Search for CP violation using laser

Search for CP violation using laser-cooled atoms
レーザー冷却原子によるCP対称性破れの探索
Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University
Hirokazu Kawamura
Outline
• Laser-cooling techniques
• CP-violation and EDM
• Electron EDM and Atomic EDM
• Cs EDM experiment
• Fr EDM project at Tohoku
E
B
RCNP workshop “CP violation in elementary particles and composite systems”
Nov. 10, 2014, RCNP, Osaka University
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Laser-cooling and trapping for neutral atoms
Interactions between laser and neutral atoms
Laser beams
Potentials
atoms
Cooling and/or trapping
Very longer interaction time
Traditional atomic beam experiments
Thermal beam ~ high velocity
Short interaction time
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
2
b-decay experiments using laser-cooled atoms
Angular correlations in nuclear b decay
J
nucleus
pe
A-correlation
pν
neutrino
D-correlation
 P-odd
 T-odd (P-even)
e.g. TRINAT at TRIUMF (J.A.Behr)
electron
Neutrino is reconstructed from
electron and recoil nucleus.
Trapping techniques are good
to measure recoil momentum!
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
3
T-violation = CP-violation under CPT theorem
Electric dipole moments
Nuclear b decay
positron
spin
Nuclear
spin
CP
T
≠
EDM
antinucleus
electron
≠
P
≠C
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
P
≠
4
Historical electron EDM limits
1E-20
-20
10
e-EDM limit (ecm)
1E-22
10-22
10-24
1E-24
Cs
Cs fountain
Cs
Cs
Hg
Xe
Cs
TlF
Cs
10-26
1E-26
10
1E-28
-28
10
1E-30
1960
The Schiff shielding
theorem is violated by
relativistic effects.
GdFeGar
TlF
Tl
YbF
Tl
Tl
Hg
Atomic systems
provide such a
powerful probe of the
electron EDM.
YbF
● with
atomic or molecular beam
■ with atomic cell
◆ with solid
ThO
The ACME Collaboration
Science 343 (2014) 269
-30
1970
1980
1990
Year
2000
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
2010
5
Hierarchy of CP-odd sources & observable EDMs
R is the enhancement factor
cN accounts for permanent nuclear EDMs
and T-violating e-N interactions
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
6
Electron EDM from Atomic EDM
arXiv:1301.1681v2, arXiv:1308.6283v2
Hg
0.5
ThO
~
CS/10-7
Hg
Alkali atoms
-0.5
YbF
Tl
-0.6
de/(10-26 ecm)
0.6
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
7
Modern electron EDM experiments
eEDM
groups
Commins,
Tl beam
Hinds,
YbF beam
ACME,
ThO beam
Cornell,
trapped HfF+
Weiss,
trapped Cs
v (m/s)
420
590
200
26
0.02
Eapp (MV/m)
12
1
0.01
10-4
15
|R|
585
1.45x106
109
1010
120.5
Eeff (GV/m)
7.2
1450
10000
1000
1.8
t (s)
3x10-3
6.4x10-4
1.5x10-3
0.1
3
t・Eeff
0.022
0.93
15
100
5.4
dN/dt (s-1)
109
6x104
105
<100
2x108
3x10-28
2.4x10-30
de limit (ecm) 1.6x10-27
Ref.
1.05x10-27 8.7x10-29
(measured)
(measured)
(measured in (plan)
2013)
(plan)
PRL88(200
2)071805
Nature473
(2011)493
J.Phys.B43(2
010)074007
KunyanZhu
(2013)PhD
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
J.Mol.Spectro.
270(2011)1
8
Cesium EDM projects
Atomic beam
PRL21(1968)1645
Cell
PRL63(1989)965
3D optical lattice
PRA63(2001)033401
Fountain
PRA75(2007)
063416
-24
|de| <
~ 10 ecm
-26
|de| <
~ 10 ecm
proposal
|de| < 10-22ecm
~
spokesperson
affiliation
David Weiss
Penn State Univ.
Dan Heinzen
Univ. of Texas
Kazuhito Honda
Shizuoka Univ.
Harvey Gould
LBNL (Berkeley)
method
133Cs
133Cs
in 1D optical lattice
in far off resonance trap
133Cs
Laser-cooling and
trapping techniques
in 3D optical lattice
133Cs
fountain
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
9
Cs EDM experiment (Weiss, PennState)
Cold atoms in optical lattices
have a long coherence time
and motional field effects are
greatly suppressed.
trapped Cs
in 1D optical lattice (1064nm)
B
-E
E
20cm
Transparent
electrodes
(ITO)
Precision measurements and
active stabilization of E and B
fields.
Common mode noise
rejection with 2 simultaneous
interferometers leads to be
insensitive to B field
fluctuations.
Ultimate check of systematic
errors using alternating
measurements with 2 alkali
species, Cs and Rb.
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
10
Ultimate projected sensitivity
Energy levels of 133Cs F=3
in a ~150kV/cm E field (no B field)
-2
400Hz
-3
mF=0
+1
-1
+2
+3
(plan for 133Cs)
Zoom in mF=±3
plan for 87Rb
+3
-3
R = 26
N = 8x109 atoms (density limited)
mF = 1, gF = -1/2
 Comparable to 133Cs
ThO exp.: 8.7x10-29 ecm (measured in 2013)
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
11
Experimental equipment
Optical lattices
Glass cell
(10μK)
Polarization-gradient
cooling beams
Cs oven (100oC)
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
12
Francium EDM project
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Francium
Heaviest alkali metal = Francium :
⇒simple electronic structure and large nucleus
⇒Enhancement factor: Z=87  R~103

de

d Fr
R~
Fr
d atom
de
No stable isotopes: radioactive atom
Several isotopes with long half-life
⇒210Fr =3.2 min, 211Fr =3.1 min, 212Fr =20. min.
Enhancement factor |R|
Enhancement of electron EDM
Laser cooling and trapping techniques: localize atoms
⇒ Improve both statistical and systematic effects
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Blundell, Griffith, and
Sapirstein (2012)
1000
Fr
Mukherjee, Sahoo,
Nataraj, and Das (-2011)
800
Tl
600
400
Cs
200
Rb
0
0
20
40
60
Atomic number
80
14
Fr EDM project at CYRIC, Tohoku Univ.
Beam swinger
Fr production by
oxygen beam and gold target
18O5+
Deflector
Triplet-Q1
Ion beam transportation
by electrostatic lenses
Wien filter Beam purification
by velocity filter
Au target
(Thermal ionizer)
Triplet-Q2
Rb ion
Triplet-Q3
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Cyclotron & Radioisotope Center (CYRIC)
Cyclotron
Target room
210Fr
K=110MeV AVF cyclotron
10GHz ECR IS
100MeV
Fr production
18O
+ 197Au  215-xFr + xn
Stancari et al., NIMA557(2006)390
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
16
Laser-cooled francium factory (current)
Laser room
Cyclotron
Beam swinger
Target room
18O5+
Ext. room
Cyclotron
Wall
MOT
Au target
Neutralization
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
17
Fr ion production
210,211Fr
(6.54MeV)
Fr+
Einzel lens
208,209Fr
209,210Rn
Extraction
electrode
207At
205At
212Fr
206Po
18O5+
(6.64MeV)
211Po
Oven
Fr count rate [a.u.]
197Au
6
4
target (f10) ~1000oC
Target temperature dependence
Fr+
18O5+
solid
liquid
2
18O5+:
0
850
~200enA
1000
950
900
Gold temperature [oC]
Au
Gold melting point = 1064oC.
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
18
Purify the ion beam using Wien filter
Neutralizer
E x B field
only Fr ions
Exp. conditions
- Coil current = 11.7A (B field ~400G)
- E field 2080V/m for A=210
23Na 39K 85Rb
197Au
FC current (pA)
100
200
Mass/Charge
210Fr
16
FC current (nA)
100
10
10
1
0.1
10-1
0.01
0.001
10-3
0.0001
0
Courtesy of Tamii (RCNP)
300
6
12
4
8
2
4
0
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
0
100
200
300
Mass/Charge
400
19
SSD count (cps)
Background (~10nA)
+ Fr ions (~10fA)
Neutralization & Magneto-optical trap
Laser beam
Rb trap image
anti-Helmholtz
coils
Vacuum
glass cell
Trap
CCD camera
Rb signals
SSD
Ion beam
Neutralizer target
(yttrium)
FC
Ion beam detector
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
17sec
20
Approaches to increase trapped atoms with Rb
Fluorescence (a.u.)
Neutralizer temperature dependence
Non-stick coating (OTS) glass cell
Longer trapping life
120
80
40sec
40
0
Optimized at ~1000oC
6.0
7.5
9.0
10.5
Neutralizer heating current (A)
60
Prefer lower energy
40
20
0
1
2
3
Light-induced atomic desorption
Fluorescence (a.u.)
Fluorescence (a.u.)
Implantation energy dependence
High power light
4
Rb ion beam energy (keV)
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
UV LED power (mW)
21
Laser light sources for Fr trap
Intensity
210Fr
Energy Level
F’=15/2
F’=13/2
7P3/2
F’=11/2
F’=9/2
with repumping light
0th
(trap)
Repump
718.13 nm
Trap 718.216 nm
F=13/2
7S1/2
F=11/2
10th sideband
Reference frequency
127I2 P(78)1-9
718.222nm
Signal (V)
210Fr
~3GHz
Dube & Trinczek,
Opt.Soc.Am.B21(2004)1113
Simsarian et al.,
PRL76(1996)3522
2
Error signal
1
0
-1
-2
Frequency reference for
the trapping light is obtained.
Frequency (GHz)
0
20
40
60
80
Frequency (MHz)
The frequency
22 and
Hirokazu Kawamura, Search for CP-violation using laser-cooled
atoms difference between the trapping
repumping light are fixed by using the error signal.
Electric field application
Rb trap with
ITO electrodes
𝛼exp /ℎ = 0.14 ± 0.008 Hz/ V cm
2
𝛼ref /ℎ = 0.122306 16 Hz/ V cm
2
K. E. Miller, D. Krause, Jr., and L. R. Hunter,
Phys. Rev. A 49,5128, (1994)
ITO coated
glass plate
𝐹
2𝐹
𝐹
𝐹
=4
=3
=2
=1
Trap (D2)
5 2 P3
hyperfine structure
5 2 P1
2
𝐹=3
𝐹=2
5 2 S1
2
𝐹=3
𝐹=2
Repump
(D1)
85Rb
ℰ
Transition frequency shifts
Hirokazu Kawamura,
Search forfield.
CP-violation using laser-cooled atoms
in a dc electric
Preliminary
23
Optical magnetometer
B
Magnetic field: quantization axis
n
Shift of the spin precession frequency
due to the EDM: nEDM = n+ - n- < 1 mHz
<=> Magnetic field fluctuation < 10 fT
=> Rb atomic magnetometer based on
the Nonlinear Magneto-Optical Rotation (NMOR) effect
D. Budker et al.,PRA 62.
: Magnetic sensitivity: ~ 0.1 fT / Hz
E
B
-E
n
043403.(2000).
Linear polarized lights
k
Rb atom
B
NMOR spectrum with FM light
B
 150 nT
NMOR
① Production of Rb spin alignment by the linearly polarized lights.
(Rb atoms have the linear dichroism.)
②Alignment precession around B.
(The axis of the dichroism rotates around B. )
③Rotation of the polarization plane of the light
through the interaction with the alignment .
With frequency modulated light (nmod = 5 kHz)
- Center : 550 nT
- Width : 150 nT
<= Wall relaxation of the cell which confines Rb atoms
Residual field of the magnetic shield
which the cell is placed inside.
Cell production, Demagnetization of the shield
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Fr-EDM collaboration (2014)
Cyclotron and Radioisotope Center (CYRIC), Tohoku University
S. Ando, T. Aoki, H. Arikawa, K. Harada, T. Hayamizu,
T. Inoue*, T. Ishikawa, M. Itoh, K. Kato, H. Kawamura*,
K. Sakamoto, A. Uchiyama, and Y. Sakemi
*Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University
The University of Tokyo
Tokyo Inst. Tech
Tokyo Metropolitan University Tokyo Univ. Agri. Tech.
T. Aoki
K. Asahi
T. Furukawa
Osaka University
Japan Atomic Energy Agency
Kyoto University
Indian Tech. Roorkee
K. Hatanaka
K. Imai
T. Murakami
H. S. Nataraj
Tokyo Inst. Tech.
Tohoku University
Osaka University
Okayama University
T. Sato
Y. Shimizu
H. P. Yoshida
A. Yoshimi
Kyushu University
Foreign students
T. Wakasa
J. Mathis (ENSICAEN), L. Koehler (TU Darmstadt)
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
FRIS
A. Hatakeyama
25
Toward the clarification of CP violation
EDM violates T symmetry = CP violation under CPT theorem
Electron EDM requires atomic EDMs and T-violating e-N interactions
Many species not only paramagnetic and also diamagnetic
Other approaches such as b-decay experiments
Electron EDM experiments are dominated
by polar molecules and laser-cooled alkali atoms
Cesium EDM experiment is active
Heaviest alkali atom, Francium EDM project
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
26
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
D-correlation in b decay
emiT Collaboration, PRL107(2011)102301
19Ne
J. Ng and S. Tulin,
Phys. Rev. D 85 (2012) 033001
experiment, PRL38(1977)464 & PRL52(1984)337
Model independent
Leptoquark models (with light right-handed neutrinos)
For mLQ > 300 GeV, the neutron EDM
Hirokazu Kawamura, Search for CP-violation bound
using laser-cooled
implies 𝐷𝑡atoms
𝜅 < 3 × 10−5 .
Energy level shifts of 133Cs
(484MHz)
Hirokazu Kawamura, Search for CP-violation using laser-cooled atoms
Courtesy of Yong-Sup Ihn