10 – Exponentiële en logaritmische functies 10.4 – Rekenregels voor logaritmen 10 Gebruik dat g log a g = a en a b 3 7 3 log 5 7 log11 c 2 3 2 3 g ( ) log g a = a =5 = 11 log 2 =2 ( ) log (10 ) = 1,3 d 4 log 43 = 3 e 10 f 1 2 1 3 log = 3 2 g 10 log1000 = 10 log 103 = 3 h 0,5 i 2 log16 = 2 log(24 ) = 4 j x log( x 2 ) = 2 p log( p ) = k l 11 a b 1,3 ( ) log ( 0, 25) = 0,5 ( log ( 0,5 ) 1 a 2 5 a log13 p log( p 2 ) = 2 )=2 1 2 = 13 log a + 2 log b = 2 log ( ab ) x log x − 5 log y = 5 log y ( ) c 6 ⋅ 3 log a = 3 log a 6 d 5 1 1 log 2 + 5 log xy + 5 log = 5 log 2 ⋅ xy ⋅ = 5 log ( 2 x ) y y ) log ( x ⋅ xy ) = e 3 log a + 3 log ab = 3 log f 7 log x 2 − 7 log ( xy ) = g 2 ( ) 7 ( ( ) log ( x y ) a ab = 3 log a b 2 7 3 x ⋅ xy 2 x log x − 2 log y + 2 log xy = 2 log = log y y © Noordhoff Uitgevers Uitwerkingen 1 10 – Exponentiële en logaritmische functies h 2 1 x 2 = log log x − 2 log y − 2 log xy = 2 log y ⋅ xy y y i x3 3 ⋅ 2 log x − 1 = 2 log x3 − 1 = 2 log x 3 − 2 log 2 = 2 log 2 j 2 ⋅ 3 log x + 3 ⋅ 3 log ( 2 y ) = 3 log ( ) = 3 log x + 3 ( ) ( x) log (8 y ) = log ( 8 xy ) 3 3 ( 2 3 + log ( 2 y ) ) log ( ab ) = 2 log a + 2 log b 2 b 3 c 7 log a 2 b = 7 log a 2 + 7 log b = 2 ⋅ 7 log a + 7 log b d 1 2 1 1 1 2 xy 2 12 log = log 2 + 2 log x + 2 ⋅ 2 log y − 2 log z z 5 3 3 12 a e a log = 3 log a − 3 log b b ( ) ( ) 1 5 1 3 log x x = log x + log x 2 = log x + ⋅ 5 log x = ⋅ 5 log x 2 2 ( ) 5 5 f 3 log ( abcd ) = 3 log a + 3 log b + 3 log c + 3 log d g 2 3 2 2 2 2 2 1 a 2 b 32 1 2 log = log a + 3 log b − 3 log c 2 = 2 ⋅ 3 log a + 3 log b − ⋅ 3 log c 2 c ( ) ( ) ( ) ( ) h 2 log 3x −1 y 3 = 2 log 3 + 2 log x −1 + 2 log y 3 = 2 log 3 − 2 log x + 3 ⋅ 2 log y i j 2 2 1 log x −3 ⋅ = 2 log x −3 + 2 log y −1 = −3 ⋅ 2 log x − 2 log y y ( ) log ( 3 ab 2 ) = log ab 2 2 ( ) ( ) 1 3 1 2 1 2 = ⋅ log ab2 = ⋅ 2 log a + 2 log b 3 3 3 ( ) k 6 log(2ab) = 6 log(2) + 6 log( a) + 6 log(b) l 4 log(4a 2 bc3 ) = 4 log(4) + 4 log( a 2 ) + 4 log(b) + 4 log(c3 ) = 1 + 2 ⋅ 4 log(a ) + 4 log(b) + 3 ⋅ 4 log(c) m 3 log( x 2 y −3 ) = 3 log( x 2 ) + 3 log( y −3 ) = 2 ⋅ 3 log( x ) − 3 ⋅ 3 log( y ) n 4 log( x2 y3 ) = 4 log( x 2 ) − 4 log( y 3 ) = 2 ⋅ 4 log( x ) − 3 ⋅ 4 log( y ) © Noordhoff Uitgevers Uitwerkingen 2 10 – Exponentiële en logaritmische functies o 13 a 1 3 2 log( a ab ) = log(a ) + log( ab ) = 2 ⋅ log( a) + log ( ab ) = 1 1 1 1 2 ⋅ 2 log( a) + ⋅ 2 log( a) + ⋅ 2 log(b3 ) = 2 ⋅ 2 log(a ) + 1 ⋅ 2 log(b) 2 2 2 2 2 2 3 log 5 ≈ 1, 46 b 10 c 1 3 3 2 2 2 3 2 2 log 2 ≈ 0,30 log 25 ≈ −2,93 d 3 log100 ≈ 4,19 e f g 3 log 99 100 1 ≈ −4,19 100 log 2 ≈ −68,97 1 125 2 2 log(25) ≈~ 0,67 (exact : , want 1253 = 5 en 52 = 25, dus 125 3 = 25 3 h 50 log(33) ≈ 0,89 i 33 log(50) ≈ 1,12 © Noordhoff Uitgevers Uitwerkingen 3
© Copyright 2025 ExpyDoc