10.0 Ned Melkveehouders Vakbond

Ill
- -
L@IIV7
Nededandse Melkveehouders Vakbond
DeBrenkla
4031 JL Ingen
Tel.: 0344 —655336
E-mail: [email protected]
lntemet: www.nmv.nu
21 AUG. 2014
Provinciale Staten van Fryslân
Provinsjehûs
Postbus 20120
8900 HM Leeuwarden
Skuzum, 9juli2014
Betreft: Niet bereiken van een “Frysk Guozzen Akkuort”
Kenmerk: NOJGNMVO9O72O14
Geachte Statenleden,
Het stranden van de onderhandelingen betreffend het “Frysk Guozzen Akkuort willen wij, deelnemers
aan die gesprekken, de Nederlandse Organisatie voor Jacht en Grondbeheer (NOJG), en de
Nederlandse Melkveehouders Vakbond (NMV), graag aan u toelichten:
Vanaf het begin heeft gedeputeerde Kramer ons voorgehouden dat het G7 akkoord uitgangspunt
moest zijn. Wij, boeren, jagers en melkveehouders vakbond, hebben in deze visie geen enkele
inbreng gehad. Onze bezwaren tegen dit plan, met name onze onderbouwde bezwaren tegen de
onbeperkte opvang van winterganzen op oud grasland zouden meegenomen worden. Helaas is dit
niet gebeurd.
De onderhandelingen werden besteed aan geschuif met data, punten en komma’s, maar een reëel
gesprek over structurele opvang van winterganzen, benoemen van soorten en aantallen en de
financiering ervan zoals ook de LTO en de KNJV graag wilden voeren, is nooit aan bod gekomen.
Op 31 maart vroeg de NMV-vertegenwoordiger nog om de onderbouwing van de opvang voor
winterganzen uit dit plan maar verder dan de belofte dat ‘we de schade echt gaan bestrijden” is het
niet gekomen. Achteraf hadden we toen al, samen met KNJV en LTO de conclusie moeten trekken
dat onze inbreng niet serieus genomen werd, maar dat alles in dienst stond van het inpassen van de
onbeperkte opvang van winterganzen en veranderen van de status van oud grasland in de wet en
regelgeving, zoals die door de Terrein Beherende Organisaties werd geëist.
De volledige rustperiode in de wintermaanden die de TBO’s eisen is een symbool geworden van hun
keuze tegen jacht, terwijl vooral veehouders in Fryslën nu slachtoffer dreigen te worden van deze
benadering, omdat er nooit serieus over alternatieve methodes van ganzenschade bestrijding in de
winter gesproken is. Huidige aantallen ganzen zullen nu de geleverde foerageergebieden binnen twee
maanden leeg gegeten hebben. (schatting op basis van 1700 gansdagen/ha). Deze ganzen zullen
dan op overig boerengrasland moeten gaan foerageren om de winter te overleven.
De zogenaamde “Flevoland methode”, in feite ganzenschade commando’s die op de schadedag zelf
in het jachtveld van een jager komen ingrijpen om ganzen te schieten is volgens ons ingegeven door
de wens om weidelijk beheer door jagers en hun bestaande band met het jachtveld op te heffen. Inzet
van beroepscommando’s die puur voor het schieten van ganzen overal worden ingezet kosten meer
geld (23 Euro per geschoten gans) dan acties door vrijwillige gemotiveerde jagers die lokaal de
natuurkenners zijn. De weidelijke jagers hebben een relatie met hun grondgebruiker en kunnen
rekening houden met hun sociale omgeving en de marge die er moet zijn om dieren te sparen bij
verjaging als dat mogelijk is. Beroepskrachten in een ganzen-inzetgroep zijn niet alleen duurder, maar
ook maatschappelijk minder acceptabel, omdat het bij hen puur om het schieten van ganzen gaat.
Wij willen u daarom vragen de ideologische discussie voor of tegen jacht of afschot in de
wintermaanden uit het ganzen beleid te houden, en geen besluit bij voorbaat te nemen over een
situatie die pas na veel meerjaren van ander beheer vrucht kan dragen.
Wij dringen erop aan dat u een beproefde methode van ganzenbeheer en regulatie toe zal staan,
namelijk het beperken van de broedsuccessen in de toendra’s door ganzen in de wintermaanden
weer even karig voedsel te verstrekken als voorheen het geval was: ebijje. 5X Fq
Deze aanpak is het gehele jaar door ganzen verjagen van agrarische gronden en alleen rust gunnen
in de door u gefinancierde natuur- en foerageergebieden. Daarbij zullen enkele ganzen worden
geschoten, echter het bloedbad waar telkens naar wordt gerefereerd is niet aan de orde. Dit houdt
de ganzen vaker in de lucht en voorkomt vervetting die wetenschappelijk aangetoond, de reden is
voor de bovenmatige broedresultaten van ganzen en de immer toenemride antaiii wiiiterganzen
die we niet kunnen opvangen.
Wij vinden het niet verantwoord en onacceptabel dat een anti-jacht-symbool er toe leidt dat u in uw
verordening opneemt dat veehouders in Friesland niet langer op grasland ganzen mogen verjagen om
schade te bestrijden en te voorkomen. Zeker als we weten dat de aantallen daardoor alleen verder
zullen escaleren, en er een conflictsituatie tussen agrarische bedrijfsvoering en provinciale
natuurdoelen zal ontstaan.
Hiermee hopen we u de in het huidig beleidsvoorstel en conceptverordening niet meegenomen
oplossingsrichting voor het winterganzen probleem onder ogen te hebben gebracht.
Wij zijn graag bereid tot een nadere toelichting over deze niet meegenomen variant in uw commissie
land, lucht en water, of in uw Statenvergadering.
Met vriendelijke groet,
P.M.A van Kempen, NOJG Frys!ân!NOP
F.P.E. Wijnans, NMV afd. Fryslân
/
/
‘4
iaj
/ivHv
iL,6E
Seasonal matching of habitat quality and
fitness in a migratory bird
1. Témas Grétar Gunnarssoni
2. .Jennifer A Gul 1,2,
,
3. Jason Nevion3,
4. Peter M Potts4 and
5. William .1 Sutherlandi
± Author Affihiations
1.
‘Centre for Ecology, Evolution and Conservation, School ofBiological Sciences,
University ofEast Anglia
Norwich NR4 7TJ UK
2. 2
Tyndall Centre for Climate Change Research
Norwich NR4 7TJ, UK
3. NERC Life Sciences Mass Speciromeiry Facilily
SUERC, Rankine Avenue, Las! Kilbride G75 OQF, UK
4. 4
Solent Couri Collage, Chilling Lane, Warsash, Southampton S03] 9HF, UK
1. Author for correspondence
(1. uunnarsson(uea.ac.uk)
1. Introduction
A key driver of fitness in individual animals is the quality of the habitat they occupy. In
migratory species, individuals must select breeding habitat at one end of the range and winter
habitat at the other. Summer and winter habitat selection are generally studied in isolation, but
a growing number of studies have pointed to the importance of interactions between seasons.
LFor example, geese (Brantaernicla bernicla) that have larger fat reserves 0fl departing the
winter or staging grounds have higher breeding siss (FhNnge & Spaans 1 995; Madsen
1 1095), and marked individuals and stable isotope technology have heen used to show that
rwinter habitat quality is related to tirning of migration (Marraciul._1998; Gul ei al. .20(H
),
body condition during spring migration (Bearhop
i/. 2004) and even local breeding success
r (Norris ei tL 2004). These patterns could arise either through winter conditions determining
individual condition for migrating and breeding, or through individuals selecting similar
quality habitats in both seasons. Our study systern, the Icelandic black-tailed godwit, Limosa
limosa islandica, provides an opportunity to identify the mechanism linking summer and
winter events at a range of scales as: (i) we have detailed information on the locations of
individuals throughout the annual cycle (Gunnarsson eiuL 2004); (ii) the winter habitat of
breeding birds can be identified through stable isotope analyses of feathers and; (iii) we have
traced the pattern of population expansion in both summer and winter, allowing us to assess
individual use of novel and traditional sites. Icelandic black-tailed godwits are migratory
shorebirds that breed almost exclusively in Iceland and winter in Western Europe (Wemham
ei al. 2002). Recent studies of this species demonstrated that individuals on recently occupied
wintering sites in eastern England experienced significantly lower prey intake rates in late
winter and lower annual survival rates than those wintering in the traditionally occupied south
of England (Gil! ei al. 2001) In this study, we assess the variation in reproductive success.
‘
,ÇJjj/iHV
J Ornithol
DOl 10.1007/s 10336-007-0223-4
iIA6E 2
REVIEW
Migratory connectivity in Arctic geese: spring stopovers
are the weak links in meeting targets for breeding
R. H. Drent OG. Eichhorn DA. Flagstad 0
A. J. Van der Graaf 0K. E. Litvin Di. Stahi
Received: 9 March 2007 / Revised: 16 August 2007 / Accepted: 17 August 2007
© Dt. Ornithologen-Gesellschaft e.V. 2007
Abstract Linking spring migratory itineraries of mdi
vidual Arctic-breeding geese to their eventual breeding
success bas provided evidence that accurnulation of body
stores (protein, fat) at stop-over sites is crucial. We show
that this is because geese nesting in the Arctic depend at
least in part on these stores for synthesis of eggs and
supporting iiicubation (for the female, a phase of starva
tion). Estimates of the body stores needed for successful
reproduction (eggs + incubation) in relation to measured
rates of accumulation of these stores make dear that
meeting the demands solely by feeding at the breeding
grounds is not an option for geese. The time constraint does
not allow this. because early Iaying is a necessity in the
Arctic to ensure survival of the progeny. Although the
parents can exploit the early spring growth along the fly
way, they get ahead of the wave of growth when they
arrive on the breeding site and hence the parental time
table can only be met by drawing 011 body stores. Resuits
from tracking studies in six goose species underline the
conciusion that egg formation corn mences along the yway
before arrival at the nesting colony. In some cases, signa
tures of stable isotopes in egg components and parental
body tissues in relation to the signature in forage plants
support the notion of a rnixed endogenous/exogenous ori
gin. The close match between migratory timing and the
spring flush of plant foods makes geese particularly vul
nerable to the impact of climate change. There is an
increasing mismatch along the NE Atlantic Flyway, where
a warming trend in NW Europe conflicts with stable or
even cooling trends in the Arctic target areas.
Keywords Capital breeding Clirnate change 1
Energetic costs of incubation 1 lFat budgets U
Satellite tracking
Communicated by F. Bairlein.
R. 1-1. Drent (& ) IG. Eichhorn IA. J. Van der Graaf
Animal Ecology Group,
Centre for Ecological and Evolutionary Studies.
University of Groningen, P0 Box 14,
9750 AA Groningen, The Netherlands
e-mail: [email protected]
A. Flagstad
Department of Small Animal Science,
Royal Veterinary and Agricultural University,
Dyrlaegevej 16, 1870 Frederiksberg, Den mark
K. E. Litvin
Bird Ringing Centre, Leninsky Prospekt 86-310,
Moscow 119313, Russia
J. Stahl
Landscape Ecology Group, University of Oldenburg,
26111 Oldenburg, Germany
Introduction
Migratory birds face the challenge of producing a dutch as
soon as possible after arrival on the breeding grounds, since
the prospects for progeny decline rapidly with advancing
date (Sedinger and Raveling 19X6; Sedinger and Flint
1991; Lepage et al. 1 99$; Prop et al. 2003; Bêty et al. 2003,
2004). Especially in demanding environments stili in the
grip of winter, the nesting female will face a shortage of
foraging opportunities locally and may depend instead on
nutrients garnered elsewhere along the flyway and
sequestered in the body (notably stores of fat and protein)
in order to meet her time schedule. Birds that follow this
strategy of flying in materials for forming the eggs and
supporting incubation have been termed ‘capital breeders’,
1 Springer
iW3c ii/1V
3
•
kin Newton
1.
•
•
•
First published: 29 March 2004F ull publication historv
DOl: 10.1ll1/j.1474-919X.2004.00293.x
Citin literature
.
*Emajl: ine)ceh.ac.uk
Abstract
Unlike resident bird species, the population sizes of migratory species can be influenced by
conditions in more than one part of the world. Changes in the numbers of migrant birds, either
long-term or year-to-year, may be caused by changes in conditions in the breeding or
wintering areas or both. The strongest driver of numerical change is provided in whichever
area the per capita effects of adverse factors on survival or fecundity are greatest. Examples
are given of some species whose numbers have changed in association with conditions in
breeding areas, and of others whose numbers have changed in association with conditions in
wintering areas. In a few such species, the effects of potential limiting factors have been
confirmed locally by experiment. In theory, population sizes rnight also be limited by severe
competition at restricted stopover sites, where bird densities are often high and food supplies
heavily depleted, but (with one striking exception) the evidence is as yet no more than
suggestive. In some species, habitats occupied in wintering and migration areas, and their
associated food supplies. can infiuence the body condition. migration dates and subsequent
breeding success of migrants. Body reserves accumulated in spring by large waterfowi serve
for migration and for subsequent breeding, and females with the largest reserves are most
likely to produce young. Hence, the conditions experienced by individuals in winter in one
region can affect their subsequent breeding success in another region. Such effects are
apparent at the level of the individual and at the level of the population. Similarly, the
numbers of young produced in one region could, through density-dependent processes, affect
subsequent overall mortality in another region. Events in breeding, migration and wintering
areas are thus interlinked in their effects on bird numbers. Although in the last 30—40 years
the numbers of some tropical wintering birds have declined in western Europe and others in
eastern North America, the causes seern to differ. In Europe, declines have mainly involved
species that winter in the and savannas of tropical Africa, which have suffered from the
effects of drought and increasing desertification. In several species, annual fluctuations in
numbers and adult survival rates were correlated with annual fluctuations in rainfali, and by
implication in winter food supplies. In North America, by contrast, numerical declines have
affected rnany species that breed and winter in forest, especially those eastem species
favouring the forest interior. Declines have been attributed ultimately to human-induced
changes in the breeding range, particularly forest fragmentation, which have led to increases
in the densities of nest predators and parasitic cowbirds. These in turn are thought to have
caused declines in the breeding success of some neotropical migrants, which is now too low
to offset the usual adult mortality, but as yet convincing evidence is available for only a
rninority of species. The breeding rates and population changes of some migratory species
have been influenced by natural changes in the availability of defoliating caterpillars. In other
species, tropical deforestation is likely to have played the major role in population decline.
and if recent rates of tropical deforestation continue, it is likely to affect an increasing range
of migratory species in the future.
1.
/,/,1cC
REVIEW
I_ri
‘
Can conditions experienced during migration limit the population levels
of birds?
:
.‘——
[1— (
(,. ..
I-irii
\
—
Ii
:1--1--1.-.1
‘
,
h:l
,.
11Irlr
t1L’Ir
r.:1’n
ni
IH ‘: i!11 T.I
.ii1’i T’.
f
1 l’
I
.
ir
r
I!T.ll T.
ri.i
ir
r -Ilni.!
i’r Jur
n. :n 1iI:i .I:i1:I,.
‘l:Ln
-:iLi tfl
:i::H:
i.:1.ILh .i. ( -‘mr.
t .1 L1IlJ c: 11! : i.
na:i:n
Jl.h’i k’
Lu,fl:
juItiii:. v.t:..i -.:hin L
1
.c
,: :n
\ :Jn!..: i
L\pI11J :n ihi
!i ni II:
m:in :i
h:id inut nt d j’i d;n [-i :.i. n
ii it
ri!: ,1C
Il%lTIl11 lIlr.
I11Illr
I’lrlk jr:
1’’:i.ii’i’
.1
2
11
kit1.J
l!iç
-.
•
.
c ti;IT ti:[
flhtrJLilr\
iiini
ird
i1
‘‘tll
ii-ii
.i
l11!
‘
•i:’,
-I.I’..l
.
In
•
ri ii
‘Ii1Lifl-
ll.l
i:
\••—
II
t..—
t .1’
T
1
-
T.
‘1
1.. -t
i
1’’
It—ri’
t:•t_
.
t——
l•
t
.iIiitii:
In
iIlillL•
LiTL1I41Tt.
hirI
un
III
l
1f
‘çie.
hu
t iiitt’
ii
1!
ihC _ir-t-.Cn! LtLlI11._’. Iii hr tn.t p1’pUII
\1L-:hlL’... thC- lIti1i1:
% In
1.
.
1
n
iiT1tL1flL! ‘!lLiS JI dIlls.i .Tit plint.. 1W ihC!l
innt jIUlfl 11u1•-S
—
Itr liluiLd ihm- iitIi
tuifw-. i
tim.- hIt11tnL 4t CLItL’ JU III.! Wt21 ,itir
t’LIk 1.1% 1fl JU1LI 11&nt Iu’.
t’n
ttÈlfl
..
Ln%.
1.
ti’tnTimifl
.1I.l!I.11111n
1
1
\11;j(1
‘‘.tiiLiiiiit
1
;itI’tiii’
‘..iui;i1
L1I)’’.
IrdrodLlction
I’IiLI1ln
\\
luIc tiic flLmflh.n-.
mli
..m1I.
mLn .tll!
ij’”iI :itl. !flfltIcflç!l1 prunt
LIlUld 11.
int ;I!llln
in
ti.it.I
hii111lhi\ It
1. itçni.E.
(
\ .11IJItRI%
.t ‘.jlç’’.,
LTmi
%tCIms Il
11fldltTlls in hrc:d
in1crlnt lll..l-. (‘\L.’.1ilti .DFlU4.
ii
‘ILF
J\ I\
th ITII-ri’
Li ic-_tl
5
.\I
ifl
;i’.m liii: iit
1hL
Iiu
(lItJii lmtl% thi bmTl1.r;hItl’h! ÇI7T
ti
41iT_
i1i.’ %1O i pIl1lmia1kn.. ThiLII”. 111
ltnl:iIlrl..
Sit1.-li
‘LlLl. 1hfl dL (huLt
t. T t!
1 ‘1’- ! puii hii itn ict. m.1, 11ht.
h.’i 11.1.’
‘‘t
lr1nLnl.L.d )h
nLlrt,l1it anti V.PrllIL!Lt!4h1i ir
it tt1ir linie.. icir in tin’. niper. lt1LrcI’re.
iJ
1
i’d !lhuihl!nn t
ii1
‘ltI1
hen
11’. dç-Lkrlc
tImjIlnL!. LhL.
L’.plulfl .1 1jtm2n [hri.1mt ‘IT et.c1.
1fl CIITijLITILLIIIn t. uh tITLi t
t.Ir... per.ulTn .mt
thCr
:1 %t-ar. \1r-1ht.er. ifltU[ltt’l! ul.L-flI_ ul.i Ituij
tTrflTs
nun-r in a LIUfl..l t r.ndL-nt ‘r i.Lr-i\ mi •-n’.n. rJç
t’iLtLTT n:innC-r 1 )c-nitx -JC L-nden; C1tILLtI.ni InpiiL..
‘hlTjt.1ltIl’hl {1lIu.ull’. i.’i Tol’t ‘r ‘1 d;tk1i ,it. ‘iLurï..). t..
l,.Ie1ltuL. (II !hin1’. ;1i..Lteti 1’.
1 iL%1Il (t t.. IILii ihe
1.tl c.ii.h .t. ItL1I uullhl1tLrS .liC ITi1.!h iii.iit t.’iiL.IL uiti.’ IIL
IT! (ILI!..!l\ —I1LiC1liilli iitiittili’it_ L(lltÏt1i!(T1hhl Is liltili!—
‘hi1Ihh1, ;itiml
, tim
11
iie çIllhIliIil’h1 iit itiiI’- iiii.i i’
‘.
.
1
hflJ
niimrutitni L ni’. are L!crl’... a’.
i’’
’
1
e’
iLil
ItI
-
i
i
•
1
1
IhTbç1i.1hi’.
lnfl!n th 11—1 çitd ç\ çhlT ‘. Cm
l
-,
1
ii.it
th
t.iI 1r.:-Jmn
1 lIfl1l
ii
in
:i.du;i. .Iii in
\Iiin. ‘1RtR’
I!Ll ‘..nJ-Inn
V.
in
t1;1,llTiIi
ihcii
1!
ii
IIL:nnL’
IsIiLILn., .T
•nL-: -I’ n-Tt rIT::t
\
l.I1.t
..‘I:i1 kl
LI -ir.:tinn
t
iItiIT1ILTTll ih
Ii: hin 411 i it tI !nh- i!iI, ,iinl --n
lii
lL:I’ 1fl 1 n—-.
1 1 nI !n
l:l T:.r:!I’l . ‘.1
ii Ii;
i
.i . i1-i
:it .1! ::li LiL
.;L:I.lIl
1Ifl
.;ii. -n-!fl.
1I..Ta’
Il-tl..t—. 111 1 1!’ II .1 tI 1 1I_
sii!1
r
‘ifliçr
,fl:T’I ,ILrIk
1•
.11 nrn1!1çr l1l!1.I lii
t t. ii
.1
111
-.1III1I
_Il1[l.
Lll
!1l’:[\ BiiR
I-i’
iT.fl. RL- 4) fl!T
p’ J r:i n- it ii
r-’
•:pI
Ir’
.m
111
;I!1.1’
.ll!1, 11111. ili1I .It1Lt\
Illiltilin
1i llT11
tI.i -ru .l.•
‘T, vI-’i
tL1I
1R’
‘il
;
‘
21
I
k
2Tfrl
.‘l!hslL’!11 re!utp.hn_inn til
Itpifilfi
‘1fL
h .i1li’!t.
1
hen
A)H’ Pj
//,6r
Adaptive Harvest Management
for the Svalbard Population
of Pink-Footed Geese
t,.
Briefing Summary
Prepared for:
AEWA Svalbard Pink-Footed Goose
International Working Group
Copenhagen, Denmark
April 23, 2013
t
Prepared by:
Dr. Fred A. Johnson
Southeast Ecological Science Center
U.S. Geological Survey
Gainesville, Florida, USA
Introduction
The African-Eurasian Waterbird Agreement (AEWA; http://www.unep-aewa.org/) calls
for means
to manage populations which cause conflicts with certain human econoinic activities. The
Svalbard
population of the pink-footed goose has been selected as the first test case for such an
international
species management plan to be developed. This document describes progress to date on
the
development of an adaptive harvest management [AHM) strategy for maintaining pink-footed
goose abundance near their target level by providing for sustainable harvesis in Norway
and
Denmark. This briefing supplements material provided in the Progress Summary distributed
to the
International Working Group on February 1, 2013.
We emphasize that peer review is an essential aspect of the process of developing and
implementing an AHM program for pink-footed geese, and we will continue to solicit
reviews by the
International Working Group and their staff, as well as scientists not engaged in this
effort. We
wish to make the Working Group aware that the following two manuscripts have been
submitted
recently to refereed journals and are available upon request from the senior authors:
Jensen, G. H., 1. Madsen, F. A. Johnson, and M. Tamstorf. Snow conditions as an estimator
of the
breeding output in high-Arctic pink-footed geese Anser brachyrliynchus. Polar Biology:
In
review.
Johnson, F. A., G. H. Jensen, J. Madsen, and B. K. Williams. Uncertainty, robustness, and
the value of
information in managing an expanding Arctic goose population. Ecological Modelling:
In
review.
1
7