表面波プラズマの トムソン散乱診断と 電子加熱機構 河野明廣 名古屋大学工学研究科 電子情報システム専攻 プラズマ科学のフロンティア 2008 Outline ・Motivation: electron heating mechanism in SWP ・Laser Thomson scattering measurement system ・Measurements for low-pressure SWP ・Fluid-Monte-Carlo hybrid modeling ・Conclusions Planar surface wave plasma ・Planar Surface wave plasma source (SWP) ・easily scalable to a large area device ・low electron temperature ・How electrons are heated in low-pressure SWP is not well understood yet. Microwave E field in SWP Dielectric (quartz) 10 mm E Resonance layer Plasma ne=6.7×1011cm-3 Microwave 2.45 GHz (wpe=w at nc=7.4×1010cm-3) Resonance layer and electron heating mechanism ne nc Dielectric plate ne (w pe 1 d wwave ) Presheath ne nc (w pe wwave ) Sheath p 0 p 0 Resonance layer p 0 D E p Is the following electron heating mechanism realistic? Surface wave Electrostatic wave Landau damping Reported probe measurement data for 915MHz Ar SWP Nagatsu et al. APL 2002 個々の電子によるトムソン散乱 Laser 2 =2 E2 I ∝ (E E2 + E E)-2 E) = 4E 散乱光強度は電子数の揺らぎに に比例する。 EE -E Scattered light (Doppler shifted) Non-collective scattering k0 ks + - +-++ -+ -+ - +- + -+ -+ - +- + k D (Debye length) Laser N1 N N1 (N1 )2 N N 2 N N 2 (N2 )2 N Total scattering intensity I ( N1 - N2 )2 (N1 - N2 )2 (N1 )2 (N2 )2 2N1N2 2N k方向の速度成分 に比例した ドップラーシフト Condition for non-collective scattering Direction of scattering D 1 k i.e., (kD )-1 1 Collective scattering k0 k k s + + + + + + - - - - + + + + + + - - - - - Laser Direction of scattering D デバイ長より長い空間スケールでは,電子密度の揺らぎはイオ ン密度の揺らぎを伴う必要がある。 Typical signal level in low-temperature plasma measurements Total cross section Plasma ne=1011cm-3 Laser 200mJ/pulse 5×1017 photon 8 re 2 36000 photon/cm scattered F4 lens 3 6.65 10-25 cm2 ×1/256 (solid angle loss) Monochormator ×1/10 (transmittance) Detector 1.4 photon finally detected ×1/10 (quantum efficiency) Requirements for efficient measurements Rayleigh and stray scattering Thomson spectrum ~10 nm ・Very low scattering intensity (photon counting level) → Need of multichannel spectrum recording ・Strong Rayleigh- and stray-light interference → Need of sharp and deep notch filtering Triple grating spectrograph (TGS) 2D photon counting ICCD camera Spatial filter Intermediate slit The combination of a spatial filter and an intermediate slit reduces the Rayleigh component by a factor of ~10-6 Rev. Sci. Instrum. 71(2000)2716 Stray light elimination by TGS Entrance slit Intermediate slit Stray Thomson (Subtractive dispersion) 1st grating 2nd grating 3rd grating Spatial filter Rayleigh Stray Thomson Thomson Scattering position Photon image in the ICCD camera Wavelength / electron velocity Thomson spectrum (1D EEPF) for Ar ICP 1000 300 100 200 Photon count Photon count 250 150 100 50 10 1 0 0.1 50 100 150 200 250 300 Channel number 200 W, 20 mTorr 20000 shot accumulation 350 0 5 10 15 Electron energy (eV) ne=5.5×1011cm-3 Te=2.3 eV 20 25 Thomson spectrum for Ar SWP 880 W, 50 mTorr, Ar SWP 40 mm from the quartz plate 100240 shot accumulation 1.4 10 4 Improvements Laser energy ×5 TGS ×1.8 QE of ICCD camera ×3.5 105 ne=3.0×1011cm-3 Te=1.6 eV 1.2 104 10 4 Photon count 1 10 4 8000 1000 6000 100 4000 2000 10 0 1 -15 -10 -5 0 5 Wavelength shift (nm) 10 15 0 5 10 15 Electron energy (eV) 20 N2ラマンスペクトルによる絶対強度校正 Thomson scattering measurement of the spatial profile of EEDF near the dielectric plate of SWP Quartz Plate Thomson scattering measurement of the spatial profile of EEDF near the dielectric plate of SWP Side view Top view Microwave 2.45GHz f400mm z observation Beam x y Dielectric plate YAG laser 532 nm, 330 mJ, 30 pps z z Chamber is movable horizontally ( x and y direction) by 50 mm x observation Entrance slit of TGS Eliminating Raman background from the quartz plate in z-oboservation (a) (b) (c) Thomson spectra observed at different positions x observation Photon count Photon count z observation Electron energy (eV) Electron energy (eV) Ar 10 mTorr, 800W Observed spatial distribution of Te and ne x observation z observation Ar 10 mTorr 800 W Microwave E field in SWP Dielectric (quartz) 10 mm E Resonance layer Plasma ne=6.7×1011cm-3 Microwave 2.45 GHz (wpe=w at nc=7.4×1010cm-3) Estimation of E field near the dielectric plate using fluid model Electron momentum balance Space charge field Microwave field (assumed) Field boundary condition ne (nev e ) 0 t x v e v e kTe ne e ve - ( ESC Ew ) - mv e t x m m n x dESC e + was fixed at the value of the static (n - ne ) nsolution without microwave field dx 0 x Ew E0 exp(- ) coswt d Esc 0 (deep in the plasma) (d~10mm) Dielectric plate Electron continuity E x E field near the resonance layer E = Ew+Esc= Eaverage+E(t) E(t) 1000 E(t) 500 0 E(t) 0 Eaverage 0 -500 2 2 ne=nc (wpe=ww ) ne(t) 1 ne=nc (wpe=ww) 1 1 0 0 Eaverage Eaverage -1000 Normalized density Field intensity (V/cm) Should apply to the experimental condition 100 200 300 400 0 500 0 1 ne=nc (wpe=ww) ne(t) 20 40 60 80 0 100 0 ne(t) Distance from the dielectric plate (in D) increasing ne 20 40 60 80 100 Collisionless electron motion in the resonance E filed (Monte-Carlo simulation) Dielectric plate vx 3 2 1 0 -1 -2 -3 Phase space x 2 eV Electron bunch 5 eV ・Low energy electrons are not heated. ・High energy electron are heated by phase randomization caused by ・ sharp spatial change in the microwave field ・ electron reflection by the sheath field Monte Carlo simulation Ar 10 mTorr Outer boundary Dielectric plate ・Simulation space: 1D in space and 3D in velocity space 200 mm ・Electrons move in the E field given by the fluid-model computation. ・At the outer boundary, electrons are reflected or annihilated by setting a (variable) threshold energy, so that electron loss balances with electron production. ・A simplified electron collision cross section set (Vahedi, 1993) ・Coulomb collisions taken into account (K. Nanbu, IEEE Trans. Plasma Sci. (2000)) Estimation of ionization frequency via ne response to microwave power modulation Microwav E field in the Monte-Carlo simulation was determined so that the resulting ionization frequency agrees with the experimental value Monte Carlo simulation of electron heating Dielectric plate vx 3 2 1 0 -1 -2 -3 x Monte-Carlo simulation results Electron temperature in low energy part EEPF Ar 10 mTorr Electron temperature (eV) 3 2 1 0 0 10 20 30 40 50 Distance from the dielectric plate (mm) ・EEDFs are nearly Maxwellian ・No beam-like component Stochastic heating in ICP and SWP RF ICP Microwave SWP e e E E No energy gain Sheath Skin layer Sheath Skin layer Summary ・Thomson scattering measurement using TGS + ICCD camera is a powerful method for electron diagnostics of low-temperature plasmas ・In low pressure SWP, the main electron heating mechanism appears to be the stochastic heating via collision of electrons with the resonance layer Probe in overdense plasma ne Overdense plamsa cutoff density Strong E field? position Negatively biased probe When a probe is put in an overdense plasma and negatively biased, a layer is produced near the probe, where ne=ncut-off; microwave field may be strengthened by this resonance layer and may have a large effect on the probe characteristics. Simulation space Simulation space r ~ 90D Assume cylindrical symmetry 512 grid points (1/6)D spacing Probe r=4D ne n const. Boundary conditions Probe surface v e v 0 r r f 0 f f0 f1 sin wt Governing equations ne Electron continuity (ne v e ) 0 t v e kTe e ( v ) v n f - col v e Electron motion e e e t m ne m Ion continuity Ion motion Poisson Te=2eV n (n v ) 0 t 2 v kT e v -( v ) v n - f t Mn M free f 2 T+=0.1eV e 0 (n - ne ) vcol /(w pe / 2 ) 0.016 free / D 650 Probe current without microwave field 0.01 0.01 I dI/dV d2I/dV2 0.001 Electron current (A) Electron current (A) 0.008 I dI/dV d2I/dV2 0.006 0.004 0.002 0.0001 10-5 10-6 0 -0.002 10-7 -20 -15 -10 -5 DC probe bias voltage (V) 0 -20 -15 -10 -5 DC probe bias voltage (V) 0 Probe current with microwave potential fluctuation Vprobe=V0+V1sinwt, V1=2.0 V, 0.01 0.01 I dI/dV d2I/dV2 I dI/dV d2I/dV2 0.001 Electron current (A) 0.008 Electron current (A) wpe/w = 1.0 0.006 0.004 0.002 0.0001 10-5 10-6 0 10-7 -0.002 -20 -15 -10 -5 DC probe bias voltage (V) 0 -20 -15 -10 -5 0 DC probe bias voltage (V) For underdense plasma, the result is almost identical with that without microwave field. Probe current with microwave potential fluctuation Vprobe=V0+V1sinwt, 0.01 0.01 I dI/dV d2I/dV2 I dI/dV d2I/dV2 0.001 Electron current (A) 0.008 Electron current (A) wpe/w = 2.2 V1=0.05 V, 0.006 0.004 0.002 0.0001 10-5 10-6 0 10-7 -0.002 -20 -15 -10 -5 DC probe bias voltage (V) 0 -20 -15 -10 -5 DC probe bias voltage (V) 0 Probe current with microwave potential fluctuation Vprobe=V0+V1sinwt, V1=0.3 V, 0.01 0.01 I dI/dV d2I/dV2 I dI/dV d2I/dV2 0.001 Electron current (A) 0.008 Electron current (A) wpe/w = 2.5 0.006 0.004 0.002 0.0001 10-5 10-6 0 10-7 -0.002 -20 -15 -10 -5 DC probe bias voltage (V) 0 -20 -15 -10 -5 DC probe bias voltage (V) 0 Probe current with microwave potential fluctuation Vprobe=V0+V1sinwt, V1=2.0 V, 0.01 0.01 I dI/dV d2I/dV2 I dI/dV d2I/dV2 0.001 Electron current (A) 0.008 Electron current (A) wpe/w = 3.3 0.006 0.004 0.002 0.0001 10-5 10-6 0 10-7 -0.002 -20 -15 -10 -5 DC probe bias voltage (V) 0 -20 -15 -10 -5 DC probe bias voltage (V) 0 Field intensity near the probe surface with 2.45 GHz potential fluctuation Vprobe=V0+V1sinwt, Probe bias -15V Vprobe = -15 + 0.7sin(ωt) V1=0.7 V Probe bias -5V Vprobe = -5 + 0.7sin(ωt) Probe bias -9V Vprobe = -9 + 0.7sin(ωt) Field intensity (V/cm) Field Intensity (V/cm) 1000 0 -1000 -2000 -3000 -4000 Large filed fluctuation -5000 0 50 100 Position (μm) 150 200 0 50 100 150 200 0 Position (μm) Distance from the probe surface (m) 50 100 Position (μm) 150 200 2.45 GHz experiment EEPF(Ar65mTorr_1kW) V-I特性(Ar65mTorr_1kW) 1017 1.4 10 -1 1.2 10 z= 2.5 z= 5.0 z= 7.5 z=10.0 z=12.5 z=15.0 -1 EEPF EEPF 8 10-2 1016 6 10-2 p Probe Icurrent (A) (A) 1 10-1 mm mm mm mm mm mm z= 2.5 z= 5.0 z= 7.5 z=10.0 z=12.5 z=15.0 mm mm mm mm mm mm 1015 4 10-2 1014 2 10-2 0 10 0 -2 10 -2 -40 1013 -30 -20 -10 0 10 Volt(V) DC probe bias voltage (V) 20 30 0 5 10 15 20 25 Energy[ev] Energy (eV) 30 35 40 Probe current with microwave potential fluctuation Vprobe=V0+V1sinwt, 0.01 0.01 Electron current (A) I dI/dV d2I/dV2 0.008 Electron current (A) wpe/w = 3.3 V1=5.0 V, 0.006 0.004 0.002 I dI/dV d2I/dV2 0.001 0.0001 10-5 0 10-6 -0.002 -25 -20 -15 -10 -5 DC probe bias voltage (V) Te=3eV 0 -25 -20 -15 -10 -5 DC probe bias voltage (V) vcol /(w pe / 2 ) 0.4 0 Summary When the plasma potential oscillates at a microwave frequency and the plasma is overdense, the probe current is affected in a complicated manner. The distortion in the V-I characteristics may result in false peaks in the second derivative.
© Copyright 2024 ExpyDoc