ハイパーノバとブラックホール Hypernovae and Black

ハイパーノバとブラックホール
Hypernovae and Black Holes
野本憲一 (Nomoto, Ken’ichi)
前田啓一 (Maeda, Keiichi)
東京大学大学院理学系研究科天文学専攻
University of Tokyo, School of Science,
Department of Astronomy
SN 1998bw
SN 1987A
=
E ~ 30×1051ergs
E ~ 1×1051ergs
Hypernova Candidates
Ekinetic > (5-10)×1051ergs
SNe Ic
SN
GRB
SNe IIn
SN
GRB
1998bw 980425
1997cy
970514
1997ef
1999E
980910
971115
1999as
1988Z
2002ap
1999eb
1997dq
1998ey
1992ar
SN 1998bw
991002
GRB 980425
• Observations: Spectra, Light Curves
– Progenitors, Energetic, M(56Ni)
• The properties of Hypernova Explosions
– Features unexpected by spherical models
– Black Hole Formation
• Jet-Driven Explosion Model
– Explains the above features?
– Predictions
• Evolution of the central black hole.
• Nucleosynthetic features (e.g., 56Ni)
• Gravitational wave (?) - Optical Display - Abundances
Possible Gravitational Wave
from Hypernovae?
• MBH ~4M
• Low Viscosity Case
M (R<300km)
– 0.0033 M
• High Viscosity Case
– 2.21 M
– j~1017 cm2s-1
• Self-Gravity
• Large EROT/|EGRAV|
Macfadyen et al. 1998
Bar Mode Instability?
h~4×10-20 (1Mpc/D) (j/1017cm2s-1) (M/M) (f/1000Hz)
f~1000 (j/1017cm2s-1) (100km/R)2
e.g., Fryer et al.2002
j~1017cm2s-1
j~1016cm2s-1
M~1M
R ~100km
at Bounce
J Conserve
SN at 10Mpc (1SN/year);
f~100 Hz, h~4×10-23
MDISK~2M
R ~100km
J Conserve
HN at 100Mpc (1HN/year);
f~1000 Hz, h~8×10-22
Spectra of
Supernovae & Hypernovae
Ic: no H,
Ia
Ib
SiII
O Ca
He
Ic
Hyper
-novae
no strong He,
94I
97ef
98bw
no strong Si
Hypernovae:
broad features
blended lines
“Large mass at
high velocities”
Light Curves of
Supernovae & Hypernovae
Light Curve Broadness
SN1998bw >> SN1994I
Ejected Mass
SN1998bw >> SN1994I
Progenitor’s Mass
SN1998bw >> SN1994I
CO Star Models for SNeIc
Parameters [Mej, E, M(56Ni)]
H-rich
He
Light Curve
56Fe
C+O
MC+O
Si
Fe
Mms/M
56Co
56Ni
Collapse
MC+O/M
~ 40
13.8
~ 35
11.0
~ 22
5.0
Spectra
 ~ [dyn • diffusion]1/2 E  Mej
 Mej 1/2
R
~ V
• Rc
 ½Mej¾E
E  Mej3
-¼
56Ni
Spectral Fitting: SN1997ef
Model
Normal SN
Small Mej
Too Narrow
Features
Spectral Fitting: SN1997ef
Model
Hypernova
Large Mej
Broad
Features
Progenitors’ Mass – E – M(56Ni)
Most Stars (>25M) explode as Hypernovae?
• The Contribution of Hypernovae is Large.
– Hypernovae are Not so Rare Events.
Distribution of HNe
Distance – Absolute Magnitude of SNe Ib/c
• 1 HN per 1 year in
R<100Mpc.
• 1 SN per 1 year in
R<10Mpc.
10
100 Mpc
Hypernova Rate
Local SN Rate (SN/100yr/1010L) h=H0/100
Corrected1)
Observed2)
Ia
Ib/c
II
All
0.36±.11h2
0.14±.07h2 0.71±.34h2 1.21±.36h2
111
18
54
183
1)Cappellaro et al. 99, 2)Richardson et al. 01
HNIb/c
SNIb/c
N(20M-50M)
= 3(+1+2)/18
N(8M-20M)
~ 0.3 (Salpeter IMF)
~ 0.15 – 0.3
• Large Fraction of Massive O (or He) Star with M>20M
Explodes as Hypernovae. Depending on Binary Evolution?
Properties of Hypernova Explosions
(1) Deviation from spherical explosion models
(2) Black hole formation
1) Asphericity in Core-collapse SNe
(in general)
SN1987A: Asymmetrical, but not spherical, ejecta
Optical Polarization in core-collapse SNe > 0.5 %
(in SNe Ia < 0.2 - 0.3%)
HST Image of SN1987A
Optical Spectropolarimetry of
Wang et al. 2002
SNe 1993J, 1996cb, Wang et al. 1999
2) Light Curves of Hypernovae
1998bw
1998bw
1997ef
1997ef
2002ap
2002ap
Low Density
(Vacuum)
Spherical Hydro Model
High
Density
Maeda et al. 2003, ApJ, submitted
3) Late time spectra of SN1998bw
Line Width Inversion between Fe and O
[OI] 6300A
O
Fe
FWHM
Observation
FeII]
5200A
Spherical
Expansion
Observer
Broader Fe lines than O lines in the observations.
Low velocity O-rich Matter: SNe1998bw, 1997ef
Interpretation as an
Aspherical explosion
[OI] 6300A
Observation
FeII]
5200A
Spherical
56Fe
15 deg
16O
Aspherical
Maeda et al. 2002
4) BH Formation
Abundances in Nova Sco
[X/H]=log10(X/H)-log10(X/H)
1.5
SN matter
[X/H]
1
BH
0.5
0
N
O
Mg
Si
S
Ti
Fe
-0.5
• Enhancement of O,Mg,Si,S,Ti by a factor of 6-10.
Israelian et al. 1999
Hypernova model for the formation
of the BH in Nova Sco
Abundance in Nova Sco
1
E51=30
[X/H]
0.8
0.6
BH mass in the model
4.8M at the explosion
SN
0.4
0.2
0
He C
O Ne Mg Si S Ca Ti Fe
5.4M now (Post SN)
BH
MMS=40M, MHe=16M, E51=30
MBH at the explosion ~ 5M
Black hole formation with a Hypernova explosion.
Podsiadlowski et al. 2002
The properties of hypernova explosions
• High velocity material (Fe)
• Low velocity & high density material (O)
– Contrary to conventional spherical models.
• forms a black hole, but explodes with large
E51 (= E/1051ergs > 10).
– Black hole formation does not always leads to
a failed supernova.
Do jet-induced explosions satisfy these
conditions?
Model: Jet-induced Explosion
MRem0
1.0 – 3.0M
16MHe (MMS=40),
8M He (MMS=25),
(Nomoto&Hashimoto 1988)
Radiation+Pairs
15o
Newtonian Gravity
Ejet =  Mc2 , 0.01
Postprocessing
222 isotopes (Tielemann et al.)
K. Maeda, in preparation
Log (Density[g cm-3])
Hydrodynamics
Radial Velocity/c
Collimated jets (Z) + Bow shock (All direction)
M
Lateral expansion
R/1010cm
Density
Hydrodynamics (Center)
Accretion from the side
Continue to accrete, MBH
Radial Velocity
R/1010cm
E51=11, MBH(final)=5.9M, M(56Ni)=0.11M
Outflow
Inflow
0.7 s
1.5 s
R/1010cm
Density Distribution
High density core at
the central region
High velocity
material along z
Jet (R)
Sph (E51=1)
Sph (E51=10)
Jet (z)
(E51=11)
Growth of a central remnant
MBH
Inefficient
Jet
8
MREM can be ~ 5 – 10M,
starting from 1.5 – 3M.
Still a strong explosion
follows (E51>10).
efficient
Jet
4
0
20
40
Time
(sec)
A hypernova with a stellar mass black hole
(X-ray Novasco; Large Si,S with black hole formation).
Final Remnants’ masses and Kinetic Energies
11
6.9
5.9
E51
=E/1051ergs
1.9
MBH(M)
• A more massive star makes a more energetic explosion
(As seen in ‘Hypernova Branch’).
Peak Temperature & Density
T/109K
8
Z
Z
Ejected
4
R
Accreted
0
R
Spherical
Ejected
4
6
Accreted
8
• High T + Low 
Material are
preferentially
ejected.
Log(Density[g cm-3])
Fe, O Distribution
Vz (/109cm s-1)
6
E51(=E/1051ergs)=10,
MREM=6M,
M(56Ni)=0.1M
4
2
0
High Velocity Fe
2
4
Low Velocity O
6 Vr
0.5
0.1
56Ni(56Fe)
16O
0.01
(M)
LOptical
Relation in MREM and M(56Ni)
40M
20M
Efficient
GW: 
e.g., rotation
(M)
inefficient
GW: 
Velocity Inversion of isotopes
Fe
Zn
O
V(Fe) > V(O), V(Zn) > V(Mn)
Spherical; Zn Fe Mn O
T , Inner (smaller V)
Mn
Prediction
Ejection of
heavier isotopes
with higher V
Jet (Z)
Jet (R)
O
Spherical
Fe and heavier
Jet (all direction)
Abundances in the whole ejecta
Spherical, 1052ergs, 0.1M Ni
O, Mg
Mn
Co,Zn
Jet-Driven,1052ergs, 0.1M Ni
Possible Contribution to
the early Galactic Chemical Evolution
[X/Y] = log(X/Y) – log(X/Y)
Past
More Massive Star
Jet model: [Zn/Fe]
,[Mn/Fe]
Agrees with the abundances in old stars.
56Ni
0
0
[S/Si]
-0.5
-0.5
Sph
-0.6 -0.4 -0.2
-1
25M
0
10
1
MBH/M
2
3
0
5
0
[Si/O] 0
40M Accretion
Accretion
[S/Si],[Si/O]
-0.6 -0.4 -0.2
-1
Jet
S Si O
0.4
0.4
[Mg/O]
,[C/O]
5
-0.2
0
1
MBH/M
2
3
-1
-0.8
-1
10
25M
-0.8
0
-1.4 -1.2
[C/O]
40M Accretion
Jet
Sph
-1.4 -1.2
-0.2
0
0
[Mg/O]
0.2
0.2
Accretion
O,Mg C
Summary
• The studies on hypernovae indicate;
– Velocity inversion of Fe and O
– Dense core
– Black hole formation
• Jet-induced explosions satisfy the above
condition!
– Blow up heavy isotopes (e.g., Fe, Zn) to the surface.
– A black hole grows, with an energetic explosion.
• Possible site of gravitational wave emission?
• Depending on angular momentum, HNe may be able to be
detected more easily than normal SNe.
– MBH
– MBH
– MBH
efficiency of the jets (e.g., rotation?)
( inefficient Jets)
LOpt
Abundances (e.g., MBH
[S/Si], [O/C]
)