia>, P. Paolucci3b, G. Pascale^, G. Passalevap, S. Patricelliab, T. Paulag, M. Pauluzziag, C. Paus3, F. Paussat, YJ. Peia, S. Pensotti2, D. Perret-Gallixd, A. Pevsner®, D. Piccoloab, M. Pierip, J.C. Pinto3h, P.A. Pirouéai, E. Pistolesip, V. Plyaskin33, M. Pohlat, V. Pojidaevaa,p, H. Postema0, N. Produits, K.N. Qureshir, R. Raghavan1, G. Rahal-Callotat, P.G. Rancoitaz, M. Rattaggiz, G. Ravenb, P. Razisac, K. Read3e, M. Redaelliz, D. Ren3t, Z. Renr, M. Rescignoaj, S. Reucroftk, A. Ricker3, S. Riemannas, B.C. Riemers aq, K. Rilesc, O. Rindc, H.A. Rizvir, S. Roao, A. Robohm3t, J. Rodin0, F.J. Rodriguezy, B.P. R oec, M. Röhner3, S. Röhner3, L. Romeroy, S. Rosier-Leesd, Ph. Rosseletv, W. van Rossumb, S. Roth3, J.A. Rubioq, H. Rykaczewski3t, J. Salicioq, J.M. Salicioy, E. Sanchezy, A. Santocchia3g, M.E. Sarakinos“, S. Sarkar', G. Sartorellir, M. Sassowsky3, G. Sauvaged, C. Schäfer3, V. Schegelsky3k, D. Schmitz3, P. Schmitz3, M. Schneegansd, B. Schoeneich33, N. Scholz31, H. Schopper3“, DJ. Schotanusad, R. Schulte3, K. Schultze3, J. Schwenke3, G. Schwering3, C. Sciacca3b, R. Sehgalr, P.G. Seilerar, J.C. Sens3v, L. Servoli3g, S. Shevchenkoaf, N. Shivarov3", V. Shoutko33, J. Shuklaw, E. Shumilov33, D. Son30, A. Sopczakq, V. Soulimovab, B. Smith0, T. Spickermann3, P. Spillantinip, M. Steuer0, D.P. Sticklandai, F. Sticozzi0, H. Stoneai, B. Stoyanov 3,1, K. Strauch", K. Sudhakar1, G. Sultanovr, L.Z. Sunt>r, G.F. Susinnos, H. Suter31, J.D. Swainr, A.A. Syed3d, X.W. Tangf, L. Taylork, R. Timellinih, Samuel C.C. Ting0, S.M. Ting0, O. Toker3®, M. Tonutti3, S.C. Tonwar1, J. Tóthm, A. Tsaregorodtsevak, G. Tsipolitisah, C. Tullyai, H. Tuchschererap, J. Ulbricht31, L. Urbán"1, U. Uwer3, E. Valenteaj, R.T. Van de Wallead, I. Vetlitsky3a, G. Viertel31, P. Vikasr, U. Vikasr, M. Vivargentd, R. Voelkert38, H. Vogelah, H. Vogt35, L3 Collaboration / Physics Letters B 352 (1995) 487-497 489 I. Vorobievaa, A.A. Vorobyov**, An.A. Vorobyovak, L. Vuilleumierv, M. Wadhway, W. Wallraff0, J.C. Wang0, X.L. Wang', Y.F. Wang0, Z.M. Wangr-', A. Webera, R. WeilT, C. Willmotty, F. Wittgensteinq, S.X. Wur, S. Wynhoff“, J. Xuj, Z.Z. Xu', B.Z. Yang', C.G. Yangf, G. Yangr, X.Y. Yaof, C.H. Yer, J.B. Ye', Q. Yer, S.C. Yehav, J.M. Youah, N. Yunusr, M. Yzermanb, C. Zaccardelliaf, An. Zaliteak, P. Zemp8', J.Y. Zengf, M. Zengr, Y. Zenga, Z. Zhangf, Z.P. Zhang '-r, B. Zhouj, G.J. Zhouf, J.F. Zhoua, Y. Zhouc, G.Y. Zhuf, R.Y. Zhuaf, A. Zichichih^ r, B.C.C. van derZwaanb a ƒ. Physikalisches Instituí, RWTH, D-52056 Aachen, FRG 1 III. Physikalisches Instituí, RWTH, D-52056 Aachen, FRG 1 b National Institute fo r High Energy Physics, NIKHEF, NL-1009 DB Amsterdam, The Netherlands c University of Michigan, Ann Arbor, MI 48109, USA ü Laboratoire d ’Annecy-le-Vieux de Physique des Particules, LAPP,IN2P3~CNRS, BP 110, F-74941 Annecy-le-Vieux CEDEX, France e Johns Hopkins University, Baltimore, MD 21218, USA f Institute o f High Energy Physics, IHEP, 100039 Beijing, China s Humboldt University, D~10099 Berlin, FRG 1 h INFN-Sezione di Bologna, 1-40126 Bologna, Italy 1 Tata Institute of Fundamental Research, Bombay 400 005, India j Boston University, Boston, MA 02215, USA k Northeastern University, Boston, MA 02115, USA * Institute o f Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania m Central Research Institute fo r Physics o f the Hungarian Academy o f Sciences, H-1525 Budapest 114, Hungary 2 n Harvard University, Cambridge, MA 02139, USA 0 Massachusetts Institute of Technology, Cambridge, MA 02139, USA P INFN Sezione di Firenze and University o f Florence, 1-50125 Florence, Italy q European Laboratory fo r Particle Physics, CERN, CH-1211 Geneva 23, Switzerland r World Laboratory, FBUA Project, CH-1211 Geneva 23, Switzerland s University of Geneva, CH-1211 Geneva 4, Switzerland 1 Chinese University of Science and Technology, USTC, Hefei, Anhui 230 029, China u SEFT, Research Institute fo r High Energy Physics, P.O. Box 9, SF-00014 Helsinki, Finland v University o f Lausanne, CH-1015 iMiisanne, Switzerland w Los Alamos National Laboratory, Los Alamos, NM 87544, USA x Instituí de Physique Nucléaire de Lyon, IN2P3-CNRS,Università Claude Bernard, F-69622 Villeurbanne Cedex, France y Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, E-28040 Madrid, Spain 3 z INFN-Sezione di Milano, 1-20133 Milan, Italy aa Institute o f Theoretical and Experimental Physics, ITEP, Moscow, Russia ab INFN-Sezione di Napoli and University o f Naples, 1-80125 Naples, Italy ac Department of Natural Sciences, University of Cyprus, Nicosia, Cyprus acl University o f Nymegen and NIKHEF, NL-6525 ED Nymegen, The Netherlands ae Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA af California Institute of Technology, Pasadena, CA 91125, USA as INFN-Sezione di Perugia and Università Degli Studi di Perugia, 1-06100 Perugia, Italy ah Carnegie Mellon University, Pittsburgh, PA 15213, USA ai Princeton University, Princeton, NJ 08544, USA aJ INFN-Sezione di Roma and University of Rome, “La Sapienza ”, 1-00185 Rome, Italy ^ Nuclear Physics Institute, St. Petersburg, Russia ai University of California, San Diego, CA 92093, USA am Dept, de Fisica de Partículas Elementales, Univ. de Santiago, E-15706 Santiago de Compostela, Spain an Bulgarian Academy of Sciences, Central Laboratory of Mechatronics and Instrumentation, BU-1113 Sofia, Bulgaria 00 Center for High Energy Physics, Korea Advanced Inst of Sciences and Technology, 305-701 Taejon, Soufh Korea ap University of Alabama, Tuscaloosa, AL 35486, USA aq Purdue University, West Lafayette, IN 47907, USA ™ Paul Scherrer Instituí, PSI, CH-5232 Villigen, Switzerland “ DESY-Institut für Hochenergiephysik, D-15738 Zeuthen, FRG * 490 L3 Collaboration / Physics Letters B 352 (1995) 487-497 at Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zürich, Switzerland au University of Hamburg, D-22761 Hamburg, FRG av High Energy Physics Group, Taiwan, ROC Received 4 April 1995 Editor: K. Winter Abstract We have analyzed one-prong r decays with neutral kaons using the information from a fine-grained hadron calorimeter. The data sample consists of 43 500 Z 7-V~(y) events collected by the L3 detector at LEP in 1991, 1992 and 1993. The following branching fractions are measured: B(t~~ —+ iy 7r“ K°) = 0.0095 ± 0.0015(stat) ± 0.0006(syst); B ( t —> vri r " 7r°K°) = 0.0041 ± 0.0012(stat) ± 0.0003(syst) and 2?(r' -> pTir~K°K°) = 0.0031 ± 0.0012(stat) ± 0.0004(syst). 1. Introduction Measurements of the branching fractions of rlepton decays with neutral kaons are important for understanding t decays [ 1 ], in particular the compat ibility of inclusive and exclusive branching fractions. They also provide new information on the dynam ics of neutral kaon production which is not yet well understood. Many factors affect the calculation of the branching fractions for these decays, such as Cabibbo-suppression for modes with odd numbers of kaons, very limited phase space for the modes with two kaons, QCD anomalies and uncertainties in the resonant structure. Their interplay prevents firm theoretical predictions from being made [2,3]. In this paper we present an analysis of the following decay modes: t~ —> , t ~~ —» vTir"“7T°K°, and r“ ^r 7r “ K°K°s where the charge conjugate decays are also implied here and throughout this paper. The fine-grained hadron calorimeter of L3 is used to detect neutral kaons and to measure their energies and direc tions. The selection of r decays with neutral kaons is based on the coincidence of high energy deposition in the hadron calorimeter and a low momentum charged track detected in the central tracker. The L3 detector 1 Supported by the German Bundesministerium für Bildung, Wis senschaft, Forschung und Technologie. 2 Supported by the Hungarian OTKA fund under contract number 2970. 3 Supported also by the Comisión Interministerial de Ciencia y Technología. 4 Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. is well suited to this measurement as the efficiencies for detecting the KL and Ks components of K° are comparable due to the small decay volume. The data sample used in this analysis corresponds to an integrated luminosity of 69 pb *” 1 collected at s/s ft M z during the 1991, 1992 and 1993 LEP run ning periods. 2. The L3 detector The L3 detector is described in detail in Ref. [4]. The e+e~ collision point is surrounded by a tracking chamber, a high resolution electromagnetic calorime ter, a cylindrical shell of scintillation counters, a hadron calorimeter, and a muon chamber system. The detector is installed in a large magnet providing a uniform 0.5 Tesla field. The hadron calorimeter (HCAL) is the key sub detector for this measurement. It covers the polar angle range 5° < 6 < 175° and consists of depleted uranium absorber plates interleaved with proportional wire chambers oriented alternately parallel and per pendicular to the beam direction. The readout, which is grouped into cells in both of these projections as well as in depth, provides a three dimensional pattern for hadronic showers. The energy resolu tion of the calorimeter for 7 is determined to be 5 5 %/ y f E( Gt V) + 8 % in the central region. The an gular resolution is better than 40 mrad in both the polar and azimuthal projections for hadronic showers above 6 GeV, which is approximately the minimum energy of K°’s from r decays at LEP. The detailed L3 Collaboration / Physics Letters B 352 (1995) 487-497 study of the hadron calorimeter prototype is described elsewhere [5]. The electromagnetic calorimeter (ECAL) is com posed of bismuth germanate crystals in the shape of truncated pyramids pointing to the interaction re gion. The ECAL barrel has a polar angle coverage of 42° < 6 < 138°, while the end-caps cover the regions 12° < 0 < 38° and 142° < 0 < 168°. The central tracking detector consists of a time ex pansion chamber (TEC) with high spatial resolution in the plane normal to the beam direction. TEC is sur rounded by a Z-chamber which supplements the r - ^ measurement with a z -coordinate measurement. The transverse momentum resolution of the tracking cham ber is c r ( l / P j ) = 0.018 (G eV /c ) ” 1 in the central region (| c o s # t e c | < 0.7). The position resolution of a track extrapolated to the calorimeters is 0.2 mm in the plane transverse to the beam direction and 1.5 mm along the beam axis. 491 detector response5 . The main source of inefficiency is the geometric acceptance. The Z —* r +r ~ ( y ) Monte Carlo sample contains 674000 generated events, which corresponds to nine times more Z —> r +r ’" (y ) events than in the data sample. The background contamination from non-r sources includes 1.9 % of e+e“ (y ), 1.0% of 0.4% of Z —» hadrons events, 0.4% of two-photon reactions, and 0.2% of cosmic muon events and beam-gas interactions. These estimates are derived primarily from the data using either the side opposite to the selected decay or global event characteristics. The corresponding Monte Carlo simulation for the background [7,11] is used only to verify these estimates. The total number of Z —» r +r ~ ( y ) events in the sample is estimated to be 43497±60, where the error includes the uncertainty in the background evaluation. 4. Selection of r decays with neutral kaons 3. Selection of Z —►r +r (y) events The selection of r decays is done independently in two hemispheres separated by the plane perpendicular to the thrust axis of the event. Particle identification in each hemisphere is based upon the topological prop erties of the energy deposition in the electromagnetic and hadron calorimeters with respect to the trajectory of the charged track. The selection of r decays proceeds in three steps. First, a sample of low multiplicity, back-to-back events is selected, consisting mainly of leptons from Z de cays. This preselection suppresses such backgrounds as hadronic Z decays, two-photon interactions, cos mic muons, and beam-gas interactions. In the second step, the individual r decays are identified. Finally, re quirements are placed on the hemisphere opposite to the identified r decay candidate in order to suppress the remaining non-r background. The selection pro cedure is described in detail in Ref. [ 6 ]. A sample of 45 262 events is selected in the fiducial volume 46 ° < 6 < 134°. The selection efficiency for Z —►r +r ~ ( y ) events is calculated to be 57.8% using the KORALZ Monte Carlo program [7,8] with a full simulation of the L3 To select a r~ —►vTK°X~ candidate6, exactly one track is required in the hemisphere. This track must be consistent with originating from the interaction point in the plane perpendicular to the beam direction. The expected energy deposition of the track in the HCAL is estimated from its momentum in the TEC and energy in the ECAL associated to it using the reconstruction technique described in Ref. [ 6 ]. Any HCAL energy deposition exceeding this estimate, A 2 ? h c = ^ h c ~~ ^h c ^ 0 * could be due to a fluctuation in the charged hadron shower, which is approximately proportional to y/P^j or due to the presence of neutral kaons. In order to suppress fluctuations, the ratio A ^ h c / v ^ t must be greater than 5 (GeV ) 1/ 2 (Fig. la ). This cut rejects a large fraction of r decays with no K° and almost all residual background from non-r sources. No r decays with the charged particle momentum greater than 15 GeV / c survive this cut. The dominant backgrounds after the previous cut are r~ —►p ~ v r and r “ —>a^ vT decays with rr° leak age from the ECAL to the HCAL. This background is suppressed by requiring the energy in the first three 5 The L3 detector simulation is based on GEANT Version 3,14; see Ref. [9]. The GHEISHA program [10] is used to simulate hadronic interactions. 6 The hadronic system X*“ contains a single charged hadron and any number of neutral hadrons. L3 Colîoboration / Physics Letters B 352 (1995) 487-497 492 ing r decays contribute to the signal: r~ —► r “ -+ ^rK "K 0, r~ -> j'7.77’~7r°K0, r~ ^r K _ 7r°K0, and r~ -> pt 7t~ K °K 0. The efficiencies are esti mated to be 13.0%, 5.3%, 8 .8 %, 3.7% and 19.8% in the fiducial volume respectively. The composition of the selected sample of K0,s corresponds to 68 % p t K ~ K° and K£ and 32% Kg. The modes r~ z'rK ~ 7r°K0 have significantly lower efficiency than the corresponding modes with charged pions due to less advantageous energy sharing between K“ K° in the laboratorv frame compared to t t ” K° 7 . 10 1 50 cn 5. Determination of the branching fractions O 25 <L> Q 0 40 20 0 cl * (rad) *jiK Fig. 1. (a) The spectrum of the ratio A £hc/\/^V f°r the pre selected decays. The hatched area corresponds to the contribu tion of the r~ —►vTir ~K°, ivK K°, r —v Pj'fr 7T°K0 tqK° t —> Vr'ir ~ t 7rw is.“, r —> i^r K“ 7t0K° decay modes, (b) The spectrum of the fraction of the HCAL energy deposited in the first three layers. The cut on the ratio AEhc / y/Pw is already applied, (c) The separation angle between the charged hadron and cluster in the HCAL. All other cuts are already applied. The arrows in (a)-(c) indicate the corresponding values of the applied cuts. HCAL layers ( 18Xo) to be less than 80% of the total energy deposition in the HCAL (Fig. lb). The angu lar separation between the ir~ and K°, ov-k°> is esti mated as the difference between the center of gravity of the HCAL cluster and impact position of the track in the HCAL. It is required to be 0.03 < o^-ko < 0.2 rad (Fig. l c ) . This cut improves the purity of the selected sample. After applying these selection criteria, 247 r~ ptK°X~ candidate decays remain with 27.7 decays expected from the modes without K°’s. The follow K° decays from In order to distinguish r vttt~ K°K° decays, the *V7r'~7r°K° and r~ selected decays are classified into three categories: V t 7T 7 T ° K 0 (i) Decays with a i r candidate ( r~ candidates). These decays are required to have an energy cluster in the ECAL of greater than 6 GeV and a transverse shower shape consistent with a tr°. A typical candidate is shown in Fig. 2. (ii) Decays with extra neutral hadronic energy (T~ — > V r 7T~ "K°K° candidates). Two high energy hadronic showers from a K°K° pair are not separated in angle but are often separated in depth (Fig. 3). Therefore, they are characterized by a more uniform energy depo sition than a single neutral hadronic shower. In order to select these decays, the energy deposi tion in the ECAL, and in the front and back parts of the HCAL are each required to exceed 10% of the total energy associated to neutral kaons. (iii) Remaining decays ( r “ —►vr7r~¥^ candidates). For each category, the total number of decays is a linear combination of the signal channels: pt7t~KP, t~~ —> V Mj.K“ Ku, tt ~ —> pT7T~7r[JK [ . tjYL K°, t ~ —> vTK~~7r°K?, and r~ —> pt7t~ K ° k 9 and the background channels. Only the coefficients for the modes r~ —> ^r 7r - K°, r ” ^T7r ” 7r°K°, and ^t 7T_ K°K0 are allowed to vary in the fit. 7 In the K~ K° final state the energy is on average divided equally between the charged and neutral kaons, leading to small values of the ratio A£hc/%/At* In the case of the 7 r ’"'K0 final state, the (heavy) neutral kaon has more energy in the laboratory frame than the (light) charged pion, leading to large values of A ^ h c /V ^ t- L3 Collaboration / Physics Letters B 352 (1995) 487-497 Run# 461204 Event# 604 R u n # 509715 E v e n t# U P 493 2452 B OfloO d B B DO •W ■q P □ 0 □ a a g* 0 C B Fig. 2. A r ' -> vTi t~ 7r°K° candidate decay. In the upper hemi sphere, the 1.36 GeV/c changed track is well separated in space from the 12.0 GeV 7r° detected in the ECAL and the 12.6 GeV neutral hadron shower in the HCAL. The neutral hadron shower starts after 3 HCAL layers (about OJA). The other coefficients are fixed to the central val ues from the recently published measurements [ 12 ]: B { t ~ - * vrK~K9 ) = 0.0029 ± 0.0012 and B ( t ~ j/t K-77-°K0) = 0.0005 ± 0.0005. In order to increase the separation power between the channels, the coefficients of the linear combination are fit to a 10-bin histogram of the 7r° energy for the vr7r~7r°K° sample. A 5 x 3 binned histogram of total decay energy versus invariant mass of the ob served r decay products is used for the r ~ —►vr'ir~K° and r~ —> ^T7r"K °K 0 samples. We use a binned max imum likelihood function which accounts for the finite statistics both in the data and in the Monte Carlo. The spectrum used for the fit of the r ” vT7r~7r°K0 sample is shown in Fig. 4a together with the best fit Monte Carlo distributions. The total en ergy and invariant mass distributions for the r~ ¿V77~K°K0 and r~ vT7r~K° samples are shown in Figs. 4b and 4c respectively together with the best fit Monte Carlo distributions. The number of decays expected from the different channels is shown in Table 1 together with the corre sponding number of data decays. The numbers of data (jnrp a H C A L 0 J& l !g 0 1 Fig. 3. A r ~ —+ ¿y7T- K0K0 candidate decay. In the upper hemi sphere, the 2.39 GeV/c charged track is separated in space from the 9.4 GeV cluster in the ECAL and the 33.6 GeV neutral hadron shower in the HCAL. The neutral hadron shower has two distinct local maxima: about 12 GeV in the front part of the HCAL and 20 GeV in the back part. The shower shape of the neutral energy cluster in the ECAL is inconsistent with being a 7r°. decays in each channel from the fit are N (r vTir~Ÿ?) =112.0 ± 17.7 N ( r " ->• v T7r~ir°K0) =33.1 ± 9.7 N ( r - -» iy 7r-K °K 0) =55.8 ± 21.4 and the correlation coefficients between the fitted channels are p ( ir - K ?, 7r - ir°K°) =0.01 O tf-O -y _ p ( ir " K ° , 7r - K uKu) =0.68 p(7r- 7r0K0 ,7 r'K °K 0) = 0.36. The large correlation coefficient between N (r~ vT7r~K°) and N ( r ¿ v r- K°K°) results in an in crease of the statistical errors for the corresponding vttt~ K°K°) in branching fractions. If we fix N ( r ” the fit, the corresponding error for N ( r jvtt- R 0) is significantly reduced: N (t~ —> v T7r~~K°) = 112,0± 12.8, Therefore, it is important to account for this cor relation. L3 Collaboration / Physics Letters B 352 (1995) 487-497 494 30 20 10 20 c/3 & o (S 5 10 10 0 0 0 0 E ( n ) (GeV) 0. M(7f K°) (GeV) E( tc_)+E(K ) (GeV) Fig. 4. (a) The spectrum of the 7r° energy for the sample enriched with r energies of the observed r decay products for the sample enriched with r~ the 7t_ K° system for the sample enriched with r ” —►¿v7r“ K° decays. -*> ^r 7 r ' 7 TuKu decays, (b) The spectrum of the sum of iyn'"~K°K° decays, (c) The invariant mass spectrum of Table 1 The numbers of decays detected in the three subsamples along with the best fit Monte Carlo expectations. For the t ~ —> ^TK“ K° and r “- —> vTY irifiY ? channels, the numbers of expected decays correspond to the branching fractions measured in Ref. [12] Data r~ t —> vTir~ K ° ~ -+ K° 7” — ►Z'T7T‘ ~77'0 K f) T~ > ^ rK ~ 7 T °K 0 T ~ - > V t TT~ K ° K ° Background MC total 7T K°K° sample Total 41 92 247 71.9 10.0 3.5 0.4 18.9 11.8 2.4 0.1 20.3 0.3 4.9 7.5 37,7 3.8 9.3 1.0 32.0 8.4 112.0 13.9 33.1 1.7 55.8 27.7 116.5 35.5 82.2 244.2 7T K° sample 7 114 6. Systematic uncertainties The dominant systematic errors in the measurement arise from the uncertainties in the absolute energy cal ibration and detector resolution functions, the back ground estimation, and theoretical uncertainties. The calibration uncertainties affect both the selec tion efficiency and the shape of the final distributions used for the fit. The accuracy of the ECAL energy scale for electrons and photons is estimated to be 1% at 1 GeV from the measurement of the position of the 7T° mass peak and 0.1% at 45 GeV from a study of Z —» e+e ~ (y ) events. The momentum scale of the central tracker is verified to 1% accuracy from 1 to 45 GeV using low energy electrons as well as muons r 7t°K0 sample from r and Z decays. The absolute energy scales of the ECAL and HCAL for hadrons are each known to 1.5% in the central region from the position of the p mass peak. The corresponding uncertainties in the number of signal decays propagated through the selection and fitting procedures are listed in Table 2. The resolution function of the HCAL is verified us ing test beam data and r ” p~ v Tdecays. The spectra of the ratio A £ h c /V ^ » as measured in the test beam for single pions of different energies, are compared with the Monte Carlo expectations in Fig. 5. No dis crepancy between data and Monte Carlo is observed within the achieved statistical errors, limiting possi ble uncertainty of the non-K° background to ±2.1 de cays. The uncertainty in the number of decays with L3 Colloboration / Physics Letters B 352 (1995) 487-497 Table 2 Summary of the systematic uncertainties in the numbers of fitted decays Source AN^- tjûro ANtt- K0R0 Calibration HCAL ECAL TEC 3.5 1.0 1.0 0.9 1.6 0.8 4.3 2.5 0.6 2.0 1.5 3.4 0.2 0.8 0.5 0.2 0.8 0.6 0.6 2.4 0.9 matrix element 3.9 CP(K°K°) 1.2 4.0 2.7 Background 7T° w± /K ± ANk_ ko a n k- Theory ^ k° AN8*81 Total — 6.9 2.6 7.4 (a) 4 GeV % f\ 10 — !c 10 MC single 7t 10 t t 1 i C/2 o e D > W 10 10 a e hc / a/p* 1* 10 8 GeV n u 20 (GeV1/2) (b) 1 k • 10 15 Data 1 1 MC single 7i~ 495 is estimated by varying their branching fractions according to the uncertainties quoted in Ref. [12], Uncertainties in the number of 7r0,s from r~ -+ p ~ v T and r~ —> a J v T decays leaking to the HCAL are estimated using a sample enriched with 7r°’s with abnormally high energy deposition in the first three layers of the HCAL (seen as a peak at £ 3l / £ h c ~ 1 in Fig. lb). This uncertainty is es timated to be 20 % of the number of r~ —►p ~ v T and r~ —> a f vr decays predicted by Monte Carlo simulation. The theoretical error due to the uncertainty in the matrix element for the r decays into three particles with one or two kaons arises from the non-uniformity of the selection efficiency over the phase space. In the Monte Carlo program [ 8 ] used to simulate r de cays, assumptions are made about the chiral structure of the weak hadronic current and the resonant struc ture of these decays. By varying these assumptions, we estimate the possible change of the efficiencies to be of the order 10%, depending slightly on the decay channel; the exact numbers are listed in Table 2, An other source of systematic error is the uncertainty in the CP phase of the K°K° system in the decay r~ —> z/r 7r"K°K°. The systematic error is assigned accord ing to the difference in the fit results assuming that the K°K° sample consists of only CP-odd or only CPeven components. In the final fit, used to derive the branching fractions, the following proportion is as sumed Kl Kl : KSKs : KsKL = 0.25 : 0.25 : 0.5. Table 2 summarizes the study of the systematic er rors for the numbers of fitted decays. When combining the systematic errors of a given channel, all sources are assumed to be independent. ptK-77»K° W 10 « 1 * 0 it .......... .. 10 , I/O20 AEhc/ # tc(GeV ;) \5 Fig. 5. The spectra of the ratio AEhc / v ^ t for (a) 4 GeV and (b) 8 GeV single pions as measured in the test-beam (dots) and predicted by the Monte Carlo (solid histogram). 7. Discussion and conclusions From the fit results presented in Table 1, the selec tion efficiencies, and the total number of observed r decays, we extract the following branching fractions: B (t K°’s due to inefficiency of the HCAL is estimated to be 1% of the number of fitted decays from a study of fjb+ ¡ul~ (y ) events. Z The systematic error due to the uncertainty in the rate of the decays r~ —> ^TK “ K° and r " —> K° ) = 0.0095 ± 0.0015(stat) ± 0.0006 (syst) B (r jV7T~7r 0K0) = 0.0041 ± 0.0012(stat) ± 0 .0 0 0 3 (syst) L3 Collaboration / Physics Letters B 352 (1995) 487-497 496 20 20 15 (C) - 15 15 S' 10 Q 10 10 5 5 - 5 0 0 0 M(7t V ) (GeV) 1_ : M(tTK0 M ( r f ) (GeV) 0 - 0 M(tc 71°K0) (GeV) Fig. 6. (a) The invariant mass spectrum of the 7 r - 7 ru system for the sample enriched with t ~ —> v t i t ~ 7r°£° decays, (b) The invariant mass spectrum of the 7r - K° system for the sample enriched with r - —* i'T7r~7r0K0 decays, (c) The invariant mass spectrum of the 7T~7r°K[) system for the sample enriched with r~ —*■pT7r^7r0K0 decays. B ( t~ vr7r~K°K°) = 0.0031 ±0.0012(stat) ± 0.0004 (sy st). These results are consistent with other recent measure ments [12-15] and comparable in accuracy. Despite the absence of explicit identification of the final state charged hadron, these measurements are largely independent of the assumed branching frac tions for r~ —►*vK- K0 and r~ —►pTK~7pY?. This is due to the fact that the selection efficiencies for these modes are significantly lower than the corre sponding efficiencies for modes with charged pions, r ~ —> pt7t~K° and r~ —> ^r 7r“ 7r°K°, as a result of the different kinematics of these decays. The invariant mass spectrum of the 7t “ K° system agrees with the model that this final state comes only from t ~ p t K * ~ — > p t 7t ~ K ° . Assuming no other contributions to this final state, we extract B ( r ~ -> vrK*~) = 0.0142 ± 0 .0022 (stat) ± 0.009 (sy st). We have also considered the production of the 7t _ K° final state from higher mass resonances or nonresonant r ~ decays. Including these modes in the fit of our data, the following limits are derived: <0.0017 at 95% CL B ( t ~ -> ^r 7r _ K 0) K. - ( 1430) < 0.0011 at 95% CL. T >■ Vt TT K. )nonresonant The latter does not depend on the assumption of the spin of the K*~(1430) resonance. We have studied the resonant structure of the hadronic current in the r~ —> jy 7r” 7r°K 0 decay (Fig. 6 ). The p “ peak in the 7r~ 7r° invariant mass distribution is well reproduced by the Monte Carlo model [ 8 ] as shown in Fig. 6 a. However, Fig. 6 b and Fig. 6 c indicate a possible enhancement of the decays r " —> v7Yi\~ —>vrK*7T —> pT7r~'7r°K° in the data. Our measurement of the branching fraction B ( t ~ —►zy 7r_ K°K°) is insensitive to the theoreti cal assumptions on the matrix element and the CP phase of the K°K° system. It is consistent within the achieved accuracy with measurements of the similar decay [13,15]. Acknowledgments We wish to express our gratitude to the CERN ac celerator divisions for the excellent performance of the LEP machine. We acknowledge the efforts of all en gineers and technicians who have participated in the construction and maintenance of this experiment. References [ 13 Particle Data Group, L. Montanet et al., Review of Particle Properties, Phys. Rev. D 50 (1994) 1406. [2] R. Decker et al., Phys. Rev. D 50 (1994) 6863. L3 Collaboration / Physics Letters B 352 (1995) 487-497 [3] E. Braaten et al., Int. J. Mod. Phys. A 5 (1990) 2737. [4] L3 Collaboration, B. Adeva et al., Nucl. Instr. and Meth. A 289 (1990) 35; 0 . Adriani et al., Nucl. Instr. and Meth. A 302 (1991) 53; K. Deiters et al„ Nucl. Instr. and Meth. A 323 (1992) 162; J. A. Bakken, Nucl. Instr. and Meth. A 275 (1989) 81. [5] A. Arefiev et al., Nucl. Instr. and Meth. A 251 (1986) 258; A. Arefiev et al., Nucl. Instr. and Meth. A 285 (1989) 403. [6] L3 Collaboration, O.Adriani et al., Phys. Lett. B 294 (1992) 466; B 341 (1994) 245. [7] S. Jadach, B.F.L. Ward and Z. Wgs, Comp. Phys. Comm. 66 (1991) 276; R. Kleiss et al., in “Z Physics at LEP1”, CERN Report CERN 89-08 (1989), Vol. 3, p. 1. [8] S. Jadach et al., Comp. Phys. Comm. 76 (1994) 361; S. Jadach, J.H. Kühn and Z. W$s, Comp. Phys. Comm. 64 (1991) 275. 497 [9] R. Brun et al., “GEANT 3”, CERN DD/EE/84-1 (Revised), September 1987. [10] H. Fesefeldt, RWTH Aachen Preprint PITHA 85/02 (1985). [11] T. Sjostrand and M. Bengtsson, Comp. Phys. Comm. 43 (1987) 367; T. Sjostrand et al., in “Z Physics at LEP1”, CERN Report CERN 89-08 (1989), Vol. 3, p. 143. [12] ALEPH Collaboration, D. Buskulic et al., Phys. Lett. B 332 (1994) 219. [13] DELCO Collaboration, G.B. Mills et al., Phys. Rev. Lett. 54 (1985) 624. [14] OPAL Collaboration, R. Akers et al., Phys. Lett. B 339 (1994) 278. [15] TPC/2y Collaboration, D.A. Bauer et al., Phys. Rev. D 50 (1994) 13.
© Copyright 2024 ExpyDoc