Ill - - L@IIV7 Nededandse Melkveehouders Vakbond DeBrenkla 4031 JL Ingen Tel.: 0344 —655336 E-mail: [email protected] lntemet: www.nmv.nu 21 AUG. 2014 Provinciale Staten van Fryslân Provinsjehûs Postbus 20120 8900 HM Leeuwarden Skuzum, 9juli2014 Betreft: Niet bereiken van een “Frysk Guozzen Akkuort” Kenmerk: NOJGNMVO9O72O14 Geachte Statenleden, Het stranden van de onderhandelingen betreffend het “Frysk Guozzen Akkuort willen wij, deelnemers aan die gesprekken, de Nederlandse Organisatie voor Jacht en Grondbeheer (NOJG), en de Nederlandse Melkveehouders Vakbond (NMV), graag aan u toelichten: Vanaf het begin heeft gedeputeerde Kramer ons voorgehouden dat het G7 akkoord uitgangspunt moest zijn. Wij, boeren, jagers en melkveehouders vakbond, hebben in deze visie geen enkele inbreng gehad. Onze bezwaren tegen dit plan, met name onze onderbouwde bezwaren tegen de onbeperkte opvang van winterganzen op oud grasland zouden meegenomen worden. Helaas is dit niet gebeurd. De onderhandelingen werden besteed aan geschuif met data, punten en komma’s, maar een reëel gesprek over structurele opvang van winterganzen, benoemen van soorten en aantallen en de financiering ervan zoals ook de LTO en de KNJV graag wilden voeren, is nooit aan bod gekomen. Op 31 maart vroeg de NMV-vertegenwoordiger nog om de onderbouwing van de opvang voor winterganzen uit dit plan maar verder dan de belofte dat ‘we de schade echt gaan bestrijden” is het niet gekomen. Achteraf hadden we toen al, samen met KNJV en LTO de conclusie moeten trekken dat onze inbreng niet serieus genomen werd, maar dat alles in dienst stond van het inpassen van de onbeperkte opvang van winterganzen en veranderen van de status van oud grasland in de wet en regelgeving, zoals die door de Terrein Beherende Organisaties werd geëist. De volledige rustperiode in de wintermaanden die de TBO’s eisen is een symbool geworden van hun keuze tegen jacht, terwijl vooral veehouders in Fryslën nu slachtoffer dreigen te worden van deze benadering, omdat er nooit serieus over alternatieve methodes van ganzenschade bestrijding in de winter gesproken is. Huidige aantallen ganzen zullen nu de geleverde foerageergebieden binnen twee maanden leeg gegeten hebben. (schatting op basis van 1700 gansdagen/ha). Deze ganzen zullen dan op overig boerengrasland moeten gaan foerageren om de winter te overleven. De zogenaamde “Flevoland methode”, in feite ganzenschade commando’s die op de schadedag zelf in het jachtveld van een jager komen ingrijpen om ganzen te schieten is volgens ons ingegeven door de wens om weidelijk beheer door jagers en hun bestaande band met het jachtveld op te heffen. Inzet van beroepscommando’s die puur voor het schieten van ganzen overal worden ingezet kosten meer geld (23 Euro per geschoten gans) dan acties door vrijwillige gemotiveerde jagers die lokaal de natuurkenners zijn. De weidelijke jagers hebben een relatie met hun grondgebruiker en kunnen rekening houden met hun sociale omgeving en de marge die er moet zijn om dieren te sparen bij verjaging als dat mogelijk is. Beroepskrachten in een ganzen-inzetgroep zijn niet alleen duurder, maar ook maatschappelijk minder acceptabel, omdat het bij hen puur om het schieten van ganzen gaat. Wij willen u daarom vragen de ideologische discussie voor of tegen jacht of afschot in de wintermaanden uit het ganzen beleid te houden, en geen besluit bij voorbaat te nemen over een situatie die pas na veel meerjaren van ander beheer vrucht kan dragen. Wij dringen erop aan dat u een beproefde methode van ganzenbeheer en regulatie toe zal staan, namelijk het beperken van de broedsuccessen in de toendra’s door ganzen in de wintermaanden weer even karig voedsel te verstrekken als voorheen het geval was: ebijje. 5X Fq Deze aanpak is het gehele jaar door ganzen verjagen van agrarische gronden en alleen rust gunnen in de door u gefinancierde natuur- en foerageergebieden. Daarbij zullen enkele ganzen worden geschoten, echter het bloedbad waar telkens naar wordt gerefereerd is niet aan de orde. Dit houdt de ganzen vaker in de lucht en voorkomt vervetting die wetenschappelijk aangetoond, de reden is voor de bovenmatige broedresultaten van ganzen en de immer toenemride antaiii wiiiterganzen die we niet kunnen opvangen. Wij vinden het niet verantwoord en onacceptabel dat een anti-jacht-symbool er toe leidt dat u in uw verordening opneemt dat veehouders in Friesland niet langer op grasland ganzen mogen verjagen om schade te bestrijden en te voorkomen. Zeker als we weten dat de aantallen daardoor alleen verder zullen escaleren, en er een conflictsituatie tussen agrarische bedrijfsvoering en provinciale natuurdoelen zal ontstaan. Hiermee hopen we u de in het huidig beleidsvoorstel en conceptverordening niet meegenomen oplossingsrichting voor het winterganzen probleem onder ogen te hebben gebracht. Wij zijn graag bereid tot een nadere toelichting over deze niet meegenomen variant in uw commissie land, lucht en water, of in uw Statenvergadering. Met vriendelijke groet, P.M.A van Kempen, NOJG Frys!ân!NOP F.P.E. Wijnans, NMV afd. Fryslân / / ‘4 iaj /ivHv iL,6E Seasonal matching of habitat quality and fitness in a migratory bird 1. Témas Grétar Gunnarssoni 2. .Jennifer A Gul 1,2, , 3. Jason Nevion3, 4. Peter M Potts4 and 5. William .1 Sutherlandi ± Author Affihiations 1. ‘Centre for Ecology, Evolution and Conservation, School ofBiological Sciences, University ofEast Anglia Norwich NR4 7TJ UK 2. 2 Tyndall Centre for Climate Change Research Norwich NR4 7TJ, UK 3. NERC Life Sciences Mass Speciromeiry Facilily SUERC, Rankine Avenue, Las! Kilbride G75 OQF, UK 4. 4 Solent Couri Collage, Chilling Lane, Warsash, Southampton S03] 9HF, UK 1. Author for correspondence (1. uunnarsson(uea.ac.uk) 1. Introduction A key driver of fitness in individual animals is the quality of the habitat they occupy. In migratory species, individuals must select breeding habitat at one end of the range and winter habitat at the other. Summer and winter habitat selection are generally studied in isolation, but a growing number of studies have pointed to the importance of interactions between seasons. LFor example, geese (Brantaernicla bernicla) that have larger fat reserves 0fl departing the winter or staging grounds have higher breeding siss (FhNnge & Spaans 1 995; Madsen 1 1095), and marked individuals and stable isotope technology have heen used to show that rwinter habitat quality is related to tirning of migration (Marraciul._1998; Gul ei al. .20(H ), body condition during spring migration (Bearhop i/. 2004) and even local breeding success r (Norris ei tL 2004). These patterns could arise either through winter conditions determining individual condition for migrating and breeding, or through individuals selecting similar quality habitats in both seasons. Our study systern, the Icelandic black-tailed godwit, Limosa limosa islandica, provides an opportunity to identify the mechanism linking summer and winter events at a range of scales as: (i) we have detailed information on the locations of individuals throughout the annual cycle (Gunnarsson eiuL 2004); (ii) the winter habitat of breeding birds can be identified through stable isotope analyses of feathers and; (iii) we have traced the pattern of population expansion in both summer and winter, allowing us to assess individual use of novel and traditional sites. Icelandic black-tailed godwits are migratory shorebirds that breed almost exclusively in Iceland and winter in Western Europe (Wemham ei al. 2002). Recent studies of this species demonstrated that individuals on recently occupied wintering sites in eastern England experienced significantly lower prey intake rates in late winter and lower annual survival rates than those wintering in the traditionally occupied south of England (Gil! ei al. 2001) In this study, we assess the variation in reproductive success. ‘ ,ÇJjj/iHV J Ornithol DOl 10.1007/s 10336-007-0223-4 iIA6E 2 REVIEW Migratory connectivity in Arctic geese: spring stopovers are the weak links in meeting targets for breeding R. H. Drent OG. Eichhorn DA. Flagstad 0 A. J. Van der Graaf 0K. E. Litvin Di. Stahi Received: 9 March 2007 / Revised: 16 August 2007 / Accepted: 17 August 2007 © Dt. Ornithologen-Gesellschaft e.V. 2007 Abstract Linking spring migratory itineraries of mdi vidual Arctic-breeding geese to their eventual breeding success bas provided evidence that accurnulation of body stores (protein, fat) at stop-over sites is crucial. We show that this is because geese nesting in the Arctic depend at least in part on these stores for synthesis of eggs and supporting iiicubation (for the female, a phase of starva tion). Estimates of the body stores needed for successful reproduction (eggs + incubation) in relation to measured rates of accumulation of these stores make dear that meeting the demands solely by feeding at the breeding grounds is not an option for geese. The time constraint does not allow this. because early Iaying is a necessity in the Arctic to ensure survival of the progeny. Although the parents can exploit the early spring growth along the fly way, they get ahead of the wave of growth when they arrive on the breeding site and hence the parental time table can only be met by drawing 011 body stores. Resuits from tracking studies in six goose species underline the conciusion that egg formation corn mences along the yway before arrival at the nesting colony. In some cases, signa tures of stable isotopes in egg components and parental body tissues in relation to the signature in forage plants support the notion of a rnixed endogenous/exogenous ori gin. The close match between migratory timing and the spring flush of plant foods makes geese particularly vul nerable to the impact of climate change. There is an increasing mismatch along the NE Atlantic Flyway, where a warming trend in NW Europe conflicts with stable or even cooling trends in the Arctic target areas. Keywords Capital breeding Clirnate change 1 Energetic costs of incubation 1 lFat budgets U Satellite tracking Communicated by F. Bairlein. R. 1-1. Drent (& ) IG. Eichhorn IA. J. Van der Graaf Animal Ecology Group, Centre for Ecological and Evolutionary Studies. University of Groningen, P0 Box 14, 9750 AA Groningen, The Netherlands e-mail: [email protected] A. Flagstad Department of Small Animal Science, Royal Veterinary and Agricultural University, Dyrlaegevej 16, 1870 Frederiksberg, Den mark K. E. Litvin Bird Ringing Centre, Leninsky Prospekt 86-310, Moscow 119313, Russia J. Stahl Landscape Ecology Group, University of Oldenburg, 26111 Oldenburg, Germany Introduction Migratory birds face the challenge of producing a dutch as soon as possible after arrival on the breeding grounds, since the prospects for progeny decline rapidly with advancing date (Sedinger and Raveling 19X6; Sedinger and Flint 1991; Lepage et al. 1 99$; Prop et al. 2003; Bêty et al. 2003, 2004). Especially in demanding environments stili in the grip of winter, the nesting female will face a shortage of foraging opportunities locally and may depend instead on nutrients garnered elsewhere along the flyway and sequestered in the body (notably stores of fat and protein) in order to meet her time schedule. Birds that follow this strategy of flying in materials for forming the eggs and supporting incubation have been termed ‘capital breeders’, 1 Springer iW3c ii/1V 3 • kin Newton 1. • • • First published: 29 March 2004F ull publication historv DOl: 10.1ll1/j.1474-919X.2004.00293.x Citin literature . *Emajl: ine)ceh.ac.uk Abstract Unlike resident bird species, the population sizes of migratory species can be influenced by conditions in more than one part of the world. Changes in the numbers of migrant birds, either long-term or year-to-year, may be caused by changes in conditions in the breeding or wintering areas or both. The strongest driver of numerical change is provided in whichever area the per capita effects of adverse factors on survival or fecundity are greatest. Examples are given of some species whose numbers have changed in association with conditions in breeding areas, and of others whose numbers have changed in association with conditions in wintering areas. In a few such species, the effects of potential limiting factors have been confirmed locally by experiment. In theory, population sizes rnight also be limited by severe competition at restricted stopover sites, where bird densities are often high and food supplies heavily depleted, but (with one striking exception) the evidence is as yet no more than suggestive. In some species, habitats occupied in wintering and migration areas, and their associated food supplies. can infiuence the body condition. migration dates and subsequent breeding success of migrants. Body reserves accumulated in spring by large waterfowi serve for migration and for subsequent breeding, and females with the largest reserves are most likely to produce young. Hence, the conditions experienced by individuals in winter in one region can affect their subsequent breeding success in another region. Such effects are apparent at the level of the individual and at the level of the population. Similarly, the numbers of young produced in one region could, through density-dependent processes, affect subsequent overall mortality in another region. Events in breeding, migration and wintering areas are thus interlinked in their effects on bird numbers. Although in the last 30—40 years the numbers of some tropical wintering birds have declined in western Europe and others in eastern North America, the causes seern to differ. In Europe, declines have mainly involved species that winter in the and savannas of tropical Africa, which have suffered from the effects of drought and increasing desertification. In several species, annual fluctuations in numbers and adult survival rates were correlated with annual fluctuations in rainfali, and by implication in winter food supplies. In North America, by contrast, numerical declines have affected rnany species that breed and winter in forest, especially those eastem species favouring the forest interior. Declines have been attributed ultimately to human-induced changes in the breeding range, particularly forest fragmentation, which have led to increases in the densities of nest predators and parasitic cowbirds. These in turn are thought to have caused declines in the breeding success of some neotropical migrants, which is now too low to offset the usual adult mortality, but as yet convincing evidence is available for only a rninority of species. The breeding rates and population changes of some migratory species have been influenced by natural changes in the availability of defoliating caterpillars. In other species, tropical deforestation is likely to have played the major role in population decline. and if recent rates of tropical deforestation continue, it is likely to affect an increasing range of migratory species in the future. 1. /,/,1cC REVIEW I_ri ‘ Can conditions experienced during migration limit the population levels of birds? : .‘—— [1— ( (,. .. I-irii \ — Ii :1--1--1.-.1 ‘ , h:l ,. 11Irlr t1L’Ir r.:1’n ni IH ‘: i!11 T.I .ii1’i T’. f 1 l’ I . ir r I!T.ll T. ri.i ir r -Ilni.! i’r Jur n. :n 1iI:i .I:i1:I,. ‘l:Ln -:iLi tfl :i::H: i.:1.ILh .i. ( -‘mr. t .1 L1IlJ c: 11! : i. na:i:n Jl.h’i k’ Lu,fl: juItiii:. v.t:..i -.:hin L 1 .c ,: :n \ :Jn!..: i L\pI11J :n ihi !i ni II: m:in :i h:id inut nt d j’i d;n [-i :.i. n ii it ri!: ,1C Il%lTIl11 lIlr. I11Illr I’lrlk jr: 1’’:i.ii’i’ .1 2 11 kit1.J l!iç -. • . c ti;IT ti:[ flhtrJLilr\ iiini ird i1 ‘‘tll ii-ii .i l11! ‘ •i:’, -I.I’..l . In • ri ii ‘Ii1Lifl- ll.l i: \••— II t..— t .1’ T 1 - T. ‘1 1.. -t i 1’’ It—ri’ t:•t_ . t—— l• t .iIiitii: In iIlillL• LiTL1I41Tt. hirI un III l 1f ‘çie. hu t iiitt’ ii 1! ihC _ir-t-.Cn! LtLlI11._’. Iii hr tn.t p1’pUII \1L-:hlL’... thC- lIti1i1: % In 1. . 1 n iiT1tL1flL! ‘!lLiS JI dIlls.i .Tit plint.. 1W ihC!l innt jIUlfl 11u1•-S — Itr liluiLd ihm- iitIi tuifw-. i tim.- hIt11tnL 4t CLItL’ JU III.! Wt21 ,itir t’LIk 1.1% 1fl JU1LI 11&nt Iu’. t’n ttÈlfl .. Ln%. 1. ti’tnTimifl .1I.l!I.11111n 1 1 \11;j(1 ‘‘.tiiLiiiiit 1 ;itI’tiii’ ‘..iui;i1 L1I)’’. IrdrodLlction I’IiLI1ln \\ luIc tiic flLmflh.n-. mli ..m1I. mLn .tll! ij’”iI :itl. !flfltIcflç!l1 prunt LIlUld 11. int ;I!llln in ti.it.I hii111lhi\ It 1. itçni.E. ( \ .11IJItRI% .t ‘.jlç’’., LTmi %tCIms Il 11fldltTlls in hrc:d in1crlnt lll..l-. (‘\L.’.1ilti .DFlU4. ii ‘ILF J\ I\ th ITII-ri’ Li ic-_tl 5 .\I ifl ;i’.m liii: iit 1hL Iiu (lItJii lmtl% thi bmTl1.r;hItl’h! ÇI7T ti 41iT_ i1i.’ %1O i pIl1lmia1kn.. ThiLII”. 111 ltnl:iIlrl.. Sit1.-li ‘LlLl. 1hfl dL (huLt t. T t! 1 ‘1’- ! puii hii itn ict. m.1, 11ht. h.’i 11.1.’ ‘‘t lr1nLnl.L.d )h nLlrt,l1it anti V.PrllIL!Lt!4h1i ir it tt1ir linie.. icir in tin’. niper. lt1LrcI’re. iJ 1 i’d !lhuihl!nn t ii1 ‘ltI1 hen 11’. dç-Lkrlc tImjIlnL!. LhL. L’.plulfl .1 1jtm2n [hri.1mt ‘IT et.c1. 1fl CIITijLITILLIIIn t. uh tITLi t t.Ir... per.ulTn .mt thCr :1 %t-ar. \1r-1ht.er. ifltU[ltt’l! ul.L-flI_ ul.i Ituij tTrflTs nun-r in a LIUfl..l t r.ndL-nt ‘r i.Lr-i\ mi •-n’.n. rJç t’iLtLTT n:innC-r 1 )c-nitx -JC L-nden; C1tILLtI.ni InpiiL.. ‘hlTjt.1ltIl’hl {1lIu.ull’. i.’i Tol’t ‘r ‘1 d;tk1i ,it. ‘iLurï..). t.. l,.Ie1ltuL. (II !hin1’. ;1i..Lteti 1’. 1 iL%1Il (t t.. IILii ihe 1.tl c.ii.h .t. ItL1I uullhl1tLrS .liC ITi1.!h iii.iit t.’iiL.IL uiti.’ IIL IT! (ILI!..!l\ —I1LiC1liilli iitiittili’it_ L(lltÏt1i!(T1hhl Is liltili!— ‘hi1Ihh1, ;itiml , tim 11 iie çIllhIliIil’h1 iit itiiI’- iiii.i i’ ‘. . 1 hflJ niimrutitni L ni’. are L!crl’... a’. i’’ ’ 1 e’ iLil ItI - i i • 1 1 IhTbç1i.1hi’. lnfl!n th 11—1 çitd ç\ çhlT ‘. Cm l -, 1 ii.it th t.iI 1r.:-Jmn 1 lIfl1l ii in :i.du;i. .Iii in \Iiin. ‘1RtR’ I!Ll ‘..nJ-Inn V. in t1;1,llTiIi ihcii 1! ii IIL:nnL’ IsIiLILn., .T •nL-: -I’ n-Tt rIT::t \ l.I1.t ..‘I:i1 kl LI -ir.:tinn t iItiIT1ILTTll ih Ii: hin 411 i it tI !nh- i!iI, ,iinl --n lii lL:I’ 1fl 1 n—-. 1 1 nI !n l:l T:.r:!I’l . ‘.1 ii Ii; i .i . i1-i :it .1! ::li LiL .;L:I.lIl 1Ifl .;ii. -n-!fl. 1I..Ta’ Il-tl..t—. 111 1 1!’ II .1 tI 1 1I_ sii!1 r ‘ifliçr ,fl:T’I ,ILrIk 1• .11 nrn1!1çr l1l!1.I lii t t. ii .1 111 -.1III1I _Il1[l. Lll !1l’:[\ BiiR I-i’ iT.fl. RL- 4) fl!T p’ J r:i n- it ii r-’ •:pI Ir’ .m 111 ;I!1.1’ .ll!1, 11111. ili1I .It1Lt\ Illiltilin 1i llT11 tI.i -ru .l.• ‘T, vI-’i tL1I 1R’ ‘il ; ‘ 21 I k 2Tfrl .‘l!hslL’!11 re!utp.hn_inn til Itpifilfi ‘1fL h .i1li’!t. 1 hen A)H’ Pj //,6r Adaptive Harvest Management for the Svalbard Population of Pink-Footed Geese t,. Briefing Summary Prepared for: AEWA Svalbard Pink-Footed Goose International Working Group Copenhagen, Denmark April 23, 2013 t Prepared by: Dr. Fred A. Johnson Southeast Ecological Science Center U.S. Geological Survey Gainesville, Florida, USA Introduction The African-Eurasian Waterbird Agreement (AEWA; http://www.unep-aewa.org/) calls for means to manage populations which cause conflicts with certain human econoinic activities. The Svalbard population of the pink-footed goose has been selected as the first test case for such an international species management plan to be developed. This document describes progress to date on the development of an adaptive harvest management [AHM) strategy for maintaining pink-footed goose abundance near their target level by providing for sustainable harvesis in Norway and Denmark. This briefing supplements material provided in the Progress Summary distributed to the International Working Group on February 1, 2013. We emphasize that peer review is an essential aspect of the process of developing and implementing an AHM program for pink-footed geese, and we will continue to solicit reviews by the International Working Group and their staff, as well as scientists not engaged in this effort. We wish to make the Working Group aware that the following two manuscripts have been submitted recently to refereed journals and are available upon request from the senior authors: Jensen, G. H., 1. Madsen, F. A. Johnson, and M. Tamstorf. Snow conditions as an estimator of the breeding output in high-Arctic pink-footed geese Anser brachyrliynchus. Polar Biology: In review. Johnson, F. A., G. H. Jensen, J. Madsen, and B. K. Williams. Uncertainty, robustness, and the value of information in managing an expanding Arctic goose population. Ecological Modelling: In review. 1 7
© Copyright 2024 ExpyDoc